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General formulation
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Gauge-invariant treatments of general-relativistic higher-order perturbations on generic back-
ground spacetime is proposed. After reviewing the general framework of the second-order gauge-
invariant perturbation theory, we show the fact that the linear-order metric perturbation is decom-
posed into gauge-invariant and gauge-variant parts, which was the important premis of this general
framework. This means that the development the higher-order gauge-invariant perturbation theory
on generic background spacetime is possible. A remaining issue to be resolve is also disscussed.
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Perturbation theories are powerful techniques in many
area of physics and lead phyisically fruiteful results. In
particualr, in general relativity, the construction of exact
soltuions is not so easy and known exact solutions are
often too idealized, though there are many known exact
solutions to the Einstein equation[1]. Of course, some ex-
act solutions to the Einstein equation well describe our
universe, or gravitational field of stars and black holes.
However, in natural phenomena, there always exist “fluc-
tuations”. To describe this, the linear perturbation theo-
ries around some background spacetime are developed[2],
and are used to describe fluctuations of our universe,
gravitational field of stars, and gravitational waves from
strongly gravitating sources.

Besides the development of the general-relativistic
linear-order perturbation theory, higher-order general-
relativistic perturbations also have very wide appli-
cations, for example, cosmological perturbations[3–7],
black hole perturbations[8], and perturbation of a neu-
tron star[9]. In spite of these applications, there is a
delicate issue in the treatment of general-relativistic per-
turbations, which is called gauge issue. General rela-
tivity is based on general covariance. Due to this gen-
eral covariance, the gauge degree of freedom, which is an
unphysical degree of freedom of perturbations, arises in
general-relativistic perturbations. To obtain physical re-
sults, we have to fix this gauge degree of freedom or to
treat some invariant quantities in perturbations. This
situation becomes more complicated in higher-order per-
turbations. Thus, it is worthwhile to investigate higher-
order gauge-invariant perturbation theory from a general
point of view.

According to this motivation, the general framework
of higher-order general-relativistic gauge-invariant per-
turbation theory has been discussed[10, 11] and applied
to cosmological perturbations[6, 7]. However, this frame-
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work is based on a conjecture (Conjecture 1 below) which
roughly states that we have already known the procedure
to find gauge-invariant variables for a linear-order met-
ric perturbations. The main purpose of this letter is
to give the outline of a proof of this conjecture. Due
to this proof, a formulation of the higher-order general-
relativistic gauge-invariant perturbation theory is almost
completed on generic background spacetime.
Now, we review the framework of the gauge-invariant

perturbation theory[10, 11]. In any perturbation theory,
we always treat two spacetime manifolds. One is the
physical spacetime (M, ḡab), which is our nature itself,
and we want to describe (M, ḡab) by perturbations. The
other is the background spacetime (M0, gab), which is
prepared as a reference by hand. We note that these two
spacetimes are distinct.
Further, in any perturbation theory, we always write

equations for the perturbation of the variable Q like

Q(“p”) = Q0(p) + δQ(p). (1)

Equation (1) gives a relation between variables on differ-
ent manifolds. Actually, Q(“p”) in Eq. (1) is a variable
on M, while Q0(p) and δQ(p) are variables on M0. We
regard Eq. (1) as a field equation and this is an implicit
assumption of the exitence of a point identification map
M0 → M : p ∈ M0 7→ “p” ∈ M. This idenification map
is a gauge choice in perturbation theories[12].
To develop this understanding of the “gauge”, we in-

troduce an infinitesimal parameter λ and (n + 1) + 1-
dimensional manifold N = M × R (n + 1 = dimM)
so that M0 = N|λ=0 and M = Mλ = N|

R=λ. On
N , the gauge choice is regarded as a diffeomorphism
Xλ : N → N such that Xλ : M0 → Mλ. Further, we
introduce a gauge choice Xλ as an exponential map with
a generator Xηa which is chosen so that its integral curve
in N is transverse to each Mλ everywhere on N [4, 5].
Points lying on the same integral curve are regarded as
the “same” by the gauge choice Xλ.
The first- and the second-order perturbations of the

variable Q on Mλ are defined by the pulled-back X ∗
λQ

http://arxiv.org/abs/1011.5272v1


2

on M0, which is induced by Xλ, and expanded as

X ∗
λQ = Q0 + λ £XηQ

∣

∣

M0
+

1

2
λ2 £2

XηQ
∣

∣

∣

M0

+O(λ3), (2)

Q0 = Q|
M0

is the background value of Q and all terms in
Eq. (2) are evaluated onM0. Since Eq. (2) is just the per-
turbative expansion of X ∗

λQλ, the first- and the second-

order perturbations of Q are given by
(1)
X Q := £XηQ

∣

∣

M0

and
(2)
X Q := £2

Xη
Q
∣

∣

∣

M0

, respectively.

When we have two gauge choices Xλ and Yλ with the
generators Xηa and Yηa, respectively, and when these gen-
erators have the different tangential componetns to each
Mλ, Xλ and Yλ are regarded as different gauge choices.
The gauge-transformation is regarded as the change of
the gauge choice Xλ → Yλ, which is given by the diffeo-
morphism Φλ := (Xλ)

−1 ◦ Yλ : M0 → M0. The diffeo-
morphism Φλ does change the point identification. Φλ

induces a pull-back from the representation X ∗
λQλ to the

representation Y∗
λQλ as Y∗

λQλ = Φ∗
λX

∗
λQλ. From general

arguments of the Taylor expansion[5], the pull-back Φ∗
λ

is expanded as

Y∗
λQλ = X ∗

λQλ + λ£ξ(1)X
∗
λQλ

+
1

2
λ
(

£ξ(2) +£2
ξ(1)

)

X ∗
λQλ +O(λ3), (3)

where ξa(1) and ξa(2) are the genertors of Φλ. From Eqs. (2)

and (3), each order gauge-transformation is given as

(1)
Y
Q−

(1)
X
Q = £ξ(1)Q0, (4)

(2)
YQ−

(2)
XQ = 2£ξ(1)

(1)
XQ+

{

£ξ(2) +£2
ξ(1)

}

Q0. (5)

We also employ the order by order gauge invariance as
a concept of gauge invariance[7]. We call the kth-order

perturbation
(p)
X Q is gauge invariant iff

(k)
XQ =

(k)
YQ for

any gauge choice Xλ and Yλ.
Based on the above set up, we proposed a proce-

dure to construct gauge-invariant variables of higher-
order perturbations[10]. First, we expand the metric on
the physical spacetime Mλ, which is pulled back to the
background spacetime M0 through a gauge choice Xλ as

X ∗
λ ḡab = gab + λXhab +

λ2

2
Xlab +O3(λ). (6)

Although the expression (6) depends entirely on the
gauge choice Xλ, henceforth, we do not explicitly express
the index of the gauge choice Xλ in the expression if there
is no possibility of confusion. The important premise of
our proposal was the following conjecture[10] for hab :

Conjecture 1. For a second-rank tensor hab, whose
gauge transformation is given by (4), there exist a tensor
Hab and a vector Xa such that hab is decomposed as

hab =: Hab +£Xgab, (7)

where Hab and Xa are transformed as

YHab − XHab = 0, YX
a − XX

a = ξa(1) (8)

under the gauge transformation (4), respectively.

We call Hab and Xa are the gauge-invariant part and
the gauge-variant part of hab, respectively.
Although Conjecture 1 is nontrivial on generic back-

ground spacetime, once we accept this conjecture, we
can always find gauge-invariant variables for higher-order
perturbations[10]. Using Conjecture 1, the second-order
metric perturbation lab is decomposed as

lab =: Lab + 2£Xhab +
(

£Y −£2
X

)

gab, (9)

where YLab−XLab = 0 and YY
a−XY

a = ξa(2)+[ξ(1), X ]a.
Furthermore, using the first- and second-order gauge-
variant parts, Xa and Y a, of the metric perturbations,
gauge-invariant variables for an arbitrary tensor field Q

other than the metric can be defined by

(1)Q := (1)Q−£XQ0, (10)
(2)Q := (2)Q− 2£X

(1)Q−
{

£Y −£2
X

}

Q0. (11)

These definitions (10) and (11) also imply that any per-
turbation of first and second order is always decomposed
into gauge-invariant and gauge-variant parts as

(1)Q = (1)Q+£XQ0, (12)
(2)Q = (2)Q+ 2£X

(1)Q+
{

£Y −£2
X

}

Q0, (13)

respectively.
Actually, the perturbations of the Einstein tensor are

given in the same form Eqs. (12) and (13) :

Ḡ b
a = G b

a + λ(1)G b
a +

1

2
λ2(2)G b

a +O(λ3), (14)

(1)G b
a = (1)G b

a [H] +£XG b
a , (15)

(2)G b
a = (1)G b

a [L] + (2)G b
a [H,H]

+2£X
(1)Ḡ b

a +
{

£Y −£2
X

}

G b
a , (16)

where (1)G b
a [∗] is the gauge-invariant linear terms and

(2)G b
a [∗, ∗] are collections of quadratic terms of gauge-

invaraint linear metric perturbations. On the other hand,
the energy momentum tensor on Mλ is also expanded as

T̄ b
a = T b

a + λ(1)T b
a +

1

2
λ2(2)T b

a +O(λ3), (17)

and its first- and the second-order perturbations (1)T b
a

and (2)T b
a are decomposed as Eqs. (12) and (13) :

(1)T b
a = (1)T b

a +£XT b
a , (18)

(2)T b
a = (2)T b

a + 2£X
(1)T b

a +
{

£Y −£2
X

}

T b
a .(19)

These were confirmed in the case of a perfect fluid, an
imperfect fluid, and a scalar field[7].
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Imposing order by order Einstein equations

G b
a = 8πT b

a , (p)G b
a = 8π(p)T b

a , (p = 1, 2), (20)

the first- and the second-order perturbation of the
Einstein equations are automatically given in gauge-
invariant form :

(1)G b
a [H] = 8πG(1)T b

a ,
(1)G b

a [L] + (2)G b
a [H,H] = 8πG (2)T b

a . (21)

Further, the perturbative equations of motion for matter
fields, which are derived from the divergence of the energy
momentum tensor, are also automatically given in gauge-
invariant form[7].
Thus, based only on Conjecture 1, we have developed

the general framework of second-order general relativis-
tic perturbation theory. We also note that this general
framework of the second-order gauge-invariant perturba-
tion theory are independent of the explicit form of the
background metric gab, except for Conjecture 1.
Now, we give the outline of a proof of Conjecture

1. To do this, we only consider the background space-
times which admit ADM decomposition[15]. Therefore,
the background spacetime M0 considered here is n+ 1-
dimensional spacetime which is desribed by the direct
product R× Σ. Here, R is a time direction and Σ is the
spacelike hypersurface (dimΣ = n). The background
metric gab is given as

gab=−α2(dt)a(dt)b + qij(dx
i + βidt)a(dx

j + βjdt)b.(22)

In this letter, we only consider the case where α = 1 and
βi = 0, for simlicity.
To consider the decomposition (7) of hab, first, we con-

sider the components of the metric hab as

hab = htt(dt)a(dt)b + 2hti(dt)(a(dx
i)b)

+hij(dx
i)a(dx

j)b. (23)

Under the gauge-transformation (4), these components

{htt, hti, hij} are transformed as

Yhtt − Xhtt = 2∂tξt, (24)

Yhti − Xhti = ∂tξi +Diξt + 2Kj
iξj , (25)

Yhij − Xhij = 2D(iξj) + 2Kijξt. (26)

where Kij is the extrinsic curvature of Σ and Di is
the covariant derivative associate with the metric qij
(Diqjk = 0). In our case, Kij = − 1

2∂tqij .

Inspecting gauge-transformation rules (25) and (26),
we introduce a new symmetric tensor Ĥab whose compo-
nents are given by

Ĥtt := htt, Ĥti := hti, Ĥij := hij − 2KijXt. (27)

Here, we assume the existence of the variable Xt whose
gauge-transformation rule is given by YXt − XXt = ξt.
This assumption is confirmed later soon. Since the com-
ponents Ĥti and Ĥij are a vector and a symmetric tensor

on Σ, respectively, Ĥti and Ĥij are decomposed as[13]

Ĥti = Dih(V L) + h(V )i, Dih(V )i = 0, (28)

Ĥij =
1

n
qijh(L)

+2

(

D(ih(TV )j) −
1

n
qijD

lh(TV )l

)

+h(TT )ij , Dih(TT )ij = 0, (29)

h(TV )i = Dih(TV L) + h(TV V )i, Dih(TV V )i = 0.(30)

The one-to-one correspondence between {Ĥti, Ĥij}
and {h(V L),h(V )i,h(L),h(TV L),h(TV V )i,h(TT )ij} guaran-
teed by the existence of the Green functions of operators
∆ := DiDi and Dij := qij∆ +

(

1− 2
n

)

DiDj + (n)Rij ,

where (n)Rij is the Ricci curvature on Σ. Here, we as-
sume thier existence. Gauge-transformation rules for
{htt, h(V L), h(V )i, h(L), h(TV L), h(TV V )i, h(TT )ij} are
summarized as

Yhtt − Xhtt = 2∂tξt, Yh(TT )ij − Xh(TT )ij = 0, (31)

Yh(V L) − Xh(V L) = ∂tξ(L) + ξt +∆−1
[

2Di

(

KijDjξ(L)

)

+DkKξ(V )k

]

, (32)

Yh(V )i − Xh(V )i = ∂tξ(V )i + 2Kj
iDjξ(L) + 2Kj

iξ(V )j −Di∆
−1

[

2Di

(

KijDjξ(L)

)

+DkKξ(V )k

]

, (33)

Yh(L) − Xh(L) = 2Diξi, Yh(TV L) − Xh(TV L) = ξ(L), Yh(TV V )l − Xh(TV V )l = ξ(V )l, . (34)

We first find the variable Xt in Eq. (27). From the above gauge-transformation rules, we see that the combination

Xt := h(V L) − ∂th(TV L) −∆−1
[

2Di

(

KijDjh(TV L)

)

+DkKh(TV V )k

]

(35)

satisfy YXt − XXt = ξt. We also find the variable Xi

Xi := h(TV )i = Dih(TV L) + h(TV V )i (36)

satisfy the gauge-transformation rule YXi − XXi = ξi.
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Inspecting gauge-transformation rules (31)–(34) and
using the variables Xt and Xi defined by Eqs. (35)–(36),
we find gauge-invariant variables as follows:

− 2Φ := htt − 2∂tX̂t, −2nΨ := h(L) − 2DiX̂i,(37)

νi := h(V )i − ∂th(TV V )i

−2Kj
i

(

Djh(TV L) + h(TV V )j

)

+Di∆
−1

[

2Di

(

KijDjh(TV L)

)

+DkKh(TV V )k

]

, (38)

χij := h(TT )ij . (39)

Actually, it is straightforward to confirm the gauge-
invariance of these varaibles.
In terms of the variables Φ, Ψ, νi, χij , Xt, and Xi,

original components of hab is given by

htt = −2Φ + 2∂tXt, (40)

hti = νi +DiXt + ∂tXi + 2Kj
iXj , (41)

hij = −2Ψqij + χij +DiXj +DjXi + 2KijXt.(42)

Comparing Eq. (7), a natural choice of Hab and Xa are

Hab = −2Φ(dt)a(dt)b + 2νi(dt)(a(dx
i)b)

+(−2Ψqij + χij) (dx
i)a(dx

i)b, (43)

Xa = Xt(dt)a +Xi(dx
i). (44)

These show that the linear-order metric perturbation hab

is decomposed into the form Eq. (7).
In summary, we showed the outline of a proof of Con-

jecture 1 which is the important premise of our general
framework of gauge-invariant perturbation theory. Al-
though we only consider the background spacetime with
α = 1 and βi = 0, the above proof is extended to general
case[14].
In our proof, we assumed the existence of the Green

functions for the derivative operators ∆ and Dij . This
implies that we have ingored the modes which belong
to the kernel of these derivative operators. To includes
these modes into our consideration, different treatments
of perturbations will be necessary. We call this problem
as zero-mode problem. Even in the cosmological pertur-
bations, zero-mode problem exists. We leave the resolu-
tion of this zero-mode problem as a future work.
Although this zero-mode problem should be resolved,

we confirmed the important premise of our general frame-
work of second-order gauge-invaraint perturbation theory
on generic background spacetime. Due to this, we have
the possibility of applications of our framework for the
second-order gauge-invariant perturbation theory to per-
turbations on generic background spacetime. Actually, in
the cosmological perturbation case, we have developed
the second-order cosmological perturbations along this
general framework[6, 7]. The similar development will
be also possible for the any order perturbation in two-
parameter case[10]. Therefore, we may say that the wide

appicaltions of our gauge-invariant perturbation theory
are opened. We also leave these developments as future
works.
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Katsu Fujimoto in National Astronomical Observatory
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