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Abstract

We study the classical second law of black hole thermodynamics, for
Lovelock theories (other than General Relativity), in arbitrary dimen-
sions. Using the standard formula for black hole entropy, we construct
scenarios involving the merger of two black holes in which the entropy
instantaneously decreases. Our construction involves a Kaluza-Klein
compactification down to a dimension in which one of the Lovelock
terms is topological. We discuss some open issues in the definition of
the second law which might be used to compensate this entropy de-
crease.

PACS numbers: 04.50.-h, 04.70.Bw

1 Introduction

The basic motivation for studying black hole thermodynamics is to gain
insight into the quantum nature of gravity. Irrespective of the true micro-
scopic theory of quantum gravity, one expects semiclassical gravity to be
a low energy effective description. On general grounds, the action of such
an effective theory should consist of classical Einstein-Hilbert action plus
a series of additional covariant, higher order terms. These terms typically
arise due to quantum renormalization effects. However, it is also possible to
add them to the action classically, in order to study their effect on classical
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black hole thermodynamics.1 Such a study might impose restrictions on the
form of these classical terms—if so, it would suggest that horizon statisti-
cal mechanics somehow places nontrivial constraints on the form of the low
energy action.

In classical General Relativity, the analogue of the second law of ther-
modynamics is the “area theorem”, which asserts that the area A of a black
hole can not decrease in any classical process [1, 2]. Once quantum effects
are included, the classical version of the second law is replaced by a gen-
eralized version [3], saying that A/4G~ plus the exterior matter entropy is
non-decreasing. However, in this work, we will consider only the classical
second law neglecting all the quantum effects of the matter fields outside
the horizon.

The area theorem in General Relativity depends on the null convergence
condition: Rijk

ikj > 0, for any null vector ki. For General Relativity,
this condition is implied by Einstein’s equation together with the null en-
ergy condition. Once one ventures beyond General Relativity, the Einstein
equation has corrections, so it is not possible to establish an area increase
theorem for such theories. However, one also needs to add corrections to
the Bekenstein formula A/4G~ in order to get an entropy which satisfies the
“first law” (really the Clausius relation) dE = TdS. One expects that these
two corrections combine to produce a classical second law in terms of the
corrected entropy. For example, this is what happens in f(R) gravity [4].

The Wald Noether charge method [5, 6] can be used to derive a horizon
entropy S satisfying the first law in any classical diffeomorphism invariant
theory of gravity. In this approach, the entropy can be expressed as a local
geometrical quantity Q integrated over a spacelike cross-section of a Killing
horizon. The integral of Q is the Noether charge of diffeomorphisms under
the Killing field, which is a boundary term. In general, this Noether charge
has several ambiguities [6, 7], but for a stationary horizon with a regular
bifurcation surface, none of these ambiguities matter and Wald’s method
uniquely prescribes the black hole entropy. This entropy S then satisfies the
first law for any first order perturbation to the spacetime. However, any
proof of classical second law requires going beyond the stationary setting
and analyzing a truely dynamical situation. Then the ambiguity in defining
S matters, and presumably at most one of the possible choices of S—the
one that actually corresponds to the entropy—will obey a second law.

In this paper, we will analyze the second law for Lovelock gravity, per-

1In string theory, there are also string corrections to the Einstein-Hilbert action at
O(~0)
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haps the next simplest classical gravity theory after f(R), for which no
second law has yet been established. There is a particularly simple way to
resolve the Wald ambiguities in this theory in order to obtain an entropy
for black holes (often uncritically accepted as the Wald entropy for Lovelock
black holes). We will establish that for any Lovelock theory (except General
Relativity), the classical second law can be violated in certain black hole
mergers.

In the special case of D = 4, this second law violation is already well
known [8, 9]. In this case, the only additional Lovelock term in the action
(apart from the familiar Einstein-Hilbert term) is topological, so the equa-
tion of motion is still the Einstein equation. Yet the entropy has a correction
term which is proportional to the Euler number of the horizon, and this can
lead to violations of the second law when the horizon topology changes
through black hole collapse or merger. However, since the theory obeys the
Einstein equation, it actually does obey a second law, if the entropy is taken
to be the area instead of the Wald entropy. One possible viewpoint is that
there is an additional “topological” ambiguity in the entropy S in addition
to those ambiguities identified in Refs. [7, 6]. Since first order perturbations
to a black hole cannot change the topology, the addition of a topological
term to S cannot change whether the first law is satisfied or not. A similar
analysis can be applied to higher order Lovelock terms which are topological
in D = 2n > 4 dimensions.

However, in D > 4, the Gauss-Bonnet action is not topological, and
therefore can not be viewed as an ambiguity in the entropy for first law
purposes. We will show that even in this non-topological case, the second
law must be violated. The conceptual problem must therefore be resolved
in some other way.

The outline of the paper is as follows: In section 2 we describe the
Lovelock action. In section 3 we discuss violations of the second law in
topological Lovelock theories. In section 4 we consider Gauss-Bonnet theory
in D = 5, which can be shown to have a second law violation by means of
a Kaluza-Klein dimensional reduction to a D = 4 theory. In section 5
we extend this argument to arbitrary Lovelock theories, and explain why
the argument does not apply to General Relativity. In section 6 we discuss
possible ways to try to reconcile this result with black hole thermodynamics.

Henceforth, we adopt natural units (G = c = ~ = 1)
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2 Lovelock gravity

A natural generalization of the Einstein-Hilbert Lagrangian is provided by
the Lanczos-Lovelock Lagrangian [10], which is the sum of dimensionally
extended Euler densities:

L(D) =
K
∑

m=1

cmL(D)
m , (1)

where cm’s are arbitrary constants and L(D)
m is them-th order Lovelock term,

given by

L(D)
m = 2−mδi1j1...imjm

k1l1...kmlm
Rk1l1

i1j1
...Rkmlm

imjm
, (2)

where Rij
kl is the D dimensional curvature tensor and the tensor δ...... is anti-

symmetric in both sets of indices. For D = 2m, L(D)
m is the Euler density

of the 2m dimensional manifold. The Einstein-Hilbert action is the specific
case in which all the coefficients except c1 are zero. The most important
property of these Lanzcos-Lovelock Lagrangians is that they give second
order field equations. Also, these Lagrangians are free from ghosts when
expanded around flat spacetime [11].

We would like to first concentrate on the case m = 2, which in a general
D dimensional spacetime, is the action functional

I =
1

16π

∫

dDx
√
−g (R+ αLGB) , (3)

where R is the D dimensional Ricci scalar, and LGB is the Gauss-Bonnet
invariant of the form

LGB = R2 − 4RijR
ij +RijklR

ijkl. (4)

For any diffeomorphism invariant theory of gravity described by a La-
grangian L, the entropy of a stationary black hole with a regular bifurcation
surface is given by Ref. [7, 6]

S = −1

8

∫

B

∂L
∂Rijkl

ǫijǫkl
√
σ dD−2x, (5)

where the integration is over any (D−2)-dimensional spacelike cross-section
B of the horizon, and ǫij is the binormal on such a cross-section. The
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binormals are normalized as, ǫij ǫ
ij = −2. For the action in Eq. (3), the

entropy turns out to be [8]

S =
1

4

∫

B

(

1 + 2α (D−2)R
) √

σ dD−2x, (6)

where (D−2)R is the Ricci curvature associated with the (D−2)-dimensional
cross-section of the horizon. An important reminder is the fact that the
derivation of Eq. (6) is crucially dependent on the existence of a stationary
Killing field. The two expressions Eq. (5) and Eq. (6) differ by Wald am-
biguity terms which are quadratic in the extrinsic curvature of the horizon,
and which vanish for stationary black holes. For nonstationary black holes,
it is therefore unclear whether to use Eq. (5), Eq. (6), or some other choice
of entropy. The entropy defined by Eq. (6) has the advantage that it is sim-
pler, since it depends only on the metric of the horizon. The Gauss-Bonnet
contribution to Eq. (6) is also topological in D = 4. However, we shall show
below that this choice of entropy does not obey the second law when black
holes merge. (Eq. (5) does not obey a second law either; cf. section 6.)

We would like to investigate whether this expression for the black hole
entropy obeys an increase theorem, like the area theorem in General Rel-
ativity. An ideal and straightforward approach would be to directly com-
pute the change of this entropy along the congruence which generates the
horizon. In case of General Relativity, such a calculation is much sim-
pler due to the availability of null focussing equation and the field equation
Rijk

ikj = 8πTijk
ikj . Since for Gauss-Bonnet gravity, the entropy is no

longer proportional to the horizon area, but depends on the curvature of
the cross-sections, the null focussing equation is not helpful to study the
evolution. As a result, instead of following a direct approach, we take a
different path, by constructing a black hole merger situation where this en-
tropy function in Eq. (6) is shown to decrease. That will serve as a counter
example to the validity of classical second law with this entropy.

3 Second Law Violation in Topological Theories

In four dimensions, the Gauss-Bonnet invariant is topological and does not
affect the equation of motion. The entropy of the two-dimensional horizon
cross-sections can be obtained from Eq. (6) by the Gauss-Bonnet theorem:

S =
A
4
+ 4παχ, (7)
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where χ is the Euler number of the horizon slice (for spherical topology
χ = 2). Now in four dimensions, the Gauss-Bonnet term in the action
has no effect on the equation of motion, so α can be either negative or
positive. On the other hand, in five dimensions, when the Gauss-Bonnet
term has non-trivial contribution, the negative sign for α leads to instability
and naked singularities [12]. Thus we will mainly focus on the case α > 0
even in four dimensions, since ultimately we are interested in applying the
conclusions obtained from the four dimensional set-up to a five dimensional
spacetime via dimensional reduction. However, a negative sign of α also
leads to second law violations.

Next, we consider a concrete example of a topology changing process
involving the merger of two spherical black holes. Let the horizons be foliated
by some parameter t such that t is increasing towards the future on each
horizon generator, at t = −∞ the horizon slices have the topology of two
spheres, while at t = +∞ the horizon slices have the topology of one sphere.
At some special value of t there is a transition between the two topologies,
which occurs at a single point. The location of this merger point depends on
the choice of foliation. If a classical second law holds analogously to the area
increase theorem of General Relativity, the entropy should be increasing no
matter what foliation is used.

Comparing the entropy just before and after the merger, the area changes
continuously, but the Euler number suffers an instantaneous jump at the ex-
act moment of topology change. For α > 0, this jump decreases the entropy.
Since all other contributions to the entropy change continuously, there is no
way to compensate for the instantaneous decrease of the contribution from
Gauss-Bonnet term. This leads to an instantaneous violation of the classical
second law. This fact was first noticed in Ref. [8], and is also discussed in
Ref. [9]. On the other hand, for α < 0, the second law can be violated
when a black hole forms from collapse, at the instant that the horizon first
appears.

A similar problem arises for the m-th order Lovelock term in a D = 2m
dimensional spacetime. As in the case of Gauss-Bonnet in D = 4, any such
Lovelock term adds a contribution to the action proportional to the Euler
number χ of the horizon. Since χ = 2 for any even-dimensional sphere,
this can cause an instantaneous entropy decrease at the moment of the
black hole with spherical topology merger. Assuming that the black hole
merger happens at a single point, dimensional analysis reveals that the lower-
order Lovelock contributions to the entropy evolve continuously through the
moment of black hole merger. Therefore, nothing can compensate for the
instantaneous decrease of entropy. Hence, it follows that the second law is
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violated in any topological Lovelock theory.

4 Dimensional Reduction of 5D Gauss-Bonnet

Now we will utilize these four dimensional results to show a violation of the
classical second law in five dimensional Gauss-Bonnet gravity. Our strat-
egy will be to start with D = 5-dimensional spacetime, and compactify the
fifth dimension to obtain an effective four dimensional theory.2 We will
then show that this theory violates the classical second law. Because every
solution of the compactified theory corresponds to a solution of the non-
compactified theory, and the operation of finding the Wald entropy from
a Lagrangian commutes with compactification, the noncompactified theory
must also violate the second law.

We will consider a spacetime which is a product of some four dimensional
manifold with a circle: M4 × S1, with all fields being translation-invariant
going around each circle. This dimensional reduction of higher dimensional
Gauss-Bonnet gravity is studied in Ref. [13], which showed that the ef-
fective four dimensional theory is described by a four-dimensional Einstein-
Maxwell-dilaton action with non-minimal coupling terms. Spacetime indices
run from a, b = {0, ..., 4}. We will set gαD = 0 for α = {0, ..., 3}, and g44 ≡ φ.
This corresponds to a Kaluza-Klein spacetime in which all vector excitations
vanish. (The parity symmetry of the fifth dimension will guarantee that any
universe which begins without vector fields will continue to evolve without
producing them.)

The Einstein-Gauss-Bonnet Lagrangian can be writen as

L = R+ α (R ∗R) , (8)

where we are using the notation

R ∗R =
1

22
δcdghabefR

ab
cdR

ef
gh. (9)

The dimensional reduction of the five dimensional curvature tensor gives

5Rcd
ab =

4Rcd
ab +

4ψcd
ab (10)

where we have defined

nψcd
ab = −2δ4[aδ

4[cφ−1 n∇b]
n∇d]φ, (11)

2Why not simply collide two spherical black holes in D = 5? Because dimensional
analysis shows that there is no instantaneous change of the entropy when two 5 dimensional
black holes merge at a single point.
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where n∇a refers to the covariant derivative operator internal to the n-
dimensional space. Using this, we perform a dimensional reduction of the
Gauss-Bonnet Lagrangian:

5(R ∗R) = 4(R ∗R+ 2R ∗ ψ + ψ ∗ ψ) , (12)

We also need to perform compactification of the Einstein part of the full
action. The final result for the effective four dimensional action is

I =
1

16π

∫

d4x
√

4g φ 4(R+ ψ + α (R ∗R+ 2R ∗ ψ + ψ ∗ ψ)) , (13)

where nψ = −2φ−1 n∇2φ. Following the Wald formalism, any black hole
solution of this theory will have an entropy given by

S =
1

4

∫

B

d2x
√

σφ
(

1 + 2α 2R+ 2ψ
)

, (14)

evaluated on any two dimensional horizon slice B. Unlike the case of four
dimensions, here we have to take α > 0; otherwise the original five dimen-
sional theory will be unstable. Then the term proportional to the integral of
the two dimensional Ricci scalar of the horizon slice will suffer an abrupt de-
crease, leading to the violation of classical second law, whenever two black
holes merge with each other—provided that the term proportional to the
integral of ψ also varies smoothly across the merger.

The treatment of the ψ term is somewhat delicate, since it is defined
using the derivatives of φ at the horizon, but the horizon is not typically a
differentiable manifold due to nonsmoothness that occurs as a result of hori-
zon generators meeting. Since black hole generators always meet whenever
the topology of the horizon changes, there is the question of how to define
ψ at these singular points.

To make the question more concrete, let us take a specific example of
two equal black holes which collide head on. This solution is symmetric
about rotations around the axis of collision, and is pictured in Fig. 1. As
the two black holes begin to merge, they each shoot out horns which end in
a nonsmooth point. These horns then merge at the point of joinder. The
reason for the instantaneous decrease in the entropy at the moment of the
collision is that the Ricci scalar 2R has a delta function component at the
nonsmooth point. In order to prove that the second law is violated, we need
to show that the ψ field does not have a counterbalancing delta function at
the nonsmooth part of the horizon.

Since the horizon is non-differentiable, in order to define ψ, we will view
the horizon as the limit of a smooth (or at least differentiable) surface.
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Figure 1: The head-on collision of two black holes, pictured on time slices before,
at, and after the moment of joinder. While the horizons may be smooth after the
collision, before the collision each of the two black holes must have a nonsmooth
point.

Suppose that the horizon H is replaced with another surface H′ in which the
nonsmooth point X and its neighborhood is replaced with a smooth surface
L of characteristic length scale r. We can calculate the entropy and then
take the limit r → 0. Although the horizon is nonsmooth, the spacetimeM4

in which it is embedded should still be smooth at the horizon. The scalar
fields φ should also be smooth. Therefore, one can then apply dimensional
analysis to the ψ integral:

∫

d2x
√

σφ ψ = −2

∫

d2x
√

σφ φ−1 2∇2φ. (15)

As the characteristic distance scale r varies over over short distances, the
size of the integration measure d2x

√
σ should scale like r2. The integrand is

composed of φ and its derivatives on H′. Since H′ is a smooth submanifold
of M4, on which φ should be smooth, it follows that in the limit as r → 0,
one expects the derivatives of the field on H ′ and M4 to be of the same
order:

lim
r→0

φ(L) = φ|X , (16)

lim
r→0

∇aφ(L) ∼ ||∇aφ||X , (17)

lim
r→0

∇a∇bφ(L) ∼ ||∇a∇bφ||X , (18)

9



and so on. From this it can be seen that in the r → 0 limit, the inte-
grand converges to a constant value. Therefore the entire ψ integral has no
contribution localized at X. Then the instantaneous decrease of the term
involving the integral of 2R must lead to an instantaneous violation of the
classical second law.

Let us summarize our conclusions. We started with a five dimensional
Gauss-Bonnet theory, and performed a dimensional reduction to get an ef-
fective four dimensional action. Then we showed that any process involving
the merger of two black holes results in a decrease of the Wald entropy at
least instantaneously. Since every solution of the compactified theory corre-
sponds to a solution of the original non-compactified theory, these solutions
of five dimensional Einstein-Gauss-Bonnet gravity have a violation of the
classical second law. We again stress that this violation has been shown
only for one possible way to extend the entropy formula from stationary
solutions to this dynamical scenario. A conservative conclusion might be
that the Wald ambiguity should be resolved in some other way.

5 Dimensional Reduction of Arbitrary Lovelock

Theories

Next, we would like to extend our result to higher order Lovelock theories.
For example, the m = 4 term would be

R ∗R ∗R ∗R. (19)

This term is topological in 2m dimensions. The corresponding Wald entropy
is the (m − 1)-th Lovelock term evaluated on the horizon. Therefore, for
any Lovelock theory in (2m+p)-dimensions whose highest power term is m,
one can compactify p of the dimensions into a torus in order to end up with
a term in the action which is topological. The m = 4 contribution to the
compactified entropy takes the form

S ∝
∫

B

d6x
√

6σ φ1φ2...φp
6(R ∗R ∗R + 3R ∗R ∗ ψ

+ 3R ∗ ψ ∗ ψ + ψ ∗ ψ ∗ ψ), (20)

where each ψ now includes a sum over the internal dimensions of the torus.
As with the Gauss-Bonnet term, we are resolving the Noether charge am-
biguity by assuming that the Lovelock entropy can be written entirely in
terms of the metric on the horizon.
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The first term in Eq. (20) leads to an entropy decline whenever two
black holes with spherical topology merge. To complete the argument, it is
necessary to demonstrate that none of the terms which involve ψ can coun-
terbalance this decline as a result of the nonsmooth points on the horizon
of the merging black holes. As before, replace the nonsmooth point with a
smooth region with characteristic distance scale r. The integration measure
now scales like r(2m−2), each Riemann curvature tensor scales like r−2, and
the φ terms scale like r0. The conclusion is that only the topological Love-
lock term can have a contribution from the singular point in the r → 0 limit
and the instantaneous violation of the classical second law is inevitable.

Since the Einstein-Hilbert action is the m = 1 Lovelock term, it is worth
pointing out why this argument does not apply to it, since the Einstein
theory does satisfy the second law. In order to construct a parallel argument
for General Relativity, one would compactify all but 2-dimensions and then
collide two 2 dimensional black holes. But it is impossible for black holes to
collide in two dimensions. For any timelike worldline caught between two
colliding black holes would have to fall across one or the other horizon, since
no perpendicualar direction is available to escape . But that would mean
that the worldline would already be inside the region of no escape, and thus
the zone “in between” the black holes ought to have already been included
in the black hole interior region. Hence, there really was only one black hole
all along!

6 Conclusion and Open Issues

The conclusion of this article is that the proposed black hole entropy Eq. (20)
does not always increase during the merger of two black holes. However,
there are a number of different possible inferences that might be drawn.
Most conservatively, it could be that Lovelock black holes do have an in-
creasing entropy, but that entropy is not given by Eq. (20) but by some
other fomula. Wald and Iyer only derive Eq. (20) up to ambiguity terms.
These ambiguity terms do not matter for stationary black holes, but they do
affect the entropy of nonstationary horizons, as when two black holes merge.
All possible ways to resolve the ambiguity obey the first law of black hole
mechanics (which only concerns first order variations away from a stationary
solution), but not all choices obey a second law.

However, because the merging black holes are nearly stationary well
before and well after the collision, the initial and final values of the entropy
are the same no matter how the ambiguities are resolved. So a different
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choice of Wald entropy can only remove a temporary entropy decrease, not
a permanent entropy decrease. In the case of nontopological theories such
as D > 4 Gauss-Bonnet, our compactification argument involves zooming
in at the point where the two black holes merge. It is unclear whether the
entropy decrease is permanent or not, so it may be that a different choice of
Wald entropy would salvage the second law. However we have not yet been
able to find any choice of the entropy which does obey a second law.

Eq. (5) by itself, evaluated on a non-stationary horizon, seems like an-
other natural prescription for the entropy. Because it depends only on the
curvature of spacetime, and not to the extrinsic curvature of the horizon,
it cannot change discontinuously. However, it does not work for Einstein-
Gauss-Bonnet gravity. In the case of a D = 5 black hole forming from
spherically symmetric collapse, the leading order contribution to the initial
growth of entropy turns out to be proportional to the time-time component
of the Einstein tensor. But in D = 5 Gauss-Bonnet gravity, this component
of the Einstein tensor can take either sign. Consequently this entropy does
not increase either.

In the case of topological Lovelock theories, such asD = 4 Gauss-Bonnet,
there is a permanent decline in the entropy for sufficiently small colliding
black holes. Therefore, using a different choice of Wald entropy cannot save
the topological theories. In order to salvage the classical second law in this
case, we propose that Wald’s formula for the entropy is only valid up to
the addition of topological terms. Topological terms in the entropy come
from topological terms in the action, but topological terms in the action do
not affect the equations of motion. Since the validity of a classical second
law depends only on the equations of motion, it therefore seems that the
addition of a topological term to the action ought not to affect the entropy.
Furthermore, the addition of a topological term to the entropy does not
affect the validity of the first law, since all first order variations of a horizon
preserve the topology, and the first law is only concerned with changes in
entropy. It would therefore seem like one is free to add any topological
term to the entropy in order to make it satisfy a second law. For example,
Einstein-Gauss-Bonnet does obey a second law, if one uses the area instead
of Eq. (20).

Another possible way to save the second law is to postuate corrections
to the entropy wherever the horizon is nonsmooth. Before the merger of
two black holes, there are always nonsmooth points on the horizon (see Fig.
1 and Ref. [2]). We have found a violation on the assumption that the
entropy of a nonsmooth surface is the same as the entropy of a limit of
smooth surfaces. However, if there are additional corrections to the entropy
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on a nonsmooth horizon, the additional effect might save the second law. An
analogy might be the singular “pinch points” that arise when water droplets
change topology; at these points the hydrodynamic approximation breaks
down and the dynamics depend on the microscopic degrees of freedom [14].
(The simplest alternative prescription is to only include entropy coming from
the smooth parts of the horizon. This would prevent discontinuous changes
in the entropy, but it does not change the asymptotic past or future entropy
and therefore fails to save the second law, at least in topological theories.)
One way to start investigating this question would be to calculate the di-
vergent corrections to the semiclassical entanglement entropy at nonsmooth
horizon points.

It might be that the validity of the second law depends in some important
way on quantum effects. For example, there might be quantum instabilities
coming from the formation of numerous low energy, large entropy black holes
in the vacuum. It might be that unless the Lovelock term is higher order in
~, there are large additional effects which are present over the timescales on
which the second law decreases.

In the tree level approximation to certain string theories, the Gauss-
Bonnet term arises as a higher order correction in the string length [15].
Since the Gauss-Bonnet term arises classically, it cannot be compensated
for by quantum effects. Over timescales which are sufficiently small that
the Gauss-Bonnet term dominates over the Einstein-Hilbert term, higher
order terms in the string length dominate over Gauss-Bonnet. So it is not
clear whether this Gauss-Bonnet entropy decrease occurs in string theory.

Another possibly relevant issue is that in dynamical situations, (non-
topological) Lovelock gravity has different characteristic surfaces for light
and gravity, i.e. in curved spacetimes a graviton can travel faster or slower
than light [16, 17]. Assuming that there exists at least one matter field
that propagates along the lightcone, the true causal horizon would be set
by whichever of the two fields is moving outwards faster (which varies from
location to location). Hence the causal horizon may be different from the
horizon naively obtained from the metric. If this is the case, presumably
one should formulate the classical second law using the real causal horizon.
This observation by itself is insufficient to save the second law, but should
be kept in mind for any attempts to prove a modified second law.

In view of these conclusions, one should search for an alternative ex-
pression for dynamical black hole entropy for theories other than General
Relativity, which differs from the usual Wald entropy. The most important
test for any such proposal depends on the validity of the classical second law.
However, one must also be prepared to accept another possibility: that back
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hole thermodynamics is invalid when applied to gravity theories other than
General Relativity. (The second law can also be proven for a Wald entropy
in f(R) gravity, but any f(R) gravity is conformally equivalent to General
Relativity coupled to scalar fields.) Other theories might be unstable (the
positive energy theorem has not been extended to a general Lovelock theory
and if such an extension is not possible, the validity of classical second law
remains unclear), or unable to arise from any UV complete quantum gravity
theory.
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