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A SIMULATIVE APPROACH TO ELECTRON
CONDUCTION IN THICK-FILM RESISTORS
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A simulative approach to the calculation of electrical transport in thick-film resistors is presented,
in which electrons are considered to hop from and to metallic grains and localized states in the glass,
For concentrations of metallic grains sufficiently low and of localized states sufficiently high, a
maximum in conductivity as a function of temperature is obtained due to a balance between the
tendency of temperature to favour hopping and to oppose an ordered response to an external force,

1. INTRODUCTION

The technological importance of thick films needs not be emphasized here. They present,
however, some interesting problems also from the point of view of basic physics, related
in particular to their electrical transport properties, which are not yet totally understood.!
An important example is the maximum shown by the conductivity as a function of
temperature, indicated in Figure 1, which is a general property of most thick-film
resistors (TFR), but still waits for a definite, convincing, explanation,

The complexity of the morphological nature of TFRs is such that it is difficult to
formulate adequate theoretical models, and when such models are someway obtained,
they are never simple enough to yield exact analytical solutions for their transport
properties; analytical approximations are usually necessary as to make any result obtained
questionable,

For these reasons a project has been undertaken of computer simulation of TFRs
which aims at formulating models which are simple enough for their computer simulation
and obtaning, by means of Monte Carlo calculations, the transport properties predicted
by the model without any further approximations, besides those inherent in the model
itself, The complexity of the model may eventually be increased, and further details of
physical thick films may be introduced into it without particular difficulties.

2. THE MODEL

In this first simulative approach to the problem only the essential features of TFRs are
introduced into the model: non-overlapping metal spheres (grains) are randomly
embedded in a glassy matrix which contains localized electron states randomly
distributed in space R and energy E (E; <E < E,) with uniform distributions, as shown
in Figure 2.

Electrons may jump from localized states or grains to other localized states or grains.
When an external voltage is applied, jumps along the direction of the electric force will be
favoured, thus producing a net current. However, if we try to introduce an external
voltage in the simulation, we have to solve the difficult problem of the field distribution
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FIGURE 1 Conductivity of two thick-film resistors as a function of temperature, ® Ruthenium-
pyrochlore-based resistor; 1,0, -based resistor.

determined by the presence of the conductive grains. We shall instead proceed to the
analysis of electron diffusion in the absence of applied fields and shall relate it to the
mobility 4 by means of the appropriate Einstein relation.

The probability per unit time for an electron in a localized state at _ﬁi with energy E;
to jump to a localized state in -ﬁf with energy E; has been taken? to be equal to

vo e 2Rif (1 — £ (Ey) E; <E;
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FIGURE 2  Model thick-film resistor. The basic cube generated at random is repeated periodically to
simulate an infinite “homogeneous” system,
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where f(E) is the Fermi distribution function, Ry is the distance between the states, a is
the coefficient of exponential decay of the localized states, v, is some constant which
depends on properties of the material, K and T are the Boltzmann constant and the
absolute temperature, respectively.

The analogous jump rate from a localized state to a metallic grain is obtained by
assuming the above expression in Eq. (1) for a single final state inside the grain and
integrating over all possible states in the grain. In the case of a jump from a grain to a
localized state, we have to perform an average over all possible initial states in the grain
and finally, for a grain to grain jump, both the average over the initial states and the sum
over the final states must be performed. When grains are involved, the distances are taken
from their borders.

For an electron in a localized state or in a grain the total probability 7 (i) per unit
time of leaving its position, i, is given by the sum of the probabilities of jumping to any
other localized state or grain:

@) = 2 P60 @

3. EINSTEIN RELATION

In order to derive the Einstein relation for the physical system under investigation, let us
consider the case of a piece of material with an applied electric field F in open circuit
conditions, when drift and diffusion currents cancel each other:

on
n F=D —

(x) 3 3
where n(x) is the carrier density, a function of the coordinate x along the direction F, and
D is the diffusion constant: to obtain n(x) we have to sum the distribution function f
over all possible localized states and all states in metallic grains:

E

) =8 [ dRB)AE+ 5 [ " NE) (E) dE 4
El EC

where 8 and 8 are the volume concentrations of glass and metal in the TFR;d and N(E)
are the density of states per unit volume and unit energy in the glass and in the metal, and
E. is the bottom of the conduction band in the metal. The x dependence of n comes
from E,, E, and E. which follow the potential energy of the thick film which varies as
F x, while the Fermi level Ep is constant. From Eq. (4) we may calculate an/dx which,
when inserted in Eq. (3) yields the Einstein relation:
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where the free electron model is assumed for the metal, B = 1/(27% )(2m/t2)*? and Fy(y)
is the Fermi-Dirac integral.
When only metal is present Eq. (6) reduces to the well known® result

E E
cr o))

When, on the contrary, only localized states are present, Eq. (6) yields

1 1
TESEPRTST ~ S EIRT
C =
E2 — El + e(El — Ep)/KT +1 (8)
KT &, — ER/KT 1

Figure 3 shows the coefficients C of the Einstein relation for the physical parameters used
in the present calculations (Section 5). The continuos curve indicates the classical
Einstein relation u = eD/KT or C = 1, valid for classical statistics (nondegenerate semi-
conductors). For metals (broken line) at low temperatures, T must be substituted by the
Fermi temperature Tg so that C becomes proportional to T, while at higher temperatures
the Einstein relation tends to the classical results. In the case of only localized states
(dotted line) the high-temperature limit is reached already when KT is larger than the
energy spread E,-E; but this limit corresponds to C = 1/2 since the density of states is
assumed constant,

When as in our case, both metal and localized states are present (dot-dashed line), the
resulting C is intermediate between the two cases seen above,
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FIGURE 3 Einstein-relation coefficient C defined by Eq, (4) for the case of classical statistics
(continuous line), metal (broken line, Eq. (7)), only localized states (dotted line, Eq. (8)), and the
mixed case of TFR (dot-dashed line, Eq. (6)). The physical parameters are those indicated in Section 5.
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4. THE MONTE CARLO PROCEDURE

4.1 Generation of thick films.

A cubic piece of material is “generated” at the beginning of the simulation, whose block
diagram is shown in Figure 4. Some input parameters must be given: the side L of the
cube, the density d of localized states, the relative volume &5 of metal in the thick film,
the maximum and minimum radii r; and r, for the grains, the maximum and minimum
energy for the localized states E, and E,, and the Fermi level Er of the metal.

4.2 Transport.

A number of electrons are generated at the beginning at random in localized states or in
metallic states according to the probability f(E) of any metallic or localized state to be
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FIGURE 4 Block diagram of the computer simulation for TFR conductivity (see text).
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occupied. For each of them successive jumps are generated according to the probabilities
of jump discussed in Section 2. If r is a random number equally distributed between O
and 1, the time of permanence in the state i is taken to be equal to*

8t, =—7() Inr )

The state of arrival is obtained by means of another random number which chooses
among all possible final states according to their relative probabilities described in Section
2. The procedure is similar to what is used for high-field transport Monte Carlo simula-
tions in semiconductors.*

In order to simulate an infinite, macroscopically homogeneous, system the cube is
repeated periodically. The simulation is performed independently for all electrons and
their displacement (x;, X,, X3) from the initial position os recorded at fixed time intervals
At up to a total time T. From the simulation < x{ > shows a linear dependence upon
time, t, as predicted by the diffusion theory, and the diffusion constant along a direction
x; is then obtained by means of the equation®

1.4

D=3 g <xt> (10)

The diffusion constant for this simulation is obtained by averaging over the three
directions. The whole process is repeated several times with a new generation of a thick
film each time in order to avoid the dependence upon the particular thick film generated,
and the statistical uncertainty is obtained as the variance of the various results found.
From D, the mobility is obtained by applying the Einstein relation discussed above. Since
the electrons, at the beginning, are generated according to their distribution, including the
deep states in the Fermi sea of grains, the number of carriers to be used in the
conductivity is constant, equal to the total number of electrons, so that the mobility
obtained is proportional to the conductivity.

5. RESULTS AND DISCUSSION

Figure 5 shows the results obtained for a TFR characterized by the following physical
parameters E; = Ep~- 300 K, E, = Eg+ 300 K, Ep = 30000 K, d = 2.3 x 10%®/cm?,
8,=18x 1072, L=136A,1; =5A&,1, =20 &,y =1 x 10'2:

For comparison Figure 6 shows the result obtained with only localized states with the
same density and energy distribution as in Figure 5.

In all cases we have a diffusion coefficient rising with temperature T since a higher T
increases the jumping probabilities. When only localized states are present (but Ey is kept
constant), the factor C levels off at temperatures higher than the spread of energy levels;
at the same temperatures D too tends to be independent of temperature. The resulting
mobility (and conductivity) decreases with temperature because of the factor T™ in the
classical Einstein relation. This fact reflects the tendency of temperature to destroy an
ordered response to an applied external force: when jumps are highly probable the
influence of an external field which favours jumps in a given direction is less effective.

When metal grains are added many electrons lie deep in the Fermi sea, and the effect
of temperature rising is sensible up to higher values of T so that the conductivity keeps
increasing with T unless the density of localized states in the glass is sufficiently high and
the metal concentration sufficiently low, in which case the falling of u(T) due to the
localized states is preserved, even though made weaker, as shown in Figure 5. As a by-
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FIGURE 5  Conductivity of a model TFR obtained by means of the simulation with the physical
parameters indicated in the text.
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FIGURE 6 Conductivity obtained by means of the simulation of a variable-range hopping system
corresponding to the case of Figure 5 without metallic grains.
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product of the simulation it was possible to confirm some percolative character of the
conductivity® indicated by privileged paths followed by the simulated electrons.

The results discussed above need to be confirmed by more realistic models, more
accurate computations (which require very large computer times) and eventually it will
be possible to compare them with experimental results, when enough information is avail-
able about the actual physical parameters which characterize real thick films.

Our preliminary results seem to indicate, however, that (i) a simulative approach is
useful to free the theory of electrical properties of TFRs from undesirable analytical
approximations, and (ii) a simple model of TFR with only metallic grains and localized
states in the glass may account, under certain conditions, for the maximum of conduc-
tivity without having to make use of more sophisticated properties of TFRs.
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