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Chiral symmetry breaking revisited: the gap equation with
lattice ingredients
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Abstract.
We study chiral symmetry breaking in QCD, using as ingredients in the quark gap equation recent lattice results for the

gluon and ghost propagators. The Ansatz employed for the quark-gluon vertex is purely non-Abelian, introducing a crucial
dependence on the ghost dressing function and the quark-ghost scattering amplitude. The numerical impact of these quantities
is considerable: the need to invoke confinement explicitly is avoided, and the dynamical quark masses generated are of the
order of 300 MeV. In addition, the pion decay constant and thequark condensate are computed, and are found to be in good
agreement with phenomenology.
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One of the major challenges of the strong interactions
is to understand the underlying mechanism that generates
masses for the quarks and breaks the chiral symmetry
(CS). The CS breaking is an inherently nonperturbative
phenomena, whose study in the continuum leads almost
invariably to a treatment based on the Schwinger-Dyson
(SD) equation for the quark propagator (gap equation).
As is well known to the SD experts, the existence or not
of solutions for this equation depends crucially on the
details of its kernel, which is essentially composed by
the fully dressed gluon propagator and the quark gluon
vertex [1]. The latter quantity controls the way that ghost
sector enters into the gap equation, and introduces a
numerically crucial dependence on the ghost dressing
function [2] and the quark-ghost scattering amplitude.

In the present talk we report on a recent study of CS
breaking [1] using the SD equation for the quark prop-
agator, supplemented with three nonpertubative ingredi-
ents: (i) gluon propagator and (ii) ghost dressing function
obtained from large-volume lattice simulations, and (iii)
the “one-loop dressed” approximate version of the scalar
form factor of the quark-ghost scattering kernel.

The starting point is to express the fully dressed quark
propagator in the following general form [3]

S−1(p) = /p−m−Σ(p) = A(p2)/p−B(p2) , (1)

wherem is the bare current quark mass, andΣ(p) the
quark self-energy. We consider the case without explicit
CS breaking, i.e., bare mass m = 0. The dynamical
quark mass function can be defined as being the ratio
M (p2) = B(p2)/A(p2). Then CS breaking takes place
when the scalar component,B(p2) develops a non-zero
value.
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FIGURE 1. The quark SD equation (gap equation).

The SDE for the quark propagator, which is repre-
sented schematically in Fig. 1, can be written as

S−1(p) = /p−CFg2
∫

k
γµS(k)Γν(−p,k,q)∆µν (q) , (2)

whereq ≡ p− k,
∫

k ≡ µ2ε(2π)−d ∫ ddk, with d = 4− ε
the dimension of space-time.CF is the Casimir eigen-
value in the fundamental representation (forSU(3)
CF = 4/3). The full gluon propagator∆µν(q), in the Lan-
dau gauge, has the form

∆µν(q) =−i

[

gµν −
qµqν

q2

]

∆(q2) , (3)

where the non-perturbative behavior of the scalar fac-
tor ∆(q2) has been studied in great detail in the con-
tinuum [4, 5] and lattice simulations [6, 7]. The fully-
dressed quark-gluon vertexΓν(−p,k,q) also obeys its

H(p1, p2, p3) = p1

p2

p3

FIGURE 2. The quark-ghost scattering kernel.
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FIGURE 3. Lattice results for the gluon propagator,∆(q), and ghost dressing,F(q) renormalized atµ = 4.3 GeV.

own SD equation which unfortunately, it is too compli-
cated. Then, we have to resort to the so called gauge-
technique, where a nonperturbative Ansatz for the vertex
Γµ(p1, p2, p3) written in terms ofS(p) is constructed,
based on the requirement that it should satisfy the fun-
damental Slavnov-Taylor identity (STI)

pµ
3 Γµ = F(p3)[S

−1(−p1)H −HS−1(p2)] , (4)

where the ghost dressing functionF(p3) is related to the
full ghost propagatorD(p3) by D(p3) = iF (p3)/p2

3. The
quark-ghost scattering kernelH, represented in Fig. 2,
and its “conjugated”H are functions of the momenta
H = H(p1, p2, p3), H = H(p2, p1, p3) respectively.

Both kernelsH and H have the following Lorentz
decomposition [8]

H(p1, p2, p3)=X0I+X1/p1+X2/p2+X3σ̃µν pµ
1 pν

2 ,

H(p2, p1, p3)=X0I−X2/p1−X1/p2+X3σ̃µν pµ
1 pν

2, (5)

where the form factorsXi are functions of the mo-
menta, Xi = Xi(p1, p2, p3), and we use the notation
Xi(p2, p1, p3)≡ Xi(p1, p2, p3) andσ̃µν ≡ 1

2[γµ ,γν ].
On the other hand, the most general Lorentz structure

the longitudinal part of the vertexΓµ(p1, p2, p3) appear-
ing in the lhs of Eq. (4) is given by [8]

Γµ(p1, p2, p3) = L1γµ +L2(/p1− /p2)(p1− p2)µ

+L3(p1− p2)µ +L4σ̃µν (p1− p2)
ν , (6)

where once again we have suppressed the depen-
dence on the momenta in the form factorLi [i.e.
Li = Li(p1, p2, p3)].Notice that, the tree level expression
is recovered settingL1 = 1 andL2 = L3 = L4 = 0.

Due to the fact that the behavior of the vertexΓµ is
constrained by the STI of Eq. (4), the form factorsLi ’s
appearing into the Eq. (6) will be given in terms of the
form factorsXi ’s of Eq. (5).

The full expressions forLi ’s in terms of the form
factorsXi ’s is given in [1]. For the sake of simplicity, we

will show here the case where only the scalar component
of the quark-ghost scattering kernel is non-vanishingi.e.
X0 6= 0 while Xi = Xi = 0, for i ≤ 1. In this limit, we
obtain the following expressions

L1 = F(p3)X0(p3)

[

A(p1)+A(p2)

2

]

,

L2 = F(p3)X0(p3)

[

A(p1)−A(p2)

2(p2
1− p2

2)

]

,

L3 = F(p3)X0(p3)

[

B(p1)−B(p2)

p2
1− p2

2

]

,

L4 = 0. (7)

According the above expression the form factor
Li ’s displays an explicit dependence on the product
F(p3)X0(p3) which contains information about the IR
behavior of the ghost propagator. Therefore, the ghost
sector couples to the gap equation Eq. (2) through the
quark-gluon vertex of Eq. (6). It is interesting to notice
that in the limit ofF(p3) = X0(p3) = 1 the form factors
of Eq. (7) reduces to the ones used so-called Ball-Chiu
(BC) vertex [9].

We will next insert into Eq. (2) the general quark-
gluon vertex of Eq. (6) with the expressions for the form
factorsLi given in Eq. (7). Definingp1 =−p, p2 = k,
and p3 = q and taking appropriate traces, we derive the
expressions for the integral equations satisfied byA(p2)
andB(p2) that schematically can be written as

A(p2) = 1+CFg2Z−1
c

∫

k

K0(p− k)
A2(k2)k2+B2(k2)

KA(k, p) ,

B(p2) = CFg2Z−1
c

∫

k

K0(p− k)
A2(k2)k2+B2(k2)

KB(k, p) , (8)

where the kernelK0(q) corresponds to the part that is
not altered by the tensorial structure of the quark-gluon
vertex, namelyK0(q) = ∆(q)F(q)X0(q), while the parts
affected areKA(k, p) andKB(k, p).

The gap equation depends on the nonperturbative form
of the three basic Green’s functions, namely∆(q), F(q),
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FIGURE 4. The form factorX[1]
0 (q) given by Eq. (9.

andX0(q). For ∆(q) andF(q) we use the recent lattice
data obtained by [6], and shown in Fig. 3.

We clearly see that both lattice results for∆(q) and
F(q) are infrared finite. Such a feature can be associated
to a purely non-perturbative effect that gives rise to a
dynamical gluon mass [10], which saturates the gluon
propagator in the IR. The appearance of the gluon mass
is also responsible for the infrared finiteness of the ghost
dressing function,F(q2) [4, 11], which is shown on the
right panel of Fig. 3,

Unfortunately forX0(q) there is no lattice data avail-
able, and in order to obtain a non-perturbative estimate
for X0, we will study “one-loop dressed” scalar con-
tribution of the diagram of Fig. 2 in an approximate
kinematic configuration, which simplifies the resulting
structures considerably. Specifically, we will assume that
p1 = p2 ≡ p, and p = −q/2. In doing so, we arrive at
(see details in [1])

X[1]
0 (q)= 1+

1
4

CAg2q2
∫

k

[

1−
(k ·q)2

k2q2

]

∆(k)F(k)
F(k+q)
(k+q)4 ,

(9)
We proceed substituting the fit for the lattice data for
∆(q) and F(q) presented in Fig. 3 into Eq. (9). The

numerical result forX[1]
0 (q) is shown in the Fig. 4.
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FIGURE 5. The quark massM (p2) for the BC vertex.

X[1]
0 (q) shows a maximum located in the intermedi-

ate momentum region (around 450 MeV), while in the

UV and IR regionsX[1]
0 (q) → 1. Although this peak is

not very pronounced, it is essential for providing to the
kernel of the gap equation the enhancement required for
the generation of phenomenologically compatible con-
stituent quark masses.

Now we are in position to solve the sys-
tem formed by Eq.(8) Substituting∆(q2), F(q2),

and X[1]
0 (q) to Eq.(8), with the modification

Z−1
c KA,B(k, p)→ KA,B(k, p)F(p2), to enforce the

correct renormalization group behavior of the dynamical
mass (see discussion in [1]), we determine numerically
the unknown functionsA(p2) andB(p2). The result for
the dynamical quark massM (p2) is shown in Fig. 5.

One clearly sees thatM (p2) freezes out and acquires
a finite value in the IR,M (0) = 294 MeV. In the UV it
shows the expected perturbative behavior represented by
the blue dashed curve.

With the behavior of the dynamical quark mass at
hand, we have computed pion decay constant and the
quark condensate and we obtainedfπ = 80.6 MeV and
〈q̄q〉(1GeV2) = (217MeV)3 respectively, which are in
good agreement with phenomenological results.
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