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Abstract

Transformation of operator algebras under Hopf algebra twist is studied. It is shown

that that adjoint module algebras are stable under the twist. Applications to vector

fields on non-commutative space-time are considered.
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1 Introduction

The interest in the quantum field theory on non-commutative space-time arose long before

the invention of quantum groups. It was reinvigorated after the Heisenberg relations for

the coordinates appeared as a special limit in the open string theory of Seiberg-Witten, [1].

Later those relations were shown to be invariant under an action of the quantum Poincaré

algebra, which resulted from the classical Poincaré algebra through a quantum group twist

[2].

Twist transformation of the Poincaré algebra leads to a deformation of algebraic struc-

tures on the space-time, such as the function algebra, differential operators etc. In this

paper we study the behavior of differential operators under this transformation. In general

mathematical terms, we consider a Hopf algebra H, an adjoint module algebra A, and how
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the latter changes under a twist of H. Recall that adjoint module algebra is an arbitrary

algebra admitting a homomorphism H → A, which defines an (adjoint) action of H on A

compatible with the multiplication in A. Typical examples come from representations of H:

one can take for A the image of H, the entire algebra of endomorphisms, or any algebra in

between. We prove that twist transformation of an adjoint module algebra A is isomorphic

to A.

Our interest in the adjoint action is motivated by geometrical applications of quantum

groups. We regard H as symmetry of the quantum space A, whose geometry also involves

operators acting on A (like differential operators in the differential setting). In this picture,

the algebra H is a sort of thing that is external to the geometry of the quantum space.

Indeed, under the twist of H the entire geometry transforms accordingly, see e.g. [3, 4],

while the multiplication in H remains untouched.

On the other hand, the Hopf algebra H ”participates” in geometry through the repre-

sentation ρ : H → End(A). For example, the d’Alembertian � = ∂µ∂
µ on functions on

the Minkowski space belongs to the (image of) Poincaré algebra. Thus, the multiplication

between the partial derivatives in ∂µ∂
µ must be deformed in End(A), but at the same time

it must remain the same in H. This apparent controversy is a cause of certain confusion

in the literature on the non-commutative gauge field theory (c.f. [5, 6]). It can be resolved

in the following way. Instead of ”external” object H one should deal with the image ρ(H).

Under the twist, the algebra ρ(H) is undergone a deformation, however isomorphic to the

original algebra H. In the ”new coordinates” both comultiplication and multiplication are

deformed in a compatible way, and the algebra structure in H is incorporated uniformly into

the whole picture.

This point of view helps to avoid the confusion between the deformed and non-deformed

products, as it allows to get rid of the ”external” object H and work with the purely geomet-

rical object ρ(H). In particular, the noncommutative star product of annihilation operators

is often interpreted in the physics literature as a change of statistics. In the quantum theory

A can be identified with the algebra of differential operators on the space-time (or the alge-

bra of observables) while H is the symmetry (Poincaré) algebra. Then the above mentioned

isomorphism means that one cannot speak about the ”change of statistics” under a twist of

comultiplication of H and the corresponding multiplication in A (see Example 2.2).

Here is the setup of the paper. Some facts about Hopf algebras and twists that are

used in what follows are collected in the next part of Introduction. The second section is

devoted to adjoint module algebras and their twist transformation. There, we also consider
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a special case of smash product of a Hopf algebra and its general module algebra. Further

we apply the general considerations of this section to universal enveloping Lie algebras and

their generalizations associated with unitary quantum permutations. This is illustrated on

the example of quantum vector fields in the last section.

1.1 Triangular Hopf algebras

For the reader’s convenience we collect in this section the basic information on Hopf algebras,

which will be used further on. Throughout the paper, H is a triangular Hopf algebra over

C, [8]. That is, H is a complex associative algebra equipped with comultiplication ∆: H →

H ⊗ H, counit ε : H → C, antipode γ : H → H, and a universal R-matrix R ∈ H ⊗ H

which obeys the identity RR21 = 1⊗ 1 (the subscripts indicate that the second copy of the

R-matrix has the tensor legs flipped).

The comultiplication is an algebra homomorphism satisfying the coassociativity condition

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆. We shall use the standard symbolic Sweedler notation ∆(h) =

h(1) ⊗ h(2) for the coproduct of h ∈ H. This notation assumes the suppressed summation

over decomposable tensors.

The counit ε is an algebra homomorphism, and (ε ⊗ id) ◦∆ = id = (id⊗ ε) ◦∆, under

the identification C⊗H ≃ H ≃ H⊗ C.

The antipode is an anti-algebra and anti-coalgebra map. The latter means that (γ⊗γ) ◦

∆ = ∆op ◦ γ, where ∆op(h) := h(2) ⊗ h(1) is the opposite comultiplication. The antipode

satisfies the equalities γ(x(1))x(2) = ε(x) = x(1)γ(x(2)).

The universal R-matrix R is an invertible element from H ⊗ H (may be a completed

tensor product) satisfying the identities [7]

(∆⊗ id)(R) = R13R23, (id⊗∆)(R) = R13R12,

in H⊗3. Here the subscripts indicate the embeddings of R in H⊗3 in the standard way. Also,

R∆(h) = ∆op(h)R,

for all h ∈ H. As H is assumed to be triangular, R21 = R−1.

Note that (H,∆op, ε, γ−1,R−1) is again a triangular Hopf algebra. This makes sense,

as the antipode γ is invertible in triangular Hopf algebras. We denote it by Hop. One

can also define the triangular Hopf algebra Hop with the opposite multiplication, the same

comultiplication and counit, and the inverse antipode and R-matrix.
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An example of triangular Hopf algebra is a universal enveloping algebra U(g) of a Lie

algebra g with

∆(ξ) = ξ ⊗ 1 + 1⊗ ξ, ε(ξ) = 0, γ(ξ) = −ξ

on the elements ξ ∈ g. The universal R-matrix is just 1⊗ 1.

An associative algebra A is called an H-module algebra if it is an H-module and the

multiplication of A is compatible with the comultiplication of H:

h ⊲ (ab) = (h(1) ⊲ a)(h(2) ⊲ b), h ∈ H, a, b ∈ A.

In geometrical applications, H acts on a (non-commutative) space, M , andA is the algebra of

”smooth” functions on M . Observe that for any H-module (V, ρ) the vector space End(V ) of

all linear operators on V is an H-module algebra with the action h⊲A := ρ(h(1))Aρ(γ(h(2))).

Now we recall the basics of the Hopf algebra twist. Suppose there is an invertible element

F ∈ H ⊗H satisfying the identities [8]

(∆⊗ id)(F)F12 = (id⊗∆)(F)F23,

(ε⊗ id)(F) = 1⊗ 1 = (id⊗ ε)(F).

Then (H, ∆̃, ε, γ̃, R̃) is again a triangular Hopf algebra with

∆̃(h) : = F
−1∆(h)F γ̃(g) : = ϑ−1γ(h)ϑ, R̃ : = F

−1
21 RF

for all h ∈ H. The invertible element ϑ is defined by the formula (1) below. To distinguish

this new Hopf algebra from H, we denote it by H̃ and call it twist of H via the cocycle F .

Note that H̃ has the same multiplication and counit as H.

A twist of H transforms any H-module algebra A to an H̃-module algebra A≀. As an H-

module, A≀ coincides with A but has a different multiplication, a∗ b := (F1 ⊲a)(F2 ⊲ b). This

multiplication is compatible with the twisted comultiplication in H̃. Thus a twist transforms

Hopf algebras and their module algebras. To distinguish transformation of module algebras

from Hopf algebras, we call A≀ cotwist of A.

2 Twisting adjoint module algebras

In the present subsection we consider module algebras of a special type. Suppose F ∈ H⊗H

is a twisting cocycle. Define the elements ϑ, ζ ∈ H by setting

ϑ = γ(F1)F2, ζ = F
−1
2 γ−1(F−1

1 ). (1)
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It is known, [8], that

ϑ−1 = γ(ζ), ζ−1 = γ−1(ϑ). (2)

As usual, the subscripts are used to label tensor factors in the symbolic notation F = F1⊗F2.

The elements ϑ, ζ participate in the antipode γ̃ of H̃, which is related to the old antipode

by the formulas

γ̃(h) = ϑ−1γ(h)ϑ = γ(ζ−1hζ). (3)

Also, we have the identities

F
(1)
1 ⊗ γ(F

(2)
1 )F2 = F

−1
1 ⊗ γ(F−1

2 )ϑ, γ(F1)F
(1)
2 ⊗F

(2)
2 = ϑF−1

1 ⊗F
−1
2 . (4)

These formulas can be easily derived from the definition F .

Now suppose an associative algebra E admits a homomorphism ρ : H → E . The adjoint

action adρ : H → End(E) is defined by

adρ(h)a = ρ(h(1))aρ(γ(h(2))), h ∈ H, a ∈ E .

When ρ is clear from the context, we use for the adjoint action the dot notation adρ(h)a =

h.a. The adjoint action makes E an H-module algebra, which is further called adjoint

module algebra. We also extend this shorthand notation to the action on maps between any

H-modules, say (S, ρS) and (T, ρT ):

h.f = ρT
(
h(1))fρS

(
γ(h(2))

)
,

for f : S → T . This will help us to distinguish the action on maps from the actions on S

and T .

We are going to show that E is stable under twist. To simplify the formulas, we shall

drop the symbol of the homomorphism ρ, as though H were a subalgebra in E .

Theorem 2.1. Let F ∈ H⊗H be a twisted cocycle and suppose E is an adjoint H-module al-

gebra. Then the cotwist E≀ is isomorphic to E as an associative algebra, with the isomorphism

E≀ → E given by the assignment ϕ : a 7→ F
−1
1 aγ(F−1

2 )ϑ =
(
ad(F1)a

)
F2.

Proof. Denote the inverse mapping E → E≀ by ϕ−1 : a 7→ F1aγ(F2ζ) and check that ϕ−1 is

an algebra homomorphism. This immediately follows from the identity

F
(1)
1 F1′ ⊗ γ(F

(2)
1 F2′ζ)F

(1)
2 F1′′ ⊗ γ(F

(2)
2 F2′′ζ) = F1 ⊗ 1⊗ γ(F2ζ), (5)
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so let (5) be checked first. Applying the cocycle equation to (∆ ⊗ ∆)(F)F12 we transform

the left-hand side to

F1 ⊗ γ(F
(1)
2 F1′ζ)F

(2)
2 F

(1)
2′ F1′′ ⊗ γ(F

(3)
2 F

(2)
2′ F2′′ζ),

from which we easily get the expression

F1 ⊗ γ(ζ)γ(F1′)F
(1)
2′ F1′′ ⊗ γ(F2F

(2)
2′ F2′′ζ).

Applying the right formula from (4) and the left formula from (2), we obtain the right-hand

side of (5).

Example 2.2. The universal enveloping algebra U(P) of the Poincaré Lie algebra P is

realized in the algebra A of differential operators on the Minkowski space, which is generated

by the mutually commuting coordinates xµ and constant vector fields i∂/∂xµ representing

the momenta Pν ∈ P. Simple Abelian twist

F1 ⊗F2 := F = exp
(
−
i

2
θµνPµ ⊗ Pν

)
, θµν = −θνµ,

changes the coproduct of U(P) to ∆̃(h) = F−1∆(h)F , for h ∈ U(P). The algebra A is an

adjoint U(P)-module algebra, and after the twist it has the ∗-product of A≀:

xα
∗ xβ

− xβ
∗ xα = [xα, xβ ]∗ = iθαβ .

The homomorphism ϕ : A≀ → A from Theorem 2.1 acts by

x 7→ yα 7→ (F1x
α)F2 = xα +

1

2
θαβPβ ∈ A.

One can check that the elements yα obey the relations [yα, yβ] = iθαβ .

Similar construction can be done for realization of U(P) in the algebra, call it A again,

generated by the creation and annihilation operators a(p)+, a(k) of the relativistic scalar

field. The action of Pµ on a(p) is Pµ ⊲ a(p) = [Pµ, a(p)] = −pµa(p) giving the ∗-product

a(p) ∗ a(k) = a(k) ∗ a(p) exp(−iθµνpµkν). The isomorphism ϕ : A≀ → A results in

a(p) 7→ b(p) := (F1a(p))F2 = a(p) exp(
i

2
θµνpµ ⊗ Pν) ∈ A,

b(p)b(k) = b(k)b(p) exp(−iθµνpµkν). Therefore, A≀ is realized in the smash product of the

original algebra and U(P) by a change of variables.

The isomorphism ϕ can be defined in the obvious way for any adjoint module, not only

for H. We retain for it the same notation, as the domain of ϕ is always clear from the

context. The map ϕ features the following intertwining properties.
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Proposition 2.3. The isomorphism ϕ intertwines the adjoint actions of H and H̃ on E .

Proof. First of all, remark that H and H̃ coincide as associative algebras and enjoy the same

homomorphism ρ to E . We need to show

ρ(h(̃1))
(
ϕ(a)

)
ρ
(
γ̃(h(̃2))

)
= ϕ

(
ρ
(
h(1)

)
aρ

(
γ(h(2)

))
(6)

for all h ∈ H and a ∈ E . The twiddled indices on the left-hand side designate the twisted

coproduct. To simplify the formulas we assume E = H and ρ = id. For h ∈ H and a ∈ E we

find

h(̃1)
(
ϕ(a)

)
γ̃(h(̃2)) = F

−1
1 h(1)

F1′
(
F

−1
1′′ aγ(F

−1
2′′ )ϑ

)
ϑ−1γ(F−1

2 h(2)
F2′)ϑ

= F
−1
1 h(1)aγ(h(2))γ(F−1

2 )ϑ = ϕ
(
ρ
(
h(1)

)
aρ

(
γ(h(2)

))
,

as required.

It follows from Theorem 2.1 that

ρ̃(h) := ρ
(
F1hγ(F2ζ)

)
= ρ

(
(F−1

1 .h)F−1
2

)
= (ϕ−1

◦ ρ)(h)

defines an algebra homomorphism H → E≀. Put ãd = adρ̃ to be the adjoint action of H̃ on

E≀ defined through the homomorphism ρ̃:

ãd(h)a = ρ̃(h(̃1))aρ̃
(
γ̃(h(̃2))

)
, a ∈ E≀, h ∈ H̃, h(̃1)

⊗ h(̃2) := ∆̃(h).

The product on the right-hand side is taken with respect to the multiplication in E≀. Thus

one has two representations, ãd and ad, of the same associative algebra H on the vector

space E .

Corollary 2.4. The representations ãd and ad coincide.

Proof. Apply the homomorphism ϕ−1 : E → E≀ to both sides of equality (6).

Theorem 2.1 admits the following generalization. Consider the smash product A⋊H of

the Hopf algebra H and its module algebra A. The multiplication in A ⋊ H is described

as follows. Both A and H are subalgebras in A ⋊ H, which is the free right H-module

generated by A. Then the multiplication is determined by the relations ha = (h(1) ⊲ a)h(2),

h ∈ H, a ∈ A. The subalgebra A is invariant under the adjoint action of H on A ⋊H due

to ad(h)(a) = h ⊲ a, for all h ∈ H and a ∈ A. Now consider a twist F ∈ H ⊗H and let H̃

be the twisted Hopf algebra. Let A≀ be the corresponding cotwist of the H-module algebra

A; it is a module algebra over H̃ with the same action ⊲.

7



Proposition 2.5. The mapping A≀ ⋊ H̃ → A⋊H, ah 7→ (F1 ⊲ a)F2h is an isomorphism of

algebras.

Proof. In particular, we need to check that the assignment a 7→ (F1 ⊲a)F2 defines an algebra

homomorphism A≀ → A⋊H. The proof is essentially the same as of Theorem 2.1, because

(F1 ⊲ a)F2 = ad(F1)(a) F2. We have yet to check that the cross-relations in the smash

product are preserved. The equality ha = (h(̃1) ⊲ a)h(̃2) in A≀ ⋊ H̃ goes over to the equality

h(F1 ⊲ a)F2 = (F1h
(̃1) ⊲ a)F2h

(̃2) in A ⋊ H. The latter equality holds true, as the right-

hand side is nothing but (h(1)F1 ⊲ a)h(2)F2 (follows directly from the definition of twisted

coproduct).

Remark that Proposition 2.5 may be also considered as a specialization of Theorem 2.1.

Indeed, the embedding H → A⋊H allows to consider A⋊H as an adjoint H-module algebra.

The factors A and H are invariant, and the adjoint action restricted to A is simply ⊲. This

implies that the cotwist (A⋊H)≀ factorizes to the product A≀H≀, where H≀ is isomorphic to

H as an associative algebra. This factorization turns into the smash product ≃ A≀⋊H̃ upon

transition from H≀ to H (it suffices to check the cross-relations only). On the other hand,

(A⋊H)≀ is isomorphic to A⋊H, by Theorem 2.1.

Adjoint module algebras naturally appear in the following situation. Suppose A is an

H-module algebra and consider the algebra E = End(A) of linear endomorphisms of A. The

action of H on A implies a homomorphism H → E . If we define the adjoint action of H on

E by setting x.A := x(1)Aγ(x(2)), then the action of E on A is H-equivariant (that is, the

map E ⊗ A → A is a homomorphism of H-modules). Twist of H induces a transformation

of the algebras A and E , as well as of the E-action on A:

X ∗ a := (F1.X)(F2a), X ∈ E , a ∈ A.

The algebra isomorphism ϕ−1 : E → E≀ and the transformation of the action compensate

each other in the following sense:

ϕ−1(X) ∗ a = Xa

for all X ∈ E and a ∈ A.

3 H-Lie algebras

In the present section, we recall braided or H-Lie algebras in our terminology, assuming H

to be triangular.
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Suppose that H is triangular and let g be an H-module. Let us call g an H-Lie algebra

if it is equipped with an H-equivariant map [., .]R : g⊗ g → g satisfying the braided Jacobi

identity, [9],

[ξ, [η, ζ ]R]R = [[ξ, η]R, ζ ]R + [R2 ⊲ η, [R1 ⊲ ξ, ζ ]R]R. (7)

plus the skew symmetry condition

[R2 ⊲ ξ,R1 ⊲ η]R = −[η, ξ]R.

For example, any associative H-module algebra B is an H-Lie algebra via the commutator

[a, b]R := ab− (R2 ⊲ b)(R1 ⊲ a)

for all a, b ∈ B. The algebra B is quasi-commutative if and only if this commutator vanishes.

In general, we shall call an H-Lie algebra with zero commutator quasi-Abelian.

One can naturally define homomorphisms between H-Lie algebras, which are equivariant

maps preserving the commutators.

The quotient of the tensor algebra T(g) by the relations ξ⊗η−(R2⊲η)⊗(R1⊲ξ)− [ξ, η]R

is called universal enveloping algebra of g and denoted by U(g). Since the ideal is invariant,

the H-action on T(g) produces an action on U(g).

Proposition 3.1. Suppose that H is triangular and let g be an H-Lie algebra. Then the

smash product U(g)⋊H is a triangular Hopf algebra with the universal R-matrix R and the

comultiplication extended from H by

∆(ξ) := ξ ⊗ 1 +R2 ⊗R1 ⊲ ξ, ξ ∈ g. (8)

The counit and antipode when restricted to g are given by ε(ξ) = 0 and γ(ξ) = −(R2 ⊲ ξ)R1.

Proof. The formulas for counit and antipode readily follow from the comultiplication, which

is obviously coassociative. Let us prove that it is a homomorphism. First of all, the comul-

tiplication respects the cross-relations hξ = (h(1) ⊲ ξ)h(2):

∆(h)∆(ξ) = h(1)ξ ⊗ h(2) + h(1)
R2 ⊗ h(2)

R1 ⊲ ξ

= (h(1) ⊲ ξ)h(2)
⊗ h(3) + h(1)

R2 ⊗ (h(2)
R1) ⊲ ξh

(3) (9)

= (h(1) ⊲ ξ)h(2)
⊗ h(3) +R2h

(2)
⊗R1 ⊲ (h

(1) ⊲ ξ)h(3) = ∆(h(1) ⊲ ξ)∆(h(2)),

9



for all ξ ∈ g, h ∈ H. Further, for any tensor ξ ⊗ η ∈ g⊗ g we write

∆(ξη) = ξη ⊗ 1 +R2 ⊗R1 ⊲ (ξη) + ξR2 ⊗R1 ⊲ η +R2η ⊗R1 ⊲ ξ,

∆(η̃ξ̃) = η̃ξ̃ ⊗ 1 +R2 ⊗R1 ⊲ (η̃ξ̃) + η̃R2 ⊗R1 ⊲ ξ̃ +R2ξ̃ ⊗R1 ⊲ η̃.

where we put η̃⊗ξ̃ = R2⊲η⊗R1⊲ξ = Φ1ηΦ2⊗Φ3ξΦ4 for certain Φ = Φ1⊗Φ2⊗Φ3⊗Φ4 ∈ H⊗4.

Subtracting ∆(η̃ξ̃) from ∆(ξη) we prove the statement, provided that

R2η ⊗ (R1 ⊲ ξ) = (Φ1ηΦ2)R2 ⊗R1 ⊲ (Φ3ξΦ4),

ξR2 ⊗ (R1 ⊲ η) = R2(Φ3ξΦ4)⊗R1 ⊲ (Φ1ηΦ2).

They are satisfied indeed, because, by the definition of Φ,

(∆⊗∆op)(R) = γ−1
2 γ3Φ.

Then the first equation holds identically. The second equation is true for triangular R.

There is a natural H-invariant filtration on U(g), and the corresponding graded algebra

is the quasi-commutative R-symmetric algebra of the module g. Using this filtration, one

can check that g is precisely the set of quasi-primitive elements in U(g), i.e. the elements

satisfying the identity (8).

There is a natural action of the Hopf algebra U(g) ⋊ H on U(g) making the latter an

U(g) ⋊H-module algebra. Namely, U(g) is invariant under the adjoint action. So, for any

ξ ∈ g and a ∈ U(g) one has ad(ξ)a = [ξ, a]R.

Proposition 3.2. Let F ∈ H⊗H be a twisting cocycle. Suppose that g is an H-Lie algebra.

Then the commutator [ . , . ]
R̃
:= [ . , . ]R ◦ F defines on g a structure of an H̃-Lie algebra.

Proof. We need to show that [ . , . ]
R̃
satisfies the Jacobi identity. Denote by τ the ordinary

flip g⊗ g → g⊗ g and write for the mapping [ . , [ . , . ]
R̃
]
R̃
: g⊗ g⊗ g → g:

[ . , [ . , . ]R]R ◦∆2(F)F23 = [[ . , . ]R, . ]R ◦∆1(F)F12 + [ . , [ . , . ]R]R ◦ τ12 ◦ R12∆1(F)F12.

Here we applied the twist equation and the Jacobi identity to the commutator [ . , . ]R. The

first term on the right-hand side is just [[ . , . ]
R̃
, . ]

R̃
. Using the standard Hopf algebra

technique, we get

τ12 ◦ R12∆1(F)F12 = τ12 ◦∆
op
1 (F)F21R̃12 = ∆1(F)F12 ◦ τ12 ◦ R̃12,

which gives for the second term the expression [ . , [ . , . ]
R̃
]
R̃
◦ τ12 ◦ R̃12, i.e. the second

summand in the Jacobi identity.
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We denote by g≀ the vector space g together with this H̃-Lie algebra structure.

Proposition 3.3. The cotwist U(g)
≀
is isomorphic to U(g≀), and the isomorphism is extended

from the identity map g ∋ ξ 7→ ξ ∈ g≀.

Proof. The universal enveloping algebra U(g) is a quotient of the tensor algebra T(g) over

the ideal J(g) generated by the commutator relations. It is easy to see that the cotwist

U(g)≀ is isomorphic to the quotient of T(g) by the ideal J(g≀), where g≀ is obtained from g

by rewriting the defining relations in terms of the new multiplication, ∗. That is, (F−1
1 ⊲ ξ) ∗

(F−1
2 ⊲ η) − (F−1

1 R2 ⊲ η) ∗ (F
−1
2 R1 ⊲ ξ) = [ξ, η]R for all ξ, η ∈ g. As F is invertible, this is

equivalent to the relations ξ ∗ η − (R̃2 ⊲ η) ∗ (R̃1 ⊲ ξ) = [F1 ⊲ ξ,F2 ⊲ η]R, as required.

The isomorphism U(g≀) → U(g)≀ is induced by a linear endomorphism of the tensor

algebra T (g). On the homogeneous component of degree k this isomorphism is given by

ξ1 ⊗ . . . ⊗ ξk 7→ F
(k)
1 ⊲ ξ1 ⊗ . . . ⊗ F

(k)
k ⊲ ξk, where F (k) ∈ H⊗k is defined inductively by

F (1) := 1, F (2) := F , F (m+n) := (∆(m)⊗∆(n))(F)(F (m)⊗F (n)). This definition is consistent,

i.e., independent of the partition k = m+ n. Thus the isomorphism in question is identical

on g by construction.

Proposition 3.4. Consider a twisting cocycle F ∈ H ⊗ H as that of the Hopf algebra

U(g)⋊H. Then the assignment g ∋ ξ 7→ (F1 ⊲ ξ)F2 ∈ U(g)⋊H defines an isomorphism of

Hopf algebras

U(g≀)⋊ H̃ → ˜U(g)⋊H (10)

which is identical on H.

Proof. It follows from Proposition 2.5 that the assignment ϕ : ξ 7→ (F1 ⊲ ξ)F2 for all ξ ∈ g is

a restriction of the associative algebra isomorphism U(g)≀ ⋊ H̃ → U(g) ⋊H. On the other

hand, the identity mapping g≀ → g extends to an H̃-equivariant isomorphism U(g≀) → U(g)≀.

Therefore the assignment in question extends to an isomorphism of algebras.

We need to check that the coalgebra structure is preserved by (10). That is obvious for

its restriction to H̃. Let as prove that ϕ is a coalgebra map when restricted to U(g≀). To

this end, we calculate ∆̃
(
ϕ(ξ)

)
= F−1∆

(
(F1 ⊲ ξ)F2

)
F for ξ ∈ g≀. Note that all the products

and coproducts here are written in terms of U(g) ⋊H. Using the twist identity we get for

∆̃
(
ϕ(ξ)

)
:

F
−1∆(F1 ⊲ ξ)(F

(1)
2 F1′ ⊗ F

(2)
2 F2′) = F

−1∆
(
(F

(1)
1 F1′) ⊲ ξ

)
(F

(2)
1 F2′ ⊗F2).
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Now evaluate ∆ of the element from g and get the sum of two terms, of which the first is

the product of F−1 and
(
(F

(1)
1 F1′) ⊲ ξ

)
F

(2)
1 F2′ ⊗ F2 = F1(F1′) ⊲ ξF2′ ⊗ F2. Thus, the first

summand is equal to ϕ(ξ)⊗ 1. The other summand is the product of F−1 and

R2F
(2)
1 F2′ ⊗

(
(R1F

(1)
1 F1′) ⊲ ξ

)
F2 = F

(1)
1 R2F2′ ⊗

(
(F

(2)
1 R1F1′) ⊲ ξ

)
F2

= F
(1)
1 F1′R̃2 ⊗

(
(F

(2)
1 F2′R̃1) ⊲ ξ

)
F2 = F1R̃2 ⊗

(
(F

(1)
2 F1′R̃1) ⊲ ξF

(2)
2

)
F2′

= F1R̃2 ⊗ F2

(
(F1′R̃1) ⊲ ξ

)
F2′.

Multiplying this by F−1 we get R̃2 ⊗ ϕ(R̃1 ⊲ ξ) for the second summand. Note that the

dot here is the adjoint action of H on g, not of H̃. Apply to this formula (6) where ρ

is the embedding H →֒ U(g) ⋊ H and get R̃2 ⊗ R̃1 ⊲ ϕ(ξ). This proves that ϕ respects

comultiplication and when restricted to g≀ is therefore a coalgebra map.

Remark 3.5. Let us emphasize that the H̃-Lie algebra g≀ is rotated from g inside of the

associative algebra U(g) ⋊H by means of ϕ, that is g≀ = ϕ(g) . This readily follows from

the proof of the above proposition.

For any triangular Hopf algebra H denote by Lie (H) the subset of elements satisfying

the condition

∆(ξ) := ξ ⊗ 1 +R2 ⊗R1 ⊲ ξ = ξ ⊗ 1 +R2R1′ ⊗R1ξR2′ .

It is easy to check that Lie (H) is invariant under the adjoint action of H. Moreover, Lie (H)

is an H-Lie algebra under the R-commutator, hence there exists an algebra homomorphism

U
(
Lie (H)

)
→ H. This homomorphism also extends to a Hopf algebra homomorphism

U
(
Lie (H)

)
⋊H → H.

Proposition 3.6. Put g = Lie(H) and denote by g≀ the cotwist of g by a cocycle F ∈ H⊗H.

Then Lie (H̃) ≃ g≀.

Proof. Denote by g̃ the Lie algebra Lie(H̃). Apply the chain of Hopf algebra homomorphisms

U(g≀)⋊ H̃ → ˜U(g)⋊H → H̃

to g≀ and find that ϕ(g≀) ⊂ g̃, see Remark 3.5. On the other hand, twist is invertible and the

role of ϕ for the inverse twist belongs to ϕ−1. Hence we can do the same with H̃ replaced

by H and get the inverse inclusion ϕ−1(g̃≀) ⊂ g. This implies the statement, because g≀ is

isomorphic to g as a vector space.
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Proposition 3.7. Suppose that H is generated by Lie (H) as an associative algebra. Then

H̃ is generated by Lie (H̃).

Proof. Denote g = Lie (H). It is sufficient to consider the case when H = U(g). Put

A := H and consider it as the adjoint module algebra over H. Since A = U(g), one has

Ã = U(g)≀ ≃ U(g≀), by Proposition 3.3 and Lie (H̃) ≃ g≀ by Proposition 3.6. But Ã is

isomorphic to A, by Proposition 2.1.

Note that the Lie algebras g≀ and g are related as subsets of H by the isomorphism ϕ:

g≀ = ϕ(g), cf. Remark 3.5.

Suppose that H is a classical universal enveloping algebra U(g). Given a twist of H, the

associative algebra H̃ is isomorphic to U(g≀). The elements of g≀ form a Lie algebra over H̃,

and g≀ is linked to g by the transformation ϕ. In other words, there is a set of generators for

U(g), such that the twisted comultiplication is given by ∆̃(ξ) = ξ ⊗ 1 +R
−1
1 R1′ ⊗R

−1
2 ξR2′ ,

where R = F
−1
21 F .

4 Twisted vector fields

In this section we consider an important example of quantum Lie algebras formed by ”quan-

tum vector fields”, [10]. As before, we assume that H is a triangular Hopf algebra and A is

a left H-module algebra.

Definition 4.1. An element X ∈ End(A) is called a first order differential operator if

X(ab) = (Xa)b+ (R2R
−1
2′ a)(R1XR

−1
1′ b) = (Xa)b+ (R2a)(R1.Xb).

The subset of first order differential operators is denoted by DerH(A). Following the

geometric analogy, we shall also call elements of DerH(A) vector fields, thinking of A as the

function algebra on a quantum space. If A is quasi-commutative, then DerH(A) is a natural

A-submodule in the left module End(A). Clearly the A-action on DerH(A) is H-equivariant.

We can introduce a ”comultiplication” on vector fields as a map

∆: DerH(A) → DerH(A)⋊H⊗ DerH(A), ∆: X 7→ X ⊗ 1 +R2 ⊗R1.X.

This allows to use same technique to prove facts about DerH(A) as we did in the previous

section for H-Lie algebras.

Proposition 4.2. The set DerH(A) is H-invariant.
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Proof. Same as the proof of (9).

If the algebra A is quasi-commutative, DerH(A) is a left A-module regarded as a subal-

gebra of End(A) by left multiplication.

Now consider the cotwist of A, and also of E := End(A). The new action of E≀ on A≀ is

expressed through the old action and the homomorphism ϕ by X ∗ a = F1.XF2a = ϕ(X)a.

Proposition 4.3. Der
H̃
(A≀) = DerH(A) as subsets in E .

Proof. Suppose X ∈ DerH(A). We need to show that

X ∗ (a ∗ b) =
(
X ∗ a

)
∗ b+ (R̃2a) ∗

(
(R̃1.X) ∗ b

)

for all a, b ∈ A. Applying to the left-hand side the same steps as in the proof of Proposition

3.4 we arrive at the expression
(
X ∗ a

)
∗ b + (R̃2a) ∗

(
(F1′R̃1).XF2′b

)
. The dot in the

second term involves the coproduct H. The intertwining formula (6) allows to write it as

(R̃2R̃1′a) ∗
(
R̃1.X ∗ R̃2′b

)
, i.e. to interpret the dot trough the new coproduct.

The following statement asserts that the subset DerH(A) ⊂ End(A) is a subalgebra of

the commutator H-Lie algebra End(A).

Proposition 4.4. For any X, Y ∈ DerH(A), the operator [X, Y ]R = XY − (R2.Y )(R1.X)

belongs to DerH(A).

Proof. Same as the proof of Proposition 3.1.

Thus, the H-module g = DerH(A) is an H-Lie algebra. The action of g on A extends

to an action of the universal enveloping algebra U(g), which together with the action of H

makes A a module algebra over U(g) ⋊ H. The representation H → End(A) induces an

H-Lie algebra homomorphism Lie (H) → DerH(A).

Further we give examples of H-Lie algebras naturally arising in geometrical applications

and, in particular, in gauge field theory on non-commutative space-time.

Example 4.5. Let H be a triangular Hopf algebra and A be a quasi-commutative H-module

algebra. Suppose that g is anH-Lie algebra. Denote by A ⊲⊳ g the H-module A⊗g equipped

with the bilinear operation

[a⊗ ξ, b⊗ η]R := a(R2 ⊲ b)⊗ [R1 ⊲ ξ, η]R, (11)

where a, b ∈ A and ξ, η ∈ g.
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Proposition 4.6. The H-module A ⊲⊳ g is an H-Lie algebra.

Proof. Denote by the A ⊲⊳ U(g) the associative algebra with the underlining vector space

A⊗g and the multiplication (a⊗ξ)(b⊗η) := a(R2⊲b)⊗(R1⊲ξ)η. This is the so called braided

tensor product of A and U(g) and is a module algebra over H. The vector space A ⊲⊳ g is

a H -submodule in A ⊲⊳ U(g). Let us prove that the commutator H-Lie algebra restricts to

A ⊲⊳ g and coincides with the pre-defined H-Lie algebra structure on A ⊲⊳ g. That is obvious

for the H-Lie subalgebra g ⊂ A ⋊ g and follows from the very construction. Further, every

element ξ ∈ g R-commutes with every element b ∈ A ⊂ A ⊲⊳ U(g), hence the commutator

of ξ and b ⊗ η has the desired form. By assumption, the algebra A is quasi-commutative.

From this we conclude that derivations of A ⊲⊳ U(g) form a left A-module (in this particular

case even two-sided module). Hence the commutator of a⊗ ξ and b⊗ η is given by (11).

The algebra A ⊲⊳ g is an A-bimodule and the commutator is a bimodule map. The

left action comes from the regular A-action on itself, while the right action is defined by

(a⊗ ξ)b = aR2 ⊲ b⊗R1 ⊲ ξ. Geometrically, such Lie algebras are modeled by vector bundles

whose fiber is an H-Lie algebra, say, of the gauge group.

Example 4.7. The previous example is a special case of the following construction. Suppose

that an H-Lie algebra g acts on a quasi-commutative H-module algebra A. That means that

there is a (H-equivariant) homomorphism g → DerH(A). Regard the tensor product A⊗ g

as the natural left A-module and identify g with 1⊗ g ⊂ A⊗ g. There is a unique extension

of the H-Lie algebra structure from g to A⊗ g satisfying

[ξ, fη]R = (ξf)η +R2f [R1ξ, η]R, ∀ξ, η ∈ A⊗ g, ∀f ∈ A.

This Lie algebra may be regarded as that of local transformations, as opposed to the global

transformations by g. The loop algebra from the previous example is obtained from this by

taking the zero action of g on A.
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