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Abstract

This contribution is an attempt to try to understand the matter-antimatter asymmetry in the

universe within the spin-charge-family-theory [1, 2] if assuming that transitions in non equilibrium

processes among instanton vacua and complex phases in mixing matrices are the sources of the

matter-antimatter asymmetry, as studied in the literature [3–6] for several proposed theories. The

spin-charge-family-theory is, namely, very promising in showing the right way beyond the standard

model. It predicts families and their mass matrices, explaining the origin of the charges and of

the gauge fields. It predicts that there are, after the universe passes through two SU(2) × U(1)

phase transitions, in which the symmetry breaks from SO(1, 3)× SU(2)× SU(2)× U(1)× SU(3)

first to SO(1, 3) × SU(2) × U(1) × SU(3) and then to SO(1, 3) × U(1) × SU(3), twice decoupled

four families. The upper four families gain masses in the first phase transition, while the second

four families gain masses at the electroweak break. To these two breaks of symmetries the scalar

non Abelian fields, the (superposition of the) gauge fields of the operators generating families,

contribute. The lightest of the upper four families is stable (in comparison with the life of the

universe) and is therefore a candidate for constituting the dark matter. The heaviest of the lower

four families should be seen at the LHC or at somewhat higher energies.

PACS numbers: 11.10.Kk, 11.25.Mj, 12.10.-g, 04.50.-h
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I. INTRODUCTION

The theory unifying spin and charges and predicting families (spin-charge-family-theory)

assumes that spinors carry in d ≥ 4 (d = 1 + 13 is studied) only two kinds of the spin.

The Dirac kind γa manifests after several appropriate breaks of the starting symmetry

as the spin and all the charges. The second kind called {γa ({γa, γ̃b}+ = 0) generates

families. Accordingly there are in d ≥ 4, besides the vielbeins, also the two kinds of the spin

connection fields, which are the gauge fields of the corresponding operators Sab and S̃ab.

Those connected with Sab manifest in d = (1 + 3) as the vector gauge fields, while those

connected with S̃ab manifest as the scalar fields and determine on the tree level the mass

matrices.

Let me make a short review of the so far made predictions of the spin-charge-family-

theory:

• The spin-charge-family-theory has the explanation for the appearance of the internal

degrees of freedom – the spin and the charges while unifying them under the assump-

tion that the universe went through several phase transitions which cause the appro-

priate breaks of the starting symmetry. Then the fact that the right handed (with

respect to SO(1,3)) fermions are weak chargeless, while the left handed ones carry the

weak charge emerges, as well as that there exist leptons (singlets with respect to the

colour charge) and quarks (triplets with respect to the colour charge) [1, 2].

• The theory explains the appearance of massless families at the low energy regime

under the assumption that there are breaks which leave the massless fermions of only

one handedness [7]. Assuming that breaks of symmetries affect the whole internal

space — the space defined by both kinds of the Clifford algebra objects — it predicts

in the energy regime close below 1016 GeV eight massless families. The manifested

symmetry is (assumed to be) at this stage SO(1, 3) × SO(4) × U(1) × SU(3). The

next break of the symmetry of the universe to SO(1, 3)×SU(2)×U(1)×SU(3) leaves

four families massless [2], while the vacuum expectation values of superposition of the
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starting fields which manifest in (1 + 3) as scalar fields, make the upper four families

and the corresponding gauge fields massive. After the electroweak break also the lower

four families become massive due to the vacuum expectation values of superposition

of the starting fields, together with the weak bosons.

• The theory predicts the fourth family, which will be observed at the LHC or at some-

what higher energies [8], and the fifth stable family (with no mixing matrix elements

couplings to the lower four families in comparison with the age of the universe), the

baryons and neutrinos of which are the candidates to form the dark matter.

• The masses of this fifth family members are according to the so far made rough esti-

mations [2, 8] larger than a few TeV and smaller than 1010 TeV. The members of the

family have approximately the same mass, at least on the tree level [9].

• The studies [10] of the history of the stable fifth family members in the evolution of

the universe and of their interactions with the ordinary matter in the DAMAs and

the CDMSs experiments done so far lead to the prediction that the masses of the

fifth family members, if they constitute the dark matter, are a few hundred TeV,

independent of the fifth family fermion-antifermion asymmetry. The Xe experiment

looks like to be in disagreement, but careful analyses show that one should wait for

further data [11] to make the final conclusion.

The lightest fifth family baryon is, in the case that all the quarks have approximately

(within a hundred GeV) the same mass [10], the fifth family neutron, due to the

attractive electromagnetic interaction. The difference in the weak interaction can be

for large enough masses neglected.

• The fermion asymmetry in the approach has not yet really been studied.

• The studies [10] of the evolution of this stable fifth family members rely on my rough

estimations [10] of the behaviour of the coloured fifth family objects (single quarks and

antiquarks or coloured pairs of quarks or of antiquarks) during the colour phase tran-

sition. These estimations namely suggest that the coloured objects either annihilate

with the anti-objects or they form colourless neutrons and antineutrons and corre-

spondingly decouple from the plasma soon after the colour phase transition starts,
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due to the very strong binding energy of the fifth family baryons (with respect to

the first family baryons) long enough before the first family quarks start to form the

baryons. These estimations should be followed by more accurate studies.

• The so far done studiessuggest strongly that the number density of the fifth family

neutrinos (of approximately the same mass as the fifth family quarks and leptons),

which also contribute to the dark matter, is pretty much reduced due to the neutrino-

antineutrino annihilation closed below the electroweak break. The weak annihilation

cross section is expected to play much stronger role for neutrinos than for strongly

bound fifth family quarks in the fifth family neutron (due to the huge binding energy

of the fifth family quarks), what also remains to be proved.

• The estimations [8] of the properties of the lower four families on the tree level call

for the calculations beyond the tree level, which should hopefully demonstrate, that

the loop corrections (in all orders) bring the main differences in the properties of the

family members. These calculations are in progress [12].

Although we can say that the spin-charge-family-theory looks very promising as the right

way to explain where do the assumptions of the standard model originate, there are obviously

many not yet studied, or at least far from being carefully enough studied open problems.

Many a problem is common to all the theories, like the first family baryon asymmetry,

which I am going to discuss within the spin-charge-family-theory in this contribution. Some

of the problems are common to all the theories assuming more than so far observed (1 + 3)

dimensions, in particular the spin-charge-family-theory shares some problems with all the

Kaluza-Klein-like theories. We are trying to solve them first on toy models [7].

The main new step in the spin-charge-family-theory — the explanation of the appearance

of families by assuming that both existing kinds of the Clifford algebra objects should be

used to treat correctly the fermion degrees of freedom — limits very much the properties of

families and their members. The simple starting action in d = (1 + 13), which in d = (1 + 3)

demonstrates the mass matrices, namely fixes to high extent the fermion properties after

the breaks of symmetries. Therefore this proposal might soon be studied accurately enough

to show whether it is the right theory or not.

This contribution is an attempt to try to understand what can the spin-charge-family-

theory say about the fermion-antifermion asymmetry when taking into account the proposals
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of the references [4–6] (and of the works cited therein). These works study the soliton so-

lutions of non Abelian gauge fields with many different vacua and evaluate fermion number

nonconservation due to possible transitions among different vacua in non equilibrium pro-

cesses during the phase transitions through which the universe passed. In such processes

fermion (and also antifermion) currents are not conserved since CP is not nonconserved.

To the CP nonconservation also the complex matrix elements determining the transitions

among families contribute and consequently influence the first family fermion-antifermion

asymmetry.

Since the spin-charge-family-theory predicts below the unification scale of all the charges

two kinds of phase transitions (first from SO(1, 3) × SU(2) × SU(2) × U(1) × SU(3) to

SO(1, 3) × SU(2) × U(1) × SU(3), in which the upper four families gain masses and so

do the corresponding vector gauge fields, and then from SO(1, 3)× SU(2)× U(1)× SU(3)

to SO(1, 3) × U(1) × SU(3), in which the lower four families and the corresponding gauge

fields gain masses), in which besides the vector gauge fields also the scalar gauge fields (the

gauge fields of S̃ab and also of Sab with the scalar index with respect to (1 + 3)) contribute,

the fermion-antifermion asymmetry might very probably have for the stable fifth family an

opposite sign than for the first family.

It might therefore be that the existence of two kinds of four families, together with two

kinds of the vector gauge fields and two kinds of the scalar fields help to easier understanding

the first family fermion-antifermion asymmetry.

Although I am studying the fermion asymmetry, together with the discrete symmetries, in

the spin-charge-family-theory for quite some time (not really intensively), this contribution

is stimulated by the question of M.Y. Khlopov [13], since he is proposing the scenario, in

which my stable fifth family members should manifest an opposite fermion asymmetry than

the first family members, that is antifermion-fermion asymmetry. While in the case that the

fifth family members have masses around 100 TeV or higher and the neutron is the lightest

baryon and neutrino the lightest lepton [10] the fifth family baryon asymmetry plays no

role (since in this case the fifth family neutrons and neutrinos as well as their antiparticles

interact weakly enough among themselves and with the ordinary matter that the assumption

that they constitute the dark matter is in agreement with the observations). Maxim [14]

claims that the fifth family members with the quark masses not higher than 10 TeV are also

the candidates for the dark matter, provided that ū5ū5ū5 is the lightest antibaryon and that
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there is an excess of antibaryons over the baryons in the fifth family case.

II. A SHORT OVERVIEW OF THE THEORY UNIFYING SPIN AND CHARGES

AND EXPLAINING FAMILIES

In this section I briefly repeat the main ideas of the spin-charge-family-theory. I kindly

ask the reader to learn more about this theory in the references [1, 2] as well as in my talk

presented in this proceedings and in the references therein.

I am proposing a simple action in d = (1 + 13)-dimensional space. Spinors carry two

kinds of the spin (no charges).

i. The Dirac spin, described by γa’s, defines the spinor representation in d = (1 + 13). After

the break of the starting symmetry SO(1, 13) (through SO(1, 7)× SO(6)) to the symmetry

of the standard model in d = (1 + 3) (SO(1, 3)×U(1)×SU(2)×SU(3)) it defines the hyper

charge (U(1)), the weak charge (SU(2), with the left handed representation of SO(1, 3)

manifesting naturally the weak charge and the right handed ones appearing as the weak

singlets) and the colour charge (SU(3)).

ii. The second kind of the spin [1], described by γ̃a’s ({γ̃a, γ̃b}+ = 2 ηab) and anticommuting

with the Dirac γa ({γa, γ̃b}+ = 0), defines the families of spinors.

Accordingly spinors interact with the two kinds of the spin connection fields and the viel-

beins.

We have

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+, {γa, γ̃b}+ = 0,

Sab := (i/4)(γaγb − γbγa), S̃ab := (i/4)(γ̃aγ̃b − γ̃bγ̃a), {Sab, S̃cd}− = 0. (1)

The action

S =
∫

ddx E Lf +∫
ddx E (αR + α̃ R̃) , (2)

Lf =
1

2
(Eψ̄ γap0aψ) + h.c. ,

p0a = fαap0α +
1

2E
{pα, Efαa}−,
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p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα ,

R =
1

2
{fα[afβb] (ωabα,β − ωcaα ωcbβ)}+ h.c. ,

R̃ =
1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃cbβ) + h.c. , (3)

manifests (fα[afβb] = fαafβb − fαbfβa) after the break of symmetries all the known gauge

fields and the scalar fields, and the mass matrices. To see the manifestation of the covariant

momentum and the mass matrices we rewrite formally the action for a Weyl spinor in

d = (1 + 13) as follows

Lf = ψ̄γm(pm −
∑
A,i

gAτAiAAim )ψ +

{
∑
s=7,8

ψ̄γsp0s ψ}+

the rest, (4)

where m = 0, 1, 2, 3 with

τAi =
∑
a,b

cAiab S
ab,

{τAi, τBj}− = iδABfAijkτAk. (5)

All the charges and the spin of one family are determined by Sab, with Sab as the only

internal degree of freedom of one family (besides the family quantum number, determined

by S̃ab), manifesting after the breaks at the low energy regime as the generators of the

observed groups (Eq. (5)) U(1), SU(2) and SU(3), for A = 1, 2, 3, respectively.

The breaks of the starting symmetry from SO(1, 13) to the symmetry SO(1, 7)×SU(3)×

U(1) and further to SO(1, 3)× SU(2)× SU(2)×U(1)× SU(3) are assumed to leave all the

low lying families of spinors massless. There are eight such massless families (28/2−1) before

further breaks.

Accordingly the first row of the action in Eq. (4) manifests the effective standard model

fermions part of the action before the weak break, while the second part manifests, after

the appropriate breaks of symmetries (when ωabσ and ω̃abσ, σ ∈ (5, 6, 7, 8), fields gain the

nonzero vacuum expectation values on the tree level) the mass matrices.

The generators S̃ab take care of the families, transforming each member of one family into

the corresponding member of another family, due to the fact that {Sab, S̃cd}− = 0 (Eq.(1)).
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i |aψi > Γ(1,3) S12 Γ(4) τ13 τ23 Y Q

Octet, Γ(1,7) = 1, Γ(6) = −1,

of quarks

1 uc1R
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] 1 1
2 1 0 1

2
2
3

2
3

2 uc1R
03

[−i]
12

[−] |
56

(+)
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] 1 −1
2 1 0 1

2
2
3

2
3

3 dc1R
03

(+i)
12

(+) |
56

[−]
78

[−] ||
9 10

(+)
11 12

[−]
13 14

[−] 1 1
2 1 0 −1

2 −
1
3 −

1
3

4 dc1R
03

[−i]
12

[−] |
56

[−]
78

[−] ||
9 10

(+)
11 12

[−]
13 14

[−] 1 −1
2 1 0 −1

2 −
1
3 −

1
3

5 dc1L
03

[−i]
12

(+) |
56

[−]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] -1 1
2 -1 −1

2 0 1
6 −

1
3

6 dc1L
03

(+i)
12

[−] |
56

[−]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] -1 −1
2 -1 −1

2 0 1
6 −

1
3

7 uc1L
03

[−i]
12

(+) |
56

(+)
78

[−] ||
9 10

(+)
11 12

[−]
13 14

[−] -1 1
2 -1 1

2 0 1
6

2
3

8 uc1L
03

(+i)
12

[−] |
56

(+)
78

[−] ||
9 10

(+)
11 12

[−]
13 14

[−] -1 −1
2 -1 1

2 0 1
6

2
3

TABLE I: The 8-plet of quarks - the members of SO(1, 7) subgroup of the group SO(1, 13),

belonging to one Weyl left handed (Γ(1,13) = −1 = Γ(1,7)×Γ(6)) spinor representation of SO(1, 13).

It contains the left handed weak charged quarks and the right handed weak chargeless quarks

of a particular colour (1/2, 1/(2
√

3)). Here Γ(1,3) defines the handedness in (1 + 3) space, S12

defines the ordinary spin (which can also be read directly from the basic vector, both vectors with

both spins, ±1
2 , are presented), τ13 defines the third component of the weak charge, τ23 the third

component of the SU(2)II charge, τ4 (the U(1) charge) defines together with the τ23 the hyper

charge (Y = τ4 + τ23), Q = Y + τ13 is the electromagnetic charge. The reader can find the whole

Weyl representation in the ref. [16].

Using the technique [15] and analysing the vectors as the eigenvectors of the standard

model groups we present vectors in the space of charges and spins in terms of projectors and

nilpotents as can be learned in Appendix, in the references [1, 2] and also in my talk in the

Proceedings of Bled workshop 2010.

I present in Table I the eightplet (the representation of SO(1, 7) of quarks of a particular

colour charge (τ 33 = 1/2, τ 38 = 1/(2
√

3)), and U(1) charge (τ 4 = 1/6) and on Table II the

eightplet of the corresponding (colour chargeless) leptons.

In both tables the vectors are chosen to be the eigenvectors of the operators of handedness
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i |aψi > Γ(1,3) S12 Γ(4) τ13 τ23 Y Q

Octet, Γ(1,7) = 1, Γ(6) = −1,

of quarks

1 νR
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(+)
13 14

(+) 1 1
2 1 0 1

2 0 0

2 νR
03

[−i]
12

[−] |
56

(+)
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] 1 −1
2 1 0 1

2 0 0

3 eR
03

(+i)
12

(+) |
56

[−]
78

[−] ||
9 10

(+)
11 12

[−]
13 14

[−] 1 1
2 1 0 −1

2 −1 −1

4 eR
03

[−i]
12

[−] |
56

[−]
78

[−] ||
9 10

(+)
11 12

[−]
13 14

[−] 1 −1
2 1 0 −1

2 −1 −1

5 eL
03

[−i]
12

(+) |
56

[−]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] -1 1
2 -1 −1

2 0 −1
2 −1

6 eL
03

(+i)
12

[−] |
56

[−]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] -1 −1
2 -1 −1

2 0 −1
2 −1

7 νL
03

[−i]
12

(+) |
56

(+)
78

[−] ||
9 10

(+)
11 12

[−]
13 14

[−] -1 1
2 -1 1

2 0 −1
2 0

8 νL
03

(+i)
12

[−] |
56

(+)
78

[−] ||
9 10

(+)
11 12

[−]
13 14

[−] -1 −1
2 -1 1

2 0 −1
2 0

TABLE II: The 8-plet of leptons - the members of SO(1, 7) subgroup of the group SO(1, 13),

belonging to one Weyl left handed (Γ(1,13) = −1 = Γ(1,7)×Γ(6)) spinor representation of SO(1, 13).

It contains the colour chargeless left handed weak charged leptons and the right handed weak

chargeless leptons. The rest of notation is the same as in Table II.

Γ(n), the generators τ 13, τ 23, τ 33 τ 38, Y = τ 4 + τ 23 and Q = Y + τ 13. They are also

eigenvectors of the corresponding S̃ab, τ̃Ai, A = 1, 2, 3 and Ỹ , Q̃. One easily sees that the

right handed vectors (with respect to SO(1, 3) ) are weak (SU(2)I) chargeless and are

doublets with respect to the second SU(2)II , while the left handed are weak charged and

singlets with respect to SU(2)II .

The generators S̃ab transform each member of a family into the same member of other

2
8
2
−1 families. The eight families of the first member of the eightplet of quarks from Table I,

for example, that is of the right handed u-quark of the spin 1
2
, are presented in the left

column of Table III. The corresponding right handed neutrinos, belonging to eight different

families, are presented in the right column of the same table. The u-quark member of

the eight families and the ν members of the same eight families are generated by S̃cd,

c, d ∈ {0, 1, 2, 3, 5, 6, 7, 8} from any starting family.

Let us present also the quantum numbers of the families from Table III. In Table IV the

handedness of the families Γ̃(1+3)(= −4iS̃03S̃12), S̃03
L , S̃

12
L , S̃03

R , S̃
12
R (the diagonal matrices of

9



IR uc1R
03

[+i]
12

(+) |
56

(+)
78

[+] ||
9 10

(+)
11 12

[−]
13 14

[−] νR
03

[+i]
12

(+) |
56

(+)
78

[+] ||
9 10

(+)
11 12

(+)
13 14

(+)

IIR uc1R
03

[+i]
12

(+) |
56

[+]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] νR
03

(+i)
12

[+] |
56

(+)
78

[+] ||
9 10

(+)
11 12

(+)
13 14

(+)

IIIR uc1R
03

(+i)
12

[+] |
56

(+)
78

[+] ||
9 10

(+)
11 12

[−]
13 14

[−] νR
03

(+i)
12

[+] |
56

[+]
78

(+) ||
9 10

(+)
11 12

(+)
13 14

(+)

IVR uc1R
03

(+i)
12

[+] |
56

[+]
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] νR
03

[+i]
12

(+) |
56

[+]
78

(+) ||
9 10

(+)
11 12

(+)
13 14

(+)

VR uc1R
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] νR
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(+)
13 14

(+)

V IR uc1R
03

(+i)
12

(+) |
56

[+]
78

[+] ||
9 10

(+)
11 12

[−]
13 14

[−] νR
03

(+i)
12

(+) |
56

[+]
78

[+] ||
9 10

(+)
11 12

(+)
13 14

(+)

V IIR uc1R
03

[+i]
12

[+] |
56

(+)
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] νR
03

[+i]
12

[+] |
56

(+)
78

(+) ||
9 10

(+)
11 12

(+)
13 14

(+)

V IIIR uc1R
03

[+i]
12

[+] |
56

[+]
78

[+] ||
9 10

(+)
11 12

[−]
13 14

[−] νR
03

[+i]
12

[+] |
56

[+]
78

[+] ||
9 10

(+)
11 12

(+)
13 14

(+)

TABLE III: Eight families of the right handed uR quark with the spin 1
2 , the colour charge

τ33 = 1/2, τ38 = 1/(2
√

3) and of the colourless right handed neutrino νR of the spin 1
2 are

presented in the left and in the right column, respectively. Sab, a, b ∈ {0, 1, 2, 3, 5, 6, 7, 8} transform

uc1R of the spin 1
2 and the chosen colour c1 to all the members of the same colour: to the right

handed uc1R of the spin −1
2 , to the left uc1L of both spins (±1

2), to the right handed dc1R of both spins

(±1
2) and to the left handed dc1L of both spins (±1

2). They transform equivalently the right handed

neutrino νR of the spin 1
2 to the right handed νR of the spin (−1

2), to νL of both spins, to eR of

both spins and to eL of both spins. S̃ab, a, b ∈ {0, 1, 2, 3, 5, 6, 7, 8} transform a chosen member of

one family into the same member of all the eight families.

SO(1, 3) ), τ̃ 13 (of one of the two SU(2)I), τ̃
23 (of the second SU(2)II) are presented.

We see in Table IV that four of the eight families are singlets with respect to one of

the two SU(2) (SU(2)I) groups determined by S̃ab and doublets with respect to the second

SU(2) (SU(2)II), while the remaining four families are doublets with respect to the first

SU(2)I and singlets with respect to the second SU(2)II . When the first break appears,

to which besides the vielbeins also the spin connections contribute, we expect that if only

one of the two SU(2) subgroups of SO(1, 7)× U(1) breaking into SO(1, 3)× SU(2)× U(1)

contributes in the break [9], namely that of the charges τ̃ 2i, together with Ñ i
−, there will be

four families massless and mass protected after this break, namely those, which are singlets

with respect to ~̃τ
2

and with respect to Ñ i
− (Table IV), while for the other four families the

vacuum expectation values of the scalars (particular combinations of vielbeins fσs, and spin

connections ω̃abs, s ∈ {5, 8}) will take care of the mass matrices on the tree level and beyond
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i Γ̃(1+3) S̃03
L S̃12

L S̃03
R S̃12

R τ̃13 τ̃23 τ̃4 Ỹ ′ Ỹ Q̃

1 −1 − i
2

1
2 0 0 1

2 0 −1
2 0 −1

2 0

2 −1 − i
2

1
2 0 0 −1

2 0 −1
2 0 −1

2 −1

3 −1 i
2 −

1
2 0 0 1

2 0 −1
2 0 −1

2 0

4 −1 i
2 −

1
2 0 0 −1

2 0 −1
2 0 −1

2 −1

5 1 0 0 i
2

1
2 0 1

2 −
1
2

1
2 0 0

6 1 0 0 i
2

1
2 0 −1

2 −
1
2 −

1
2 −1 −1

7 1 0 0 − i
2 −

1
2 0 1

2 −
1
2

1
2 0 0

8 1 0 0 − i
2 −

1
2 0 −1

2 −
1
2 −

1
2 −1 −1

TABLE IV: The quantum numbers of each member of the eight families presented in Table III are

presented: The handedness of the families Γ̃(1+3) = −4iS̃03S̃12, the left and right handed SO(1, 3)

quantum numbers S̃03
L , S̃

12
L , S̃03

R , S̃
12
R (of SO(1, 3) group in the S̃mn sector), τ̃13 of SU(2)I , τ̃

23 of

the second SU(2)II , τ̃
4, Ỹ ′ = τ̃23 − τ̃4 tan θ̃2, taking θ̃2 = 0, Ỹ = τ̃4 + τ̃23, Q̃ = τ̃4 + S̃56. See also

the ref. [9].

the tree level.

A. Discrete symmetries of the theory unifying spin and charges and explaining

families

Let us define the discrete operators of the parity (P ) and of the charge conjugation (C).

P = γ0 γ8 Ix ,

C = ΠImγa γ
aK . (6)

K means complex conjugation, while in our choice of matrix representation of the γa matrices

ΠImγa γ
a = γ2γ5γ7γ9γ11γ13.

One can easily check that P transforms the uc1R from the first row in Table I into the uc1L

of the seventh row in the same table. The CP transforms the fermion states of table I into

the corresponding states of antifermions: uc1R from the first row in table I with the spin 1
2
,

weak chargeless and of the colour charge ((1
2
, 1

2
√

3
)) into a right handed antiquark ūc̄1R , weak

11



i |aψi > Γ(1,3) S12 Γ(4) τ13 τ23 Y Q

Octet, Γ(1,7) = −1, Γ(6) = 1,

of antiquarks

1 ūc̄1R
03

[−i]
12

[−] |
56

[−]
78

(+) ||
9 10

[−]
11 12

(+)
13 14

(+) 1 −1
2 -1 −1

2 0 −1
6 −

2
3

2 ūc̄1R
03

(+i)
12

(+) |
56

[−]
78

(+) ||
9 10

[−]
11 12

(+)
13 14

(+) 1 1
2 -1 −1

2 0 −1
6 −

2
3

3 d̄c̄1R
03

[−i]
12

[−] |
56

(+)
78

[−] ||
9 10

[−]
11 12

(+)
13 14

(+) 1 −1
2 -1 1

2 0 −1
6

1
3

4 d̄c̄1R
03

(+i)
12

(+) |
56

(+)
78

[−] ||
9 10

[−]
11 12

(+)
13 14

(+) 1 1
2 -1 1

2 0 −1
6

1
3

5 d̄c̄1L
03

(+i)
12

[−] |
56

(+)
78

(+) ||
9 10

[−]
11 12

(+)
13 14

(+) -1 −1
2 1 0 1

2
1
3

1
3

6 d̄c̄1L
03

[−i])
12

(+) |
56

(+)
78

(+) ||
9 10

[−]
11 12

(+)
13 14

(+) -1 1
2 1 0 1

2
1
3

1
3

7 ūc̄1L
03

(+i)
12

[−] |
56

[−]
78

[−] ||
9 10

[−]
11 12

(+)
13 14

(+) -1 −1
2 1 0 −1

2 −
2
3 −

2
3

8 ūc̄1L
03

[−i]
12

(+) |
56

[−]
78

[−] ||
9 10

[−]
11 12

(+)
13 14

(+) -1 1
2 1 0 −1

2 −
2
3 −

2
3

TABLE V: The 8-plet of antiquarks to the quarks obtained from Table I by the CP (=

γ2γ5γ7γ9γ11γ13Kγ0γ8 Ix) conjugation.

charged and of the colour charge ((−1
2
,− 1

2
√

3
)) as presented in table V.

III. THE FERMION-ANTIFERMION ASYMMETRY WITHIN THE THEORY

UNIFYING SPIN AND CHARGES AND EXPLAINING FAMILIES

As said in the abstract, I shall here follow the ideas from the references [3–6]. The

difference from the studies there in here is, as explained, in the number of families (there are

two decoupled groups of four families and consequently two stable families), in the number

of gauge fields contributing to the phase transitions and in the types of the gauge fields

contributing to phase transitions.

Let us assume that the fermion-antifermion asymmetry is zero, when the expanding

universe cools down to the temperature below the unification scale of the spin and the charges

that is to the temperature below, let say, 1016 TeV, when there are eight massless families,

manifesting the symmetry SO(1, 3) × SU(2) × SU(2) × U(1) × SU(3), and distinguishing

among themselves in the quantum numbers defined by S̃ab.

Then we must investigate, how much do the following processes contribute to the fermion-
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antifermion asymmetry in non equilibrium thermal processes in the expanding universe:

• The nonconservation of currents on the quantum level due to the triangle anomalies [4–

6], which are responsible for P and CP nonconservation

∂m jAiα(i)
m =

(gA)2

8π2

1

2
εmnpr F

AimnFAi pr. (7)

Here jAiαm stays for the currents of fermions (and antifermions), which carry a particular

charge denoted by a charge group A, in our case A = 4 means the U(1) charge

originating in SO(6), A = 3 means the SU(3) (colour) charge, A = 2I means the weak

SU(2)I charge of the left handed doublets, while A = 2II stays for the SU(2)II charge

of the right handed singlets before the SU(2)II break, A = 1 stays for the actual

U(1) charge (the standard model like hyper charge after the SU(2)II break and the

electromagnetic one after the weak break).

In my case also the fields, which look like scalar fields in d = (1+3), ÃÃis , s, t ∈ 5, 6, · · ·,

and to which the fermions are coupled, contribute.

All the fermions and antifermions, which are coupled to a particular gauge field AAim

and in my case also ÃÃis contribute to the current

jAiα(i)
m = ψAiα(i)† γ0γm ψAiα(i). (8)

(i) ∈ {1, 8} enumerates families, in my case twice four families which are distinguish-

able by the quantum numbers originating in S̃ab, namely, after the break of SU(2)I

the lower four families, which are doublets with respect to Ñ i
+ and τ̃ I i and singlets

with respect to Ñ i
− and τ̃ II i, stay massless, while the upper four families are doublets

with respect to Ñ i
− and τ̃ IIi and singlets with respect to Ñ i

+ and τ̃ Ii. After the elec-

troweak break all the eight families become massive, but the upper four families have

no mixing matrix elements since the way of breaking leaves all the ωmsa and ω̃msa, with

m = 0, 1, 2, 3; s = 5, 6, · · ·, equal to zero. α distinguishes the multiplets in each family,

in my case of the two SU(2) gauge groups α distinguishes the SU(2)I doublets, that is

one colour singlet and one colour triplet, and the SU(2)II doublets, again one colour

singlet and one colour triplet. AAim are the corresponding gauge fields, with tensors

FA
mn = τAi FAi

mn and FAi
mn = AAin,m − AAim,n + gA fAijk AAjm AAkn . (The scalar fields ÃÃis

define tensors F̃ Ãi st = ÃÃit,s − ÃÃis,t + gÃ fA ijkÃÃjs ÃÃkt .)
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The nonconserved currents affect the fermions and antifermions. (In the later case the

τAi are replaced by τ̄Ai, both fulfilling the same commutation relations {τAi, τBj}− =

iδAB fA ijk τAk, {τ̄Ai, τ̄Bj}− = iδAB fA ijk τ̄Ak). One obtains τ̄Ai from τAi by the CP

transformation P = γ0γ8 Ix, while C =
∏
Imγa γ

aK (See II A).

• The nonconservation of the fermion numbers originating in the complex phases of

the mixing matrices of the two times 4 × 4 mass matrices for each member of a

family, after the two successive breaks causes two phase transitions when the symmetry

SU(2) × SU(2) × U(1) breaks first to SU(2) × U(1) and finally to U(1) and the two

types of gauge fields manifest their masses while the two groups of four with the mixing

matrices decoupled families gain nonzero mass matrices in the first break the upper

four families and in the second break the lower four families.

I am following here the references [3–6]. The nonconservation of currents may be expected

whenever the non-Abelian gauge fields manifest a non trivial structure of vacua, originating

in the instanton solutions of the Euclidean non-Abelian gauge theories in (1+3)−dimensional

space, that is in AAm, which fulfil the boundary condition limr→∞ τAiAAim = U−1∂mU ,

summed over i for a particular gauge group A (and similarly might be that the fields

limρ→∞ τ̃ Ãi ÃÃis = U−1∂sU , with r =
√

(x0)2 + ~x2 and ρ =
√∑

s (xs)2, for a particular

Ã , contribute as well, where the effect of the triangle anomalies in the case of scalar gauge

fields depending on xσ, σ = 5, 6, 7, 8 and the corresponding meaning of the winding num-

bers distinguishing among the different vacua in this case might be negligible and should be

studied). The vacua distinguish among themselves in the topological quantum numbers nA

(nÃ), determined by a particular choice of U

nA =
(gA)2

16π2

∫
d4x εmnpr Tr(F

AmnFApr) =
(gA)2

32π2

∫
d4x∂mK

Am, (9)

where KA
m =

∑
i 4εmnpr (AAin ∂pA

A
r + 2

3
gAfAijkAAin A

Aj
p A

Ak
r ). (Similarly also the topological

quantum number nÃ might be non negligible.)

Instanton solutions fulfilling the boundary condition limr→∞ τAiAAim = U−1∂mU for a

particular gauge group A (or limρ→∞ τ̃ Ãi ÃÃis = U−1∂mU for a particular Ã), each with its

own U for a particular A (or Ã), connect vacua |nA > with different winding numbers [17] nA

(and correspondingly for nÃ). The true vacuum |θA > is for each A (let it count also Ã) in a

stationary situation a superposition of the vacua, determined by the time independent gauge
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transformation [3] T , T |θA >= eiθ
A|θA >, where θA is a parameter, which weights the contri-

bution of a vacuum to the effective Lagrange density Leff = L+
∑
A

θA

16π2 F
Aimn 1

2
εmnprF

Ai pr,

for a particular gauge field. T acts as the raising operator for the handedness (chirality). The

second term of the effective Lagrange density Leff violates parity P and then also CP . The

vacuum state with the definite handedness has also a definite topological quantum number.

In the presence of the massless fermions all the vacua |θA >, for each A, are equivalent.

The fermion currents (Eq.(8)) are not conserved in processes, for which the gauge fields

are such that the corresponding winding number nA of Eq. (9) is nonzero. Correspondingly

also the fermion (and antifermion numbers), carrying the corresponding charge, are not

conserved

∆nAiα(i) = nA. (10)

The fermion number of all the fermions interacting with the same non-Abelian gauge field

with nonzero winding number, either of a vector or of a scalar type (whose contribu-

tion should be studied and hopefully understood), changes in such processes for the same

amount: Any member of a family, interacting with the particular field and therefore also

the corresponding members of each family, either a quark or a lepton member of doublets,

change for the same amount, before the breaks or after the breaks (in my case first from

SO(1, 3)× SU(2)× SU(2)×U(1)× SU(3) to SO(1, 3)× SU(2)×U(1)× SU(3) and finally

to SO(1, 3)× U(1)× SU(3)) of the symmetries.

For a baryon three quarks are needed. It is the conservation of the colour charge which

requires that the lepton number and the baryon number ought to be conserved separately as

long as the charge group is a global symmetry. The transformations, which allow rotations

of a lepton to a quark or opposite, conserve the fermion number, but not the lepton and not

the baryon number.

Instanton solutions of the non-Abelian gauge fields, which connect different vacua (see the

refs. [6], page 481, and [4], page 6), are characterized by the highest value of the instanton

field between the two vacua, that is by the sphaleron energy.

The question arises, can the instanton solutions be responsible for the baryon asymmetry

of the universe? The authors of the papers [4, 5] discuss and evaluate the probability for

tunnelling from one vacuum to the other at low energy regime and also at the energies

of sphalerons. When once the system of gauge fields is in one vacuum the probability
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for the transition to another vacuum depends not only on the sphalerons height (energy)

but also on the temperature. If the temperature is low, then the transition is negligible.

At the temperature above the phase transition (the authors [4] discuss the electroweak

phase transition starting at around 100 GeV, while in my case there is also the SU(2)II

phase transition at around 1016 GeV or slightly below) when the fermions are massless

and the expansion rate of the universe is much slower that the rate of nonconservation of

the fermion number, and in the case of non equilibrium processes in phase transitions, the

fermion number nonconservation can be large. The authors conclude that more precise

evaluations (treating several models) of the probability that in a non thermal equilibrium

phase transition and below it the fermion number would not be conserved due to transitions

to vacua with different winding numbers in the amount as observed for the (first family)

baryon number excess in the universe are needed.

What can be concluded about the fermion number asymmetry, caused by the transitions

of gauge fields to different vacua, in my case, where at energies above the SU2II phase

transition there are eight families of massless fermions, with the charges manifesting the

symmetries first of SU(2)I ×SU(2)II ×U(1) and correspondingly with the two kinds of the

vector gauge SU(2) fields which both might demonstrate the vacua with different winding

numbers? In addition also the scalar gauge fields might contribute with their even more

rich vacua (if they do that at all). The phase transitions caused first by the break of the

symmetry SU(2)I × SU(2)II × U(1) to SU(2)II × U(1), when the upper four families gain

masses (and the corresponding gauge vector fields become massive) and then by the final

break to U(1), with the S̃ab sector causing the masses in both transitions and may be also

taking care of the richness of vacua with different winding numbers, might show up after

a careful study as a mechanism for generating the fermion-antifermion (or the antifermion-

fermion) asymmetry. Although I do not yet see, how do the non equilibrium processes in the

first order phase transitions decide about the excess of either fermions or of antifermions.

So, is it in my case possible that the two successive non equilibrium phase transitions

leave the excess of antifermions in the case of the upper four families and the excess of

fermions in the lower four families? Or there is a negligible excess of either fermions or

antifermions in the upper four families? We saw in the ref. [10] that an excess of either

fermions or antifermions is not important for massive enough (few 100 TeV) stable fifth

family members. The excess of fermions over antifermions is certainly what universe made
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a choice of for the lower four families, whatever the reason for this fact is. Can this be easier

understood within the spin-charge-family-theory? All these need a careful study.

The fermion number nonconservation originates also in the complex phases of the mass

mixing matrices of each of the two groups of four family members. It might be that the

vacua, triggered by instanton solutions of the gauge vector and scalar fields, and the mass

matrices, determined on the tree level by the vacuum expectation values of the scalar gauge

fields in the S̃ab sector, are connected (since in the instanton case also the scalar fields, the

gauge fields of charges originating in S̃ab might exhibit the instanton solutions).

IV. CONCLUSION

In this contribution I pay attention to the origin of baryon asymmetry of our universe

within the spin-charge-family-theory under the assumption that the asymmetry is caused

i. by the instanton solutions of the non-Abelian gauge fields which determine vacua with

different winding numbers and ii. by the complex matrix elements of the mixing matrices.

The spin-charge-family-theory namely assumes besides the Dirac Clifford algebra objects

also the second ones γ̃a as a necessary mechanism (or better a mathematical tool) which

should be used in order that we consistently describe both: spin and charges, as well as fam-

ilies. The second kind is namely responsible for generating families, defining the equivalent

representations with respect to the Dirac one. Correspondingly there are besides the two

kinds of the vector gauge fields, the SU(2)I and SU(2)II , also the scalar gauge fields, the two

SU(2) from SO(4) and the two SU(2) from SO(1, 3), the superposition of the gauge fields

of S̃ab(= i
4
(γ̃aγ̃b − γ̃bγ̃a)), which might contribute to vacua with different winding numbers

(what has to be studied). The scalar fields, originating in the S̃ab charges, are responsible

with their vacuum expectation values (and in loop corrections) for the mass matrices of

fermions after the breaks of symmetries.

The theory predicts twice four families (which differ in the family quantum numbers in

the way that the upper four families are doublets with respect to τ̃ II i and Ñ i
−, while the

lower four families are doublets with respect to τ̃ I i, and Ñ i
+) which all are massless above

the last two phase transitions.

What should be clarified in the spin-charge-family-theory is whether the predicted twice

four families (rather than once three families of the standard model) and the fact that
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there are gauge fields belonging to two kinds of generator (Sab and S̃ab) make the baryon

number asymmetry easier to be understood within these two phenomena — the instanton

responsibility for the fermion number nonconservation and the complex matrix elements of

the mixing matrices responsibility for the fermion number nonconservation.

The manifestation of the instanton gauge vector and scalar fields in the determination

of the properties of the vacuum might be correlated with the vacuum expectation values of

the scalar fields defining the mass matrices of twice the four families. Both manifestations

appear in possibly non equilibrium phase transitions of the expanding universe, which cause

breaking of particular symmetries and also the fermion number nonconservation. In this

contribution I just follow the way suggested by the ref. [4] and by the authors cited in this

reference, while taking into account the requirement of the spin-charge-family-theory. The

fermion number nonconservation obviously ended in the excess of (what we call) fermions for

the lower four families, while for the upper four families we have to see whether there is the

excess of either the stable fifth family fermions or antifermions. To answer these questions

a careful study is needed. It even might be that there was at the non equilibrium phase

transitions the same excess of antifermions for the upper four families as it is of fermions

for the lower four families, while later the complex matrix elements in the mixing matrices

change this equality drastically. But yet it must be understood the origin of both sources of

the fermion number nonconservation.

Appendix: Some useful relations

The following Cartan subalgebra set of the algebra Sab (for both sectors) is chosen:

S03, S12, S56, S78, S9 10, S11 12, S13 14

S̃03, S̃12, S̃56, S̃78, S̃9 10, S̃11 12, S̃13 14. (A.1)

A left handed (Γ(1,13) = −1) eigen state of all the members of the Cartan subalgebra

03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) |ψ〉 =

1

27
(γ0 − γ3)(γ1 + iγ2)|(γ5 + iγ6)(γ7 + iγ8)||

(γ9 + iγ10)(γ11 − iγ12)(γ13 − iγ14)|ψ〉. (A.2)

represent the uR-quark with spin up and of one colour.
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S̃ab generate families from the starting uR quark In particular S̃03(= i
2
[

03
˜(+i)

12
˜(+) +

03
˜(−i)

12
˜(+)

+
03
˜(+i)

12
˜(−) +

03
˜(−i)

12
˜(−)]) applied on a right handed uR-quark with spin up and a particular

colour generate a state which is again a right handed u-quark of the same colour.

03
˜(−i)

12
˜(−)

03

(+i)
12

(+) |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−)=
03

[ +i]
12

[ + ] |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−), (A.3)

where

ab

(±i) =
1

2
(γa ∓ γb),

ab

(±1)=
1

2
(γa ± iγb),

ab

[±i] =
1

2
(1± γaγb),

ab

[±1]=
1

2
(1± iγaγb),

ab
˜(±i) =

1

2
(γ̃a ∓ γ̃b),

ab
˜(±1)=

1

2
(γ̃a ± iγ̃b),

ab
˜[±i] =

1

2
(1± γ̃aγ̃b),

ab
˜[±1]=

1

2
(1± iγ̃aγ̃b). (A.4)

We present below some useful relations which are easy to derive [2].

ab

(k)
ab

(k) = 0,
ab

(k)
ab

(−k)= ηaa
ab

[k],
ab

[k]
ab

[k]=
ab

[k],
ab

[k]
ab

[−k] = 0,
ab

(k)
ab

[k]= 0,
ab

[k]
ab

(k)=
ab

(k),
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0. (A.5)

ab
˜(k)

ab

(k) = 0,
ab
˜(−k)

ab

(k)= −iηaa
ab

[k],
ab
˜(k)

ab

[k] = i
ab

(k),
ab
˜(k)

ab

[−k]= 0. (A.6)

N±+ = N1
+ ± iN2

+ = −
03

(∓i)
12

(±) , N±− = N1
− ± iN2

− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ 1± = (∓)
56

(±)
78

(∓) , τ 2± = (∓)
56

(∓)
78

(∓) ,

τ̃ 1± = (∓)
56
˜(±)

78
˜(∓) , τ̃ 2± = (∓)

56
˜(∓)

78
˜(∓) . (A.7)
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(x0)2 + ~x2, is presented. Operators ~σA are the three Pauli matrices, used to denote the

SU(2) gauge group in this case: ~τA = ~σA

2 , {τAi, τAj}− = iεijkτAk. The corresponding ac-

tion
∫
d4x 1

2εmnpr F
AimnFAipr = 8π2

g2
, while U = x0+i~σA·~x

r , defines the n = 1 vacuum state.
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