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On the finite spectral triple of an
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Universidade Federal do Rio de Janeiro,Brasil

Abstract

In this paper we examine the relevance of the signature of the metric of
space-time on constructing the product of the pseudo-Riemannian spectral
triple with a finite triple describing the internal geometry.

1 Non-commutative geometry and

the Standard Model of Particle Physics

In A.Connes’ non-commutative geometryNCG approach to the standard model
SM of elementary particle physics, at least at the Lagrangian level, is described
as the tensor product of two real spectral triples :

1. The spectral triple associated to the commutative geometry of a Rieman-
nian spin mannifold ”Euclidean space-time” with its algebra of functions
A1, its Clifford structure with self-adjoint Dirac operator D1, hermitian
chirality Ω1 with Ω2 = Id and anti-unitary charge conjugation or real
structure J1, all represented on the bona-fide Hilbert space H1 of square-
integrable spinors;

2. A finite spectral triple describing theNCG of the ”Eigenschaften” algebra
related to internal quantum numbers. This algebra A2 is a direct sum of
matrix algebra over the real associative division algebras. It acts on a
finite dimensional module H2, with a scalar product, an hermitan Dirac
operator D2, a chirality Ω2 and an anti-unitary real structure J2.

However, this ”almost commutative geometry” ACG approach, was mainly
plagued by two problems :

1. There is a fermion quadruple overcounting [4].

2. No neutrino mixing is allowed and the neutrino remains strictly massless.
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The classification of the real finite spectral triples was studied in [5] and, more
recently in [12]. The different real structures are classified by the so-called
KO-dimension or signature, which is an integer defined modulo eight which
corresponds to the modulo eight periodicity of the real Clifford algebras as
established in [2]. When the space-time geometry is Lorentzian, having p pos-
itive and q negative eigenvalues of the metric tensor, not all of the axiomatics
of Connes’ NCG are met. One of the apparent differences is that the space
of square integrable spinors does not form a Hilbert space, but rather a Krĕın
space with indefinite scalar product. The Clifford algebra is denoted by Cℓ(p, q)
and the signature is σ = p− q modulo eight. Besides this signature dimension,
the NCG has a metric dimension, which in case of spin manifolds, coincide
with the usual geometric dimension n = p + q. In the case of a finite spectral
triple with metric dimension 0, the signature is not necessary zero. Using this
fact, A. Connes [9] and independently J.Barrett [10] could remedy these short-
comings allowing the signature of the finite spectral triple to be six instead of
zero.

2 Where the Sign of the Metric

makes a Difference

Having in mind the relevance of this signature concept1 , we observe that,
in general, the Clifford algebra Cℓ(p, q) is different from Cℓ(q, p). Their even
subalgebras are isomorphic Cℓ+(p, q) ∼= Cℓ+(q, p) and so are the SPIN groups,
but the PIN groups are not. This was already observed by Yang and Tiomno
[1] and a different signature σ corresponds to a different (s)pinor. A more
recent study was made by De Witt-Morette et al.[8]. If the KO-dimension is
physically significant, so will be the sign of the metric. The physically relevant
cases are :

Cℓ(1, 3) ∼= M2(H) ; σ = −2 = +6 mod 8

Cℓ(3, 1) ∼= M4(R) ; σ = +2

with the even subalgebra Cℓ+(1, 3) ∼= Cℓ+(3, 1) ∼= M2(C).
and for an Euclidean space-time :

Cℓ(4, 0) ∼= Cℓ(0, 4) ∼= M2(H) ; σ = +4 = −4 mod 8

and the even subalgebra Cℓ+(4, 0) ∼= Cℓ+(0, 4) ∼= H⊕H.
In earlier work [6] and [7], where the distinction of the metric dimension and
the KO-dimension was not so clear, we already pointed out some difficulties in
the definition of the product of real spectral triples.
The signature of a real, even, spectral triple is determined by the set of three
±1-valued numbers {ǫ, ǫ′, ǫ′′}, given in table 1. and defined by :

J2 = ǫ Id , JD = ǫ′ DJ , JΩ = ǫ′′ ΩJ

1The above title was borrrowed from [3].
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Table 1: The epsilon’s

σ = 0 1 2 3 4 5 6 7

ǫ +1 +1 -1 -1 -1 -1 +1 +1

ǫ
′ +1 -1 +1 +1 +1 -1 +1 +1

ǫ
′′ +1 ⋆ -1 ⋆ +1 ⋆ -1 ⋆

In [6] the product of two spectral triples was discussed but no special attention
was paid to the different parts the metric- and KO-dimension had to play.
However most of the calculations of [6] are still applicable to solve the following
problem :
Given an even spectral triple T1, what are the possible spectral triples T2 such
that their product, T = T1 ⊗ T2, is an even spectral triple with certain required
properties.

3 Defining the Product T1 ⊗ T2

Let T1 = {A1,H1,D1,Ω1,J2} and T2 = {A2,H2,D2,Ω2,J2} be two even spec-
tral triples, T = T1 ⊗ T2 = {A,H,D,Ω,J} with :

A = A1 ⊗A2 , H = H1 ⊗H2 ,

D = D1 ⊗ I2 +Ω1 ⊗D2 , Ω = Ω1 ⊗ Ω2

The Dirac operatorD and the chirality Ω are constructed such that the resulting
Dirac operator D is odd : DΩ + ΩD = 0 and the metric dimensions add :
n = n1 + n2, since D2 = D1

2 +D2
2.

3.1 The natural choice : J = J1 ⊗ J2

We compute

J2 = ǫ1 ǫ2 I = ǫ I

JD =
(

ǫ′1 D1 ⊗ I2 + ǫ′′1 ǫ
′

2 Ω1 ⊗D2

)

(J1 ⊗ J2) = ǫ′DJ

JΩ = ǫ′′1 ǫ
′′

2 ΩJ = ǫ′′ ΩJ

which are consistent if we require that

ǫ = ǫ1 ǫ2 , ǫ
′ = ǫ′1 = ǫ′′1 ǫ

′

2 , ǫ
′′ = ǫ′′1 ǫ

′′

2

The signatures of the spectral triples will be denoted respectively by σ1 , σ2
and σ. Consider the different possibilities for σ1 :

1. σ1 = 0
ǫ = + ǫ2 , ǫ

′ = +1 = + ǫ′2 , ǫ
′′ = + ǫ′′2

and we have the possibility of having σ2 ∈ {0, 2, 4, 6}. Some odd values
are also allowed : σ2 ∈ {3, 7} but there will be no chirality. In each case
σ = σ1 + σ2.
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2. σ1 = 2
ǫ = − ǫ2 , ǫ

′ = +1 = − ǫ′2 , ǫ
′′ = − ǫ′′2

The only possibilities are σ2 ∈ {1, 5} and again σ = σ1 + σ2, without a
chirality.

3. σ1 = 4
ǫ = − ǫ2 , ǫ

′ = +1 = + ǫ′2 , ǫ
′′ = + ǫ′′2

All even cases are allowed σ2 ∈ {0, 2, 4, 6} and also the odd values σ2 ∈
{3, 7}. We still have : σ = σ2 + σ2.

4. σ1 = 6
ǫ = + ǫ2 , ǫ

′ = +1 = − ǫ′2 , ǫ
′′ = − ǫ′′2

Only the odd values σ2 ∈ {1, 5} are allowed. There is no chirality but the
rule σ = σ2 + σ2 still holds.

Connes [9] requires a product with σ = 2 : J2 = −I, JD = DJ and JΩ =
−ΩJ. Since its first factor is Euclidean, σ1 = 4, according to our analysis, the
second factor must be a σ2 = 6.

3.2 The Minkowski real spectral triple

As seen in the above analysis 3.1, if we have a Minkowski signature σ1 ∈ {2, 4},
the product can only be defined with a second odd factor and the chirality
paradigm is lost. This problem was already noticed in [6]. If we restrict to
the product of two even factors, a solution is provided with a modified tensor
product of the real structures :

J = J1 ⊗ J2 Ω2

Again, we compute

J2 = ǫ1 ǫ2 ǫ
′′

2 I = ǫ I

JD =
(

ǫ′1 D1 ⊗ I2 − ǫ′′1 ǫ
′

2 Ω1 ⊗D2

)

(J1 ⊗ J2Ω2) = ǫ′DJ

JΩ = ǫ′′1 ǫ
′′

2 ΩJ = ǫ′′ ΩJ

and, for consistency, we require that

ǫ = ǫ1 ǫ2 ǫ
′′

2 , ǫ′ = ǫ′1 = − ǫ′′1 ǫ
′

2 , ǫ
′′ = ǫ′′1 ǫ

′′

2

Again we consider the different possibilities σ1 :

1. σ1 = 0
ǫ = ǫ2 ǫ

′′

2 , ǫ′ = +1 = − ǫ′2 , ǫ
′′ = ǫ′′2

But, ǫ′2 = −1 implies only odd values of σ2, but in this case no chirality
Ω2 is available to define J.

2. σ1 = 2
ǫ = − ǫ2 ǫ

′′

2 , ǫ′ = +1 = + ǫ′2 , ǫ
′′ = − ǫ′′2

Now all even values of σ2 are allowed and again σ = σ1+σ2. In particular,
if σ2 = 6 we obtain σ = 0.
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3. σ1 = 4
ǫ = − ǫ2 ǫ

′′

2 , ǫ′ = +1 = − ǫ′2 , ǫ
′′ = ǫ′′2

Again the second triple must be odd and J is not defined.

4. σ1 = 6
ǫ = ǫ2 ǫ

′′

2 , ǫ′ = +1 = + ǫ′2 , ǫ
′′ = − ǫ′′2

All even values are allowed and the rule σ = σ1 + σ2 still holds. In
particular if σ2 = 2, the product has signature σ = 0

Barrett [10] requires a product with σ = 0, which is obtained : J2 = −I,
JD = DJ and JΩ = −ΩJ. Since its first factor is Euclidean, σ1 = 4,
according to our analysis, the second factor must be a σ2 = 6. When the
signature of the resulting product is zero or eight we have :

J2 = I ; JΩ = ΩJ

We may then restrict the representation space to the common eigenstates of J
and Ω with eigenvalues ±1.

4 Summary

In this work we examined the signature of the finite spectral triple which leads to
a consistent product. In the Minkowski case, the structure of the finite spectral
triple depends on the signature i.e. on the sign of the metric and this appears to
imply the distinction of two kind of pinors with different Eigenschaften-algebra.
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