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ABSTRACT

It is a well established empirical fact that the surface density of the star formation rate, ΣSFR,
strongly correlates with the surface density of molecular hydrogen, ΣH2

, at least when averaged over
large (∼ kpc) scales. Much less is known, however, if (and how) the ΣSFR −ΣH2

relation depends on
environmental parameters, such as the metallicity or the UV radiation field in the interstellar medium
(ISM). Furthermore, observations indicate that the scatter in the ΣSFR−ΣH2

relation increases rapidly
with decreasing averaging scale. How the scale dependent scatter is generated and how one recovers a
tight ∼ kpc scale ΣSFR−ΣH2

relation in the first place is still largely debated. Here, we explore these
questions with hydrodynamical simulations that follow the formation and destruction of H2, include
radiative transfer of UV radiation, and resolve the ISM on ∼ 60 pc scales. We find that within the
considered range of H2 surface densities (10-100 M⊙ pc−2) the ΣSFR−ΣH2

is steeper in environments
of low metallicity and/or high radiation fields (compared to the Galaxy), that the star formation rate
at a given H2 surface density is larger, and the scatter is increased. We expect that deviations from
a “universal” ΣSFR − ΣH2

relation should be particularly relevant for high redshift galaxies or for
low-metallicity dwarfs at z ∼ 0. We also find that the use of time-averaged SFRs produces a large,
scale dependent scatter in the ΣSFR−ΣH2

relation. Therefore, one does not necessarily need to invoke
a changing star formation efficiency over the life time of molecular clouds in order to explain it. Given
the plethora of observational data expected from upcoming surveys such as ALMA the scale-scatter
relation may indeed become a valuable tool for determining the physical mechanisms connecting star
formation and H2 formation.
Subject headings: galaxies: evolution — stars: formation — methods: numerical

1. INTRODUCTION

In a seminal paper Schmidt (1959) constructed a
closed-box model of gas consumption and star forma-
tion that relies on the basic assumption of a polynomial
relationship between (total) gas surface density Σgas and
star formation rate surface density ΣSFR. This model
was able to satisfy simultaneously a number of obser-
vational constraints, such as the initial luminosity func-
tion of main sequence stars, the luminosity function of
white dwarfs, or the relatively constant surface density
of atomic hydrogen (HI). While the first studies focussed
on the relation between neutral hydrogen and SFR
(Sanduleak 1969; Hartwick 1971), the combination of
measurements of Hα, HI and CO emission lines allowed
for a direct test of the Schmidt relation, ΣSFR−Σgas, and
a precise measurement of its exponent (Kennicutt 1989,
1998b). Initially, it was assumed that Σgas would deter-
mine ΣSFR (e.g., via gravitational collapse). However,
measurements of azimuthally averaged gas and SFR pro-
files showed that SFRs correlate better with the molec-
ular hydrogen (H2) component than with the total gas
density (Wong & Blitz 2002; Bigiel et al. 2008). In fact,
recent observational and theoretical works demonstrate
that the ΣSFR−Σgas relation steepens at low gas surface
densities due to the transition of atomic to molecular hy-
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drogen (Robertson & Kravtsov 2008; Bigiel et al. 2008;
Krumholz et al. 2009b; Gnedin & Kravtsov 2010a). The
shape of the ΣSFR − Σgas relation is also predicted to
evolve strongly with redshift due to the build-up of
metallicity in the interstellar medium (ISM) over cos-
mic history and the importance of dust in the forma-
tion of H2 and its shielding from Lyman-Werner radia-
tion (Krumholz et al. 2009a; Gnedin & Kravtsov 2010b).
In contrast, the ΣSFR − ΣH2

relation is often assumed
to evolve little and be relatively insensitive to changes
in metallicity and interstellar radiation field, although
this has not yet been confirmed observationally. The as-
sumption on which this “universality” is based is that
the efficiency with which clouds of molecular hydrogen
convert their H2 into stars is not a strong function of
the average ISM metallicity or the interstellar radiation
field, at least under conditions typical for spiral galaxies
(Krumholz & Tan 2007). The scale at which this conver-
sion takes place is the scale of (giant) molecular clouds,
i.e. 100 pc or less. However, there are a couple of com-
plications. First, there is growing observational evidence
suggesting that the scatter in the ΣSFR−ΣH2

relation in-
creases if one goes to smaller and smaller scales (see, e.g.,
Onodera et al. 2010; Schruba et al. 2010). Taken at face
value this seems to contradict a tight small-scale coupling
between molecular hydrogen surface density and star for-
mation. Second, the ΣSFR − ΣH2

relation is typically
measured on ∼ kpc scales and the spatial averaging may
lead to changes in the slope, intercept and scatter com-
pared with those on small scales (Kravtsov 2003). Third,
observationally determined SFRs are time-averaged over
the effective lifetime of the specific star formation tracer
and may thus differ from instantaneous SFRs.
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A straightforward observational check of the univer-
sality of the ΣSFR − ΣH2

relation is difficult, first and
foremost because the direct detection of molecular hy-
drogen is challenging. Tracer molecules such as CO or
HCN are typically used instead to infer the H2 column
density (Omont 2007). Mapping the line intensity of
tracer molecules to the H2 column density is obfuscated
by the fact that the dependence of the conversion factor
on ISM properties, e.g. metallicity or interstellar radi-
ation field, is not well understood (Glover & Mac Low
2010). In addition, radiative transfer effects need to be
carefully modeled (e.g., Narayanan et al. 2008, 2010).
Numerical simulations offer a different route to study-

ing the ΣSFR − ΣH2
relation. What are their require-

ments? First, the numerical code needs to follow self-
consistently the formation and destruction of H2. This
implies a resolution of 100 pc or better, an implementa-
tion of cooling down to a few tens of Kelvin and, also,
radiative transfer of the Lyman-Werner bands (at least
in some approximate form), in order to correctly capture
the impact of the interstellar radiation field on the H2

dissociation.
Secondly, the code needs a recipe for star formation.

The accumulating evidence in favor of a universal ini-
tial stellar mass function (Bastian et al. 2010) indicates
that star formation on small scales, i.e. within star form-
ing clumps and cores within molecular clouds, is largely
decoupled from the ISM properties on larger scales. In
particular, observations show that the average star for-
mation efficiency per free fall time is ∼ 0.005 − 0.01,
independently of scale, once the densities of molecular
clouds are reached (e.g., Krumholz & Tan 2007, but see
also Murray 2010; Feldmann & Gnedin 2010). A natu-
ral approach is therefore to couple the star formation on
scales of individual molecular clouds directly to the den-
sity of molecular hydrogen assuming the formation and
destruction of H2 can be modeled reliably. Consequently,
the approach we use in our simulations is to relate the
SFR to the H2 density on small scales (∼ 60 pc) via the
following equation (Gnedin et al. 2009):

ρ̇∗ = ǫSFR
ρH
τSFR

fH2
, (1)

here ρ̇∗ is the instantaneous SFR density, ρH is the hydro-
gen mass density, fH2

the H2 fraction, and ǫSFR and τSFR
denote the star formation efficiency and the star forma-
tion time-scale (see equation 2 below), respectively. Our
simulations use ǫSFR = 0.005. This value, which is con-
sistent with small scale observations (Krumholz & Tan
2007), ensures that the normalization of the ΣSFR−ΣH2

relation on kpc scales is similar in simulations and obser-
vations.
On which grounds would we actually expect to see

any dependence of slope, intercept and scatter of the
ΣSFR−ΣH2

relation on environmental parameters such as
metallicity or interstellar radiation field? The H2 abun-
dance is strongly affected by the amount of dust shielding
from the UV radiation and, consequently, a lower metal-
lically and/or larger radiation field will increase the re-
quired density for H2 (and consequently stars) to form.
We will show that a non-linear relation between nH2

and
the SFR on small scales can have a significant impact on
the slope, intercept and scatter of the ΣSFR−ΣH2

relation
measured on large (∼ kpc) scales. Another important,

TABLE 1
Overview of the simulations discussed in this work.

nc [ cm−3 ] Z/Z⊙ UMW resolution [ pc ] #

50 0.1, 0.3, 1 0.1,1,10,100 65 12

103, 106 1 0.1 65 2

103, 106 0.1 100 65 2

50 1 1 32 1

50 1 1 125 1

and so far often neglected quantity, is the scatter in the
ΣSFR −ΣH2

relation. While some scatter may be due to
observational measurement uncertainties it is clear that
any environmental dependence of the ΣSFR − ΣH2

rela-
tion will translate into a galaxy-to-galaxy variation and,
in combined data sets, to scatter. Furthermore, the ob-
served ΣSFR − ΣH2

relation is measured on large scales
(spatial averaging) using time averaged SFRs. In addi-
tion to any intrinsic scatter the averaging may induce a
scale-dependent scatter. The comparison of this scatter
with that measured in observations may help to constrain
the interplay between molecular gas and star formation
on small scales.
The layout of the paper is as follows. In §2 we briefly

describe the setup of our numerical experiments. We
then show in §3.1 the predicted dependence of the slope,
intercept and scatter of the ΣSFR−ΣH2

relation on metal-
licity and interstellar radiation field. The scale depen-
dence of the scatter is studied in §3.2. We discuss our
findings in §4 and conclude in §5.

2. SIMULATIONS

A detailed description of the set of performed simula-
tions can be found in Gnedin & Kravtsov (2010a). All
simulations are run with the Eulerian hydrodynamics +
N-body code ART (Kravtsov et al. 1997, 2002), that uses
an adaptive mesh refinement (AMR) techique to achieve
high spatial (and time) resolution in the regions of inter-
ested (here: regions of high baryonic density). First, we
ran an initial cosmological, hydrodynamical simulation
down to z = 4. This simulation follows a Lagrangian re-
gion that encloses five virial radii of a typical L∗ galaxy
(halo mass ∼ 1012 M⊙ at z = 0) within a box of 6 co-
moving Mpc/h. The mass of dark matter particles in the
high resolution Lagrangian patch is 1.3×106M⊙ and the
spatial resolution is 65 pc at z = 3 in physical coordi-
nates. We adopt the following cosmological parameters
Ωmatter = 0.3, ΩΛ = 0.7, h = 0.7, Ωbaryon = 0.043,
σ8 = 0.9. This initial, fully self-consistent simulation
is consequently continued for additional ∼ 600 Myr be-
fore it is analyzed, but now with metallicities and UV
fields fixed to a specific, spatially uniform value. At this
time, the mass of the simulated halo is ≈ 4.2× 1011 M⊙.
We have run a grid of simulations with three different
metallicities Z = 0.1, 0.3, 1.0 (in units of Z⊙ = 0.02)
and four different values of the interstellar radiation field
UMW = 0.1, 1, 10, 100. The parameter UMW = J/JMW

specifies the strength of the interstellar radiation field in
units of the radiation field of the Milky Way at 1000Å:
JMW = 106 photons cm−2 s−1 ster−1 eV−1 (Draine 1978;
Mathis et al. 1983). We continued one of our simulations
(Z/Z⊙ = 1, UMW = 1) for additional 400 Myr and found
no significant changes in the ΣSFR − ΣH2

relation. This
indicates that the predictions of our simulations should
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Fig. 1.— The ΣSFR − ΣH2
relation on the kpc scale. Left panel: Z = Z⊙, UMW = 1. Right panel: Z = 0.1Z⊙, UMW = 100. Stellar

and H2 masses are measured within cubical cells of l = 1 kpc box length. Surface densities are estimated by dividing each mass by l2.
SFR are averaged over 20 Myrs. The simulation results are shown as the red shaded region (two-dimensional histogram of all cells) and as
crosses (a random sample of 50 cells with surface density in the range 10 < ΣH2

/M⊙pc−2 < 100). The solid green line is the result of a

bisector regression of all cells with 10 < ΣH2
/M⊙pc−2 < 100 and 0.01 < SFR/M⊙yr−1kpc−2 < 1. The regression parameters, slope and

intercept, are shown on the top left. Also shown (in brackets) are the regression errors, estimated via bootstrapping. The black circles and
triangles correspond to the normal spiral and star bursting sample, respectively, of Kennicutt (1998b). The solid black line is the average
ΣSFR −ΣH2

relation found in Bigiel et al. (2008). The ΣSFR −ΣH2
relation in the right panel has a steeper slope, a higher normalization

and a larger scatter than in the left panel.

also hold for redshifts z . 3, at least unless/until ISM
properties change radically. In total, we ran a set of
18 simulations in order to explore the effect of varying
metallicity, radiation field and density threshold on the
ΣSFR − ΣH2

relation (see Table 1).
The molecular hydrogen fraction fH2

is computed self-
consistently, including a chemical network comprised of 6
species and radiative transfer of the UV continuum and
the Lyman-Werner bands (Gnedin & Kravtsov 2010a).
If the average density in a simulation cell is smaller than
the density typical for molecular clouds we have to revert
to a ‘subgrid’ interpretation of the H2 fraction. In this
case we assume that the fraction fH2

corresponds to the
(mass) fraction of hydrogen in individual (unresolved)
molecular clouds. Hence, the star formation timescale is
naturally given by the minimum of (i) the free-fall time
corresponding to the average density in the cell and (ii)
the free fall time corresponding to the minimum density
of molecular clouds that form stars nc, i.e.

τSFR = min[τff(nH), τff(nc)], (2)

We stress that for densities smaller than nc the relation
between SFR and H2 abundance is linear, while it be-
comes non-linear for larger densities, because τff(nH) ∝
n
−1/2
H . A non-linear steepening of the ΣSFR − ΣH2

rela-
tion at ΣH2

> 100M⊙ pc−2 is motivated by theoretical
studies (e.g., Krumholz et al. 2009b), but not yet con-
firmed by observations. We therefore explore the case in
which nc = 50 cm−3, i.e. close to the typical average
density of molecular clouds (∼ 100−200 cm−3), but also
discuss the possibility of much larger thresholds such as
nc = 103 cm−3 and nc = 106 cm−3. Since our simula-
tions do not capture densities of & 105 cm−3, a threshold

above this value effectively corresponds to a linear SFR
- H2 relation on small scales.
We note that the approach described by (1) and (2)

does not introduce intrinsic scatter. We discuss in §3.2
how such an intrinsic scatter would propagate from the
∼ 100 pc to the ∼ kpc scales.
Instantaneous SFRs are computed directly using equa-

tions (1) and (2). SFRs that are averaged over time T
are calculated by counting the number of stars in a cube
of given scale with ages below T . Unless otherwise noted,
we use T = 20 Myr, but we have explicitly checked that
our results do not change significantly if larger averaging
times are used (up to T = 200 Myr). In order to put
this into context: observations based on UV luminosities
in the wavelength range 1250-2800 Å correspond to an
averaging time of ∼ 100 Myr, SFR estimates based on
nebular emission lines, such asHα, correspond to T ∼ 10
Myr, while SFR estimates based on the FIR continuum
(e.g. 24 µm) can vary in the range 10 - 100 Myr (see,
e.g., Kennicutt 1998a).
When we talk about the spatial density on a given scale

l we simply refer to the amount of mass within a cube
of size l. In order to convert from a spatial to a surface
density we multiply the spatial density by l. We note
that we do not use the surface density on the smallest
(∼ 60 pc) scale. The smallest value of l is therefore ∼ 125
pc.

3. RESULTS

3.1. Dependence on metallicity and UV field

In Fig. 1 we plot and compare the ΣSFR − ΣH2
rela-

tion for (a) solar metallicity and UMW = 0.1, and (b)
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Z/Z⊙ = 0.1 and UMW = 100. Measured over the range
10 < ΣH2

/M⊙pc
−2 < 100, the slope of the relation in

case (a) is ∼ 1.14 ± 0.02, the SFR at a surface density
ΣH2

= 10 M⊙ pc−2 is 0.016 M⊙ yr−1 kpc−2 and the
scatter of log10 SFR around the best fit is 0.10 dex. The
slope is slightly steeper than the one derived from CO
measurements (∼ 0.96 ± 0.07; Bigiel et al. 2008). The
use of a constant conversion factor between CO intensity
and H2 surface density may, at least partially, explain
an observed slope below unity (Feldmann et al. 2010
in prep). As anticipated the choice ǫSFR = 0.005 leads
to a normalization of the simulated ΣSFR − ΣH2

rela-
tion that is close to what is found in observations, once
observational data is mapped to the same initial stellar
mass function (IMF). In case (b) the slope is significantly
steeper ∼ 1.4, the SFR at a surface density ΣH2

= 10M⊙

pc−2 higher (0.023 M⊙ yr−1 kpc−2) and the scatter is
larger (0.18 dex).
In Fig. 2 we plot the slope, intercept and scatter of

the ΣSFR − ΣH2
relation, spatially averaged over 1 kpc,

for a grid of environmental parameters. The figure shows
that the slope, intercept and scatter are systematically
changing as a function of Z and UMW. A bi-parametric
regression (using Z and UMW as independent variables)
captures the change in slope and scatter very well. The
regression parameters are given in the legend of the fig-
ure. A word on the terminology: We refer to the scale at
which equations (1) and (2) are applied as “small scales”
(∼ 60 pc in our simulations). By contrast, we refer to the
scales on which the slope and intercept of the ΣSFR−ΣH2

are measured as “large scales” (∼ kpc in this study).

• Fig. 2 shows that the use of time-averaged SFRs
introduces the dominant amount of scatter in the
ΣSFR−ΣH2

relation on large scales. Specifically, as
the first two panels in the rightmost column demon-
strate, the scatter in the relation is significantly
larger (∼ 0.1− 0.2 dex) if SFRs are time-averaged,
compared with the case that instantaneous SFRs
are used (∼ 0.05− 0.12 dex). Time averaging cre-
ates scatter because H2 surface densities are mea-
sured instantaneously while the SFRs are averaged
over some past time interval.

• However, the use of time averaged SFRs is not the
only source of scatter. The important point to real-
ize is that equation (1) depends both on the H2 den-
sity (ρH2

= ρHfH2
) and the hydrogen density ρH

(via τSFR). Hence, on small scales, a scatter in the
hydrogen density at fixed H2 density translates into
a scatter of SFR at fixed H2 surface density. The
value of the threshold nc affects this type of scatter
in a crucial way. If nc is very large (much larger
than the peak in the mass-weighted distribution
function of molecular hydrogen) then the SFR does
not depend explicitly on ρH (since τSFR = τff(nc))
and, consequently, no scatter is generated. Simi-
larly, for hydrogen densities above a certain limit,
nfm, (e.g., > 300 cm−3 for UMW = 100, Z/Z⊙ = 0.1
or > 10 cm−3 for UMW = 0.1, Z/Z⊙ = 1) the gas
is fully molecular and, hence, ρH and ρH2

are 1:1
related (see, e.g., Gnedin et al. 2009). If nH > nfm

no scatter is produced on the level of a single cell,
but scatter can still arise on larger scales as cell

with different properties are added. To clarify this
point, let us assume that we add the SFRs and H2

densities from, e.g., two cells A and B. Consider
now the following scenarios. First, let cell A have
a density below nc and cell B a density above nfm.
Second, let us redistribute the hydrogen and H2

masses such that both cells have a density below nc

(this might not be possible in all cases). Although
in both cases the H2 density is the same, the SFRs
are higher in the first case.

• The mechanism that we just described explains the
existence of scatter, provided nc is sufficiently low
(see the third column of Fig. 2). However, we have
not discussed why there is a trend of scatter with
Z and UMW. The origin of this trend can be under-
stood from Fig. 3, where we show a 2-dimensional
histogram of the mass-weighted H2 distribution as
function of small scale hydrogen density and large
scale H2 surface density. Note that only H2 surface
densities in the range 10 < ΣH2

/M⊙pc
−2 < 100

are the subject of this paper. The figure shows
that the fraction of H2 mass that is in cells with
hydrogen densities above a given threshold (in the
range ∼ 10 − 100 cm−3) increases with decreasing
Z and increasing UV. Hence, more of the H2 mass
participates in producing scatter and the overall
scatter increases.

• Fig. 2 also shows that there is a dependence of
the intercept of the ΣSFR −ΣH2

relation on Z and
UMW, provided nc is sufficiently small (see left and
middle panel in the top & middle row). How do we
understand this result? As we just pointed out an
increase in the radiation field and/or a decrease in
the metallicity shifts the peak of the mass weighted
H2 density distribution towards higher densities
(see Fig. 3). Specifically, the figure shows that
for UMW = 0.1 and Z/Z⊙ = 1 only cells with hy-
drogen densities in the range of ∼ 3 − 100 cm−3

contain molecular hydrogen and thus contribute to
the SFR. On the other hand, if UMW = 100 and
Z/Z⊙ = 0.1, only cells with hydrogen densities in
the range of 100− 500 cm−3 contribute to star for-
mation. Furthermore, in the regime in which hy-
drogen gas is fully molecular and nH > nc the SFRs
scale as ∝ n1.5

H . This non-linear scaling leads to an
increase in the SFR with decreasing Z and increas-
ing UMW at a given large scale H2 surface density.
In other words, the large scale SFRs depend not
only on the large scale H2 surface densities, but
also on the distribution function of nH on small
scales.

• A related mechanism leads to a dependence of the
slope on Z and UMW. Fig. 3 demonstrates that
the average (small scale) density of cells contain-
ing most of the H2 mass increases with increasing
(large scale) hydrogen surface density ΣH2

. Again,
due to the non-linearity of (1) the SFR grows faster
than ΣH2

, which steepens the slope beyond a slope
of unity. Let us emphasize this point again. The
slope of the ΣSFR − ΣH2

relation on kpc scales can
vary and depends on the actual H2 density distri-
bution as function of H2 surface density. In par-
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Fig. 2.— The dependence of slope, intercept and scatter on metallicity and interstellar radiation field. The first row shows
(from left to right) the slope, the intercept and the scatter of the ΣSFR −ΣH2

relation (averaged over kpc scales) as function of
the radiation field, UMW (x-axis), and for different metallicities (Z/Z⊙ = 1 (square), 0.3 (downward pointing triangle), and 0.1
(upward pointing triangle)). SFR are averaged over 20 Myr and the minimum cloud density is nc = 50 cm−3. Slope, intercept
and scatter are computed from a bisector regression of the ΣSFR−ΣH2

relation as described in the caption of Fig. 1. To highlight
the trends with Z and UMW we also performed a two-parametric regression of slope, intercept and scatter as a function of Z and
UMW (regression parameters and the square of the correlation coefficient are shown at the top of each panel; x1 = log10 UMW,
x2 = log

10
Z). The middle row shows the same quantities as the top row, but using instantaneous SFR. The bottom row shows

again the same quantities, but for a larger threshold density nc. Specifically, the filled black symbols and lines use instantaneous
SFRs and nc = 1000 cm−3, while the empty symbols use time-averaged SFRs and nc = 1000 cm−3 (small red symbols) and
nc = 106 cm−3 (large blue symbols), respectively. We note that whenever nc > 50 cm−3 the star formation efficiencies are

reduced by
√

nc/50 (see equations 1 and 2) in order to ensure the correct normalization of the ΣSFR − ΣH2
relation.
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ticular, the slope is not bounded by the small scale
exponent of 1.5. In the most extreme case, all the
H2 that resides in a region of a given surface den-
sity ΣH2

is located within a single molecular cloud
of extreme density. The SFRs are then very large,
because the free-fall time of such a cloud is very
small.

• While the time averaging of the SFRs generates
most of the scatter in the ΣSFR−ΣH2

relation, the
trends of slope and scatter with Z, and UMW are
largely driven by the non-linear coupling between
SFR and H2 density. This can be clearly seen in the
last row of Fig. 2. If nc = 106 cm−3, the slope of
the ΣSFR−ΣH2

relation changes only between 1.03
(Z/Z⊙ = 1, UMW = 0.1) and 1.16 (Z/Z⊙ = 0.1,
UMW = 100) and the scatter increases only from
0.09 dex to 0.12 dex. We discuss the dependence
of the scatter on ISM properties further in the next
section.

• If SFRs are measured instantaneously and the
small scale relation between star formation rate
density and H2 density is linear (i.e. nc is large),
then the slope reduces to exactly unity, any depen-
dence of the intercept on metallicity or radiation
field is eliminated and the scatter vanishes (at least
as long as there are no other sources of scatter, see
§3.2).

We conclude that slope, intercept and scatter of the
ΣSFR − ΣH2

relation averaged on kpc scales can change
systematically with metallicity and radiation field. The
origin of this behavior lies in the (assumed) non-linear
relation between SFR and H2 density on small scales. On
contrast, the use of time-averaged SFRs is responsible for
most of the scatter in the relation.

3.2. Dependence on averaging scale

Observational studies show that the ΣSFR − ΣH2
re-

lation has larger scatter on smaller scales (Verley et al.
2010; Onodera et al. 2010; Danielson et al. 2010).
Specifically, recent observations of CO, Hα and 24µm
emission in M33 have been used to argue that the
ΣSFR − ΣH2

relation “breaks down” on a scale of ∼ 100
pc. It has been suggested that the drifting of newly
formed star clusters or the difference in evolutionary
stages of molecular clouds / star clusters could be re-
sponsible (Onodera et al. 2010). Given the limited range
of measured gas surface densities it is plausible that this
“break-down” is merely a manifestation of a very large
scatter that may arise from a variety of sources. In
Onodera et al. (2010) the studied range of surface den-
sities is approximatively 1M⊙pc

−2 < ΣH2
< 10M⊙pc

−2.
By contrast, the average gas surface density of GMC
measured on scales of a few tens of pc in M33 is ∼
120M⊙pc

−2 (Rosolowsky et al. 2003), roughly similar to
what is found in the Milky Way (Solomon et al. 1987;
Heyer et al. 2009). Hence, H2 gas surface densities be-
low . 10M⊙/pc

2 measured on 100 pc scales must cor-
respond to the outskirts of GMCs, not to GMCs them-
selves. This by itself may be responsible for a substan-
tial fraction of the measured scatter. We, instead, will
focus on a 10 times larger range of H2 surface densi-
ties, namely 10M⊙/pc

2 < ΣH2
< 100M⊙/pc

2 for scales
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Fig. 3.— The distribution of H2 mass in cells with hydrogen
density nH as function of large scale (1 kpc) H2 surface density.
Each vertical bin (corresponding to a certain H2 surface densities)
is normalized independently to the total mass of H2 in the bin
(black = all the H2 mass in the given surface density bin sits at a
certain cell scale (65 pc) hydrogen density nH). The panels from
top left to bottom right correspond to four different simulations
with Z = Z⊙, UMW = 0.1 (top left), Z = Z⊙, UMW = 100
(top right), Z = 0.1Z⊙, UMW = 0.1 (bottom left), Z = 0.1Z⊙,
UMW = 100 (bottom right).

from kpc down to 100 pc. Although we do not aim at
a precise quantitative comparison with observations (we
have some reasons to believe that our simulations should
underestimate the scatter on small scales somewhat, see
below), we will discuss qualitative predictions of the sim-
ulations, their limitations and the resulting implications.
In Fig. 4 we show the scatter of the ΣSFR−ΣH2

relation
as function of scale from 1 kpc down to ∼ 100 pc. The
first thing we notice is that the scatter due to time aver-
aging alone (red lines, triangles) increases with decreas-
ing scale, while the scatter solely due to the threshold
density nc (blue lines, diamonds) remains roughly scale
independent. The origins of the different types of scatter
have been discussed in the last section. Unless there are
other intrinsic sources of scatter the figure shows that the
scatter on all scales arises mainly from the time averag-
ing of the SFR and, consequently, is not related to the
H2 density pdf. This is not an artifact of the particular
SFR averaging time used. We varied the SFR averaging
time scales between 20 and 200 Myrs and found no sub-
stantial change in the amount of scatter, as long as low
SFR outliers (> 3 sigma) are excluded5.
The figure also shows that the scatter due to the SFR

time averaging alone depends to a small extent on UMW

and Z. This result can be rephrased in terms of a duty
fraction, which we define as the fraction of time (the rel-
evant time scale is the SFR averaging time) during which
the H2 density within the considered cell is close to its

5 If not excluded these outliers do increase the scatter somewhat
(by ∼ 0.1 dex) when averaging over 200 Myr instead of 20 Myr.
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Fig. 4.— The dependence of the scatter in the ΣSFR − ΣH2

relation on the averaging scale. The scatter in the ΣSFR − ΣH2

relation has been derived assuming either (i) time averaged SFR
(20 Myr) and a minimum cloud density of nc = 50 cm−3 (black
squares), (ii) time averaged SFR and nc = 106 cm−3 (red trian-
gles), or (iii) instantaneous SFR and nc = 50 cm−3 (blue dia-
monds). The scatter is computed with an ordinary least squares
regression of the SFR as function of H2 surface density in the
range 10 < ΣH2

/M⊙pc−2 < 100. Errors are computed via
bootstrapping. Empty symbols correspond to solar metallicity
and UMW = 0.1, while filled symbols refer to Z = 0.1Z⊙ and
UMW = 100. Simulations with intermediate values of metallicity
and UV field lie in between.

time averaged value. A duty fraction of unity does not
introduce scatter on small scales, as it means that within
the SFR averaging time the H2 content within the cell
remains constant. Fig. 4 then shows that the duty frac-
tion decreases with increasing radiation field/decreasing
metallicity, hence leading to larger scatter. One interpre-
tation of the reduced duty fraction is that stronger UMW

and/or lower Z reduce the life times of molecular clouds.
An alternative possibility is that molecular clouds live as
long as before, but molecular cloud formation is rarer.
Another potential contributor to the scatter on small

scales is the velocity spread of young stellar clusters and
of the stars within the cluster. This effect is not modeled
adequately in the simulation because we do not resolve
individual cluster members, but rather obtain one ‘star
particle’ for each cluster that initially moves with the
average velocity of the gas. On scales & 100 pc this
effect plays only a small role presumably, as the typical
distance that stars travel within 20 Myr is of the order of
∼ 100 pc (assuming a rms velocity of ∼ 5 km/s). Some
scatter on large scales may arise from high-velocity run-
away stars (Blaauw 1961; Stone 1991).
The decline of the scatter with increasing averaging

scale is obviously related to the spatial averaging over
a larger number of resolution elements Nres. If there
were no correlation in the H2 content of neighboring cells
we would expect a scaling proportional to

√
Nres, where

Nres ∝ l3 if the H2 is filling the volume relatively uni-
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Fig. 5.— The propagation of scatter in the ΣSFR−ΣH2
relation

from small to large scales. A scatter in log10(SFR[M⊙yr−1]) of
(from bottom to top) 0.1 (blue lines), 0.25 (cyan lines), 0.5 (ma-
genta lines) and 1 (red lines) is inserted at the resolution scale (65
pc) of the simulation. The black line at the bottom shows a power
law: scatter ∝ scale−0.5. The scatter in the ΣSFR−ΣH2

relation is

measured in the range 10 < ΣH2
/M⊙pc−2 < 100. Instantaneous

SFRs and a minimum cloud density of 106 cm−3 are used in order
to suppress other sources of scatter. Filled (empty) symbols corre-
spond to the simulation with Z = 0.1Z⊙, UMW = 100 (Z = Z⊙,
UMW = 0.1).

formly, or ∝ l2 if the H2 is confined to a disk. However,
the scale dependence shown in Fig. 4 seems to be much
shallower.
In order to address this question, we show in Fig. 5 the

result of a simple experiment. We insert a log-normal
scatter (in the SFRs) at the 65 pc scale by treating the
SFR as a log-normal random variable, with a mean given
by equation 1 and a standard deviation of 0.1 to 1 dex.
We see that the scatter decreases with increasing aver-
aging scale. A fit to the average of all data points shows
that the scatter behaves as

σl = σ1kpc (l [kpc])
−α

,

with α ≈ 0.5. The precise value of the exponent depends
slightly on the environmental properties of the gas. Using
the data points shown in Fig. 5 we obtain α = 0.52±0.04
for Z = 0.1, UMW = 100, and α = 0.43± 0.04 for Z = 1,
UMW = 0.1. This implies that on average Nres ∝ l.
Another way of saying this is that the H2 distribution
in cells with a given H2 surface density in the range
10 < ΣH2

/M⊙p
−2 < 100 is effectively one-dimensional.

Although this does not mean that the H2 is necessarily
arranged in a one-dimensional configuration, this is what
one would expect if most of the star formation takes
places in spiral waves in disk galaxies. On the other
hand, in flocculent disks, H2 masses that are smoothed
on scales of > 100 pc should be less correlated and we
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would therefore expect a steeper scaling closer to ∝ l−1.
We note that the scatter that originates in the time av-
eraging of star formation (see Fig. 4) follows roughly the
l−0.5 scaling.
Let us now consider the case in which a scatter σ̃l is

inserted on scale l (we assume a set of discrete scales that
change by a factor 2). If the different scatter contribu-
tions add in quadrature the total scatter σl on a given
scale l is simply given by

σ2
l = σ̃2

l +
1

22α
σ̃2
l/2 +

1

42α
σ̃2
l/4 + . . . (3)

= σ̃2
l +

1

22α
σ2
l/2. (4)

With knowledge of α this equation allows the computa-
tion of the amount of scatter σ̃l that is introduced on
scale l from the measurement of the scatter on scale l
and l/2. Presumably, different physical mechanism may
introduce different amounts of scatter on different scales.
Studying the scale dependence of the scatter may there-
fore be helpful to uncover the responsible physical mech-
anism(s). Our simulations also predict that the scatter
should never increase by more than 2α when averaging
scales decrease by a factor of 2. We note that our analy-
sis assumes a log-normal distribution in the scatter in the
SFR. Scatter sources that do not produce a log-normal
scatter may lead to a different scale dependence.
A rather subtle point is that the form of the distribu-

tion of scatter can actually have an impact on the mea-
sured star formation efficiency per free-fall time used in
equation (1). For instance, if the ΣSFR − ΣH2

relation
is scatter-free on some small scale < l and some log-
normally distributed scatter is introduced on scale l (with
spread σ in ln SFR) then the SFR density, ρ̇∗, becomes
a random variable

ρ̇∗ = ǫSFR
ρH2

τSFR
eσX ,

where X is a normal distributed random variable with
mean 0 and variance 1. The average SFR density mea-
sured on scales ≥ l is then given by (assuming ρH2

/τSFR
and X are statistically independent):

〈ρ̇∗〉 = ǫSFR
〈

eσX
〉

〈

ρH2

τSFR

〉

= ǫSFRe
1

2
σ2

〈

ρH2

τSFR

〉

That is, the effective star formation efficiency per free

fall time measured on scales ≥ l is larger by a factor e
1

2
σ2

compared to the star formation efficiency on scales < l.
A log-normal scatter of, e.g., 0.6 dex will lead to an in-
crease in the star formation efficiency by a factor of≈ 2.6,
which is smaller than the range (0.005-0.02) of observa-
tionally determined star formation efficiencies over a va-
riety of density and spatial scales (e.g., Krumholz & Tan
2007; Bigiel et al. 2008; Lada et al. 2010). On the other
hand, an intrinsic log-normal scatter of 1 (1.5) dex would
increase the star formation efficiency by more than an or-
der (two orders) of magnitude, which seems difficult to
reconcile with observations.

4. DISCUSSION

The scatter in the ΣSFR −ΣH2
relation on the scale of

∼ 100 pc has been attributed to the evolution of molec-
ular clouds over their life time (see, e.g., Onodera et al.

2010; Schruba et al. 2010). In this picture young molec-
ular clouds have not yet formed stars, but contain
large amounts of H2 and hence fall “below” the aver-
age ΣSFR−ΣH2

relation. On the other hand, clouds that
are near the end of their lives are heavily star forming
and/or have lost some fraction of their molecular hydro-
gen - hence the lie “above” the relation. This picture can-
not be reconciled with an H2-based star formation law of
the form of equation (1) as long as the gas consumption
time scale τSFR/ǫSFR is treated as a constant. Hence,
this explanation of the scatter in the ΣSFR − ΣH2

rela-
tion implies that ǫSFR/τSFR has to be a time-dependent
quantity. If τSFR is approximatively constant, then the
star formation efficiency will need to change over the life
time of a molecular cloud (e.g., Murray 2010, but see
Feldmann & Gnedin 2010).
Our interpretation is different. We show that a large

amount of scatter in the ΣSFR −ΣH2
relation can be ex-

plained by the fact that observations do not measure the
instantaneous rate of star formation, but rather the num-
ber of stars that formed within a finite time interval in
the past. Our numerical models predict that the scatter
seen on scales of ∼ 100 pc should be small (. 0.1 dex) if
SFR are measured instantaneously. By contrast, if the
scatter in the relation is mainly due to an evolving star
formation efficiency, the scatter on 100 pc scales should
not be strongly diminished if (close to) instantaneous
SFR are used.
We note that the particular small-scale model of star

formation used in our simulations is based directly on
the H2 density (equation 1). Although this model has
been motivated analytically (Krumholz et al. 2009b) and
is widely used in numerical simulations (Gnedin et al.
2009) or, more recently, semi-analytic models (Fu et al.
2010), it is important to verify how accurately it de-
scribes reality. A potential shortcoming of equation (1)
is that it assumes that a fixed mass fraction of molecu-
lar hydrogen is available/eligible for star formation. It
has been known for a while now that star formation
in molecular clouds occurs preferentially in region of
high gas density (n & 104 cm−3, see e.g. Lada 1992;
Gao & Solomon 2004; Lada et al. 2010). Hence, the SFR
should be strongly dependent on the density probability
distribution function (pdf) of the gas and not necessarily
on the total mass of molecular hydrogen alone.
The density pdf can be expected to depend on details

of gas thermodynamics or potential feedback mechanisms
(e.g., Wada & Norman 2001; Robertson & Kravtsov
2008), even in a picture in which the turbulence in the
ISM is mainly driven by large scale gravitational mo-
tions (e.g., Wada & Norman 2001; Tasker & Tan 2009).
Hence, if the SFR is in fact regulated by the amount of
high density gas (and not by H2), we can expect to see
differences in the SFR on ∼ kpc patches as function of Z
and UMW, even for the same star formation prescription
on small scales.
But even if the density pdfs were not significantly

changing with Z and UMW, the amount of H2 should.
For instance, the total amount of H2 in the simulated
volume changes by a factor ∼ 2−3 when metallicities and
radiation fields are varied in the range Z/Z⊙ = 0.1 − 1
and UMW = 0.1−100. This change in the H2 mass alone
should induce a galaxy-by-galaxy scatter on the order of
∼ 0.2 dex. A study of the scatter of the ΣSFR − ΣH2
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relation as function of scale and in regions with different
metallicities and UV radiation fields may thus give us,
at least in principle, a means to test this picture.

5. CONCLUSIONS

5.1. The scatter in the ΣSFR − ΣH2
relation

Our simulations identify and quantify two important
sources of scatter. The first is related to the scatter in the
H2 density at fixed gas density, the second arises due to
the use of SFR that are time-averaged over tens of Myr.
The former source of scatter is relatively independent of
spatial scale and is smaller (at least on the considered
scales 100 pc - 1 kpc) than the scatter due to SFR time
averaging. The latter increases if one goes to smaller
scales. Our simulations predict a typical scatter of the
order of ∼ 0.4− 0.6 dex in log10SFR on ∼ 100 pc scales.
Intrinsic scatter that is generated on a ∼ 100 pc scale
is expected to scale approximately as ∝ scale−0.5. We
note that our simulations provide only a lower limit on
the expected scatter as function of scale, because some
sources of scatter (e.g., the velocity dispersion of clusters
and their member stars) are not represented realistically
(or at all) in our numerical modeling.
A precise observational determination of the scatter-

scale relation, possibly even as a function of ISM environ-
ment, and the comparison with theoretical predictions,
such as the one presented in this paper, may thus help
to identify the physical processes responsible for creating
the scatter. Consequently, we argue that the scale de-
pendence of the scatter in the ΣSFR−ΣH2

relation could
become an important diagnostic tool in determining the
underlying connection between star formation and H2

density.

5.2. The environmental variation of the ΣSFR − ΣH2

relation

We have shown that even if the star formation rate
is tightly coupled to the H2 density on small scales (see
equation 1), the ΣSFR−ΣH2

relation can vary systemat-
ically with metallicity and interstellar radiation field in
the studied surface density range 10 < ΣH2

/M⊙pc
−2 <

100, when averaged on ∼ kpc scales.
In particular, the super linear slope of the ΣSFR−ΣH2

relation depends on the actual H2 density distribution
and on the existence of a non-linear scaling between SFR
and H2 density. The underlying reason for a slope steeper
than unity is that the peak of the H2 density distribution
changes systematically with large scale surface density.
At larger ∼ kpc averaged surface densities more of the

molecular gas sits at higher densities, which, due to the
non-linear scaling between SFR and density, leads to the
super linear steepening of the ΣSFR − ΣH2

relation.
Similarly, the systematic change in the slope with

metallicity of the ISM and the interstellar radiation field
is a reflection of the change in the H2 density distribution.
For example, in a low metallicity and/or strong radiation
field environment the HI to H2 transition takes places at
significantly higher densities and, consequently, a larger
fraction of the H2 mass contributes super-linearly to the
SFR. In addition, this implies more star formation at a
given H2 surface density and hence changes the intercept
of the ΣSFR − ΣH2

relation.
The scatter in the ΣSFR − ΣH2

relation also shows a
systematic trend with Z and UMW. The precise value
of the scatter and the amount it changes with Z and
UMW depends on (i) the assumed density threshold, nc,
above which the SFR scales super-linearly with density,
and (ii) amount of time over which observed SFR are
time-averaged. The scatter varies between ∼ 0.05 dex
(Z/Z⊙ = 1, UMW = 0.1) and ∼ 0.12 dex (Z/Z⊙ = 0.1,
UMW = 100) if nc = 50 cm−3 and SFRs are measured
instantaneously. The trend with Z and UMW is mainly
caused by changes in the H2 and total hydrogen density
distributions. On the other hand, if nc is large (& 104

cm−3) and the scatter is generated by the time averaging,
then the scatter changes only weakly with Z and UMW

(∼ 0.09 dex vs. ∼ 0.13 dex).
We note that in order to observe a significant change in

the ΣSFR−ΣH2
relation metallicities ≤ 0.3Z⊙ and inter-

stellar UV fields UMW ≥ 10 are required. Star forming
galaxies at high redshifts should therefore be the natural
candidates to test our predictions.
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APPENDIX

RESOLUTION STUDY

In order to test for possible resolution effects we have rerun one of our simulations (Z = 1 and UMW = 1) at two
times better (32 pc) and also two times worse (125 pc) spatial resolution. We show in Fig. A1 the scale dependence
of the scatter in the ΣSFR −ΣH2

relation for the 3 different resolutions (32, 65, 125 pc). As in Fig. 4, we present both
the scatter (i) due to SFR time averaging (using a high nc) and (ii) due to the non-linear scaling between SFRs and
H2 density (using instantaneous SFR). We find that the amount of scatter as function of scale is similar in each of the
3 simulations and that there is no apparent significant systematic trend with resolution.
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