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Deconfined SU(2) phase with a massive vector boson triplet
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We introduce a model of SU(2) and U(1) vector fields with a local U(2) symmetry. Its action
can be obtained in the London limit of a gauge invariant regularization involving two scalar fields.
Evidence from lattice simulations of the model supports a (zero temperature) SU(2) deconfining
phase transition through breaking of the SU(2) center symmetry, and a massive vector boson triplet
is found in the deconfined phase.

PACS numbers: 11.15.Ha, 12.15.-y, 12.60.Cn, 12.60.-i, 14.80.Bn

I. INTRODUCTION

Euclidean field theory notation is used throughout this
paper. The action of the electroweak gauge part of the
standard model reads

S =

∫

d4xLew , (1)

Lew = −1

4
F em
µν F

em
µν − 1

2
TrF bµνF

b
µν , (2)

F em
µν = ∂µaν − ∂νaµ , (3)

F bµν = ∂µBν − ∂νBµ + igb [Bµ, Bν ] , (4)

where a′µ are U(1) and Bµ are SU(2) gauge fields.
Typical textbook introductions of the standard model,

e.g. [1], emphasize at this point that the theory con-
tains four massless gauge bosons and introduce the Higgs
mechanism so that one obtains a massive vector bo-
son triplet and only one gauge boson, the photon, stays
massless. Such presentations reflect that the introduc-
tion of the Higgs particle in electroweak interactions
[2] preceded our non-perturbative understanding of non-
Abelian gauge theories.
In fact, massless gluons are not in the physical spec-

trum of (1). The self interaction due to the commutator
(4) generates dynamically a non-perturbative mass gap,
and the SU(2) spectrum consists of massive glueballs.
The lightest glueball can be used to set a mass scale.
Choosing for it, e.g., 80 GeV and coupling fermions is
perfectly admissible. This does not constitute an ansatz
for an electroweak theory by two reasons: The SU(2)
glueball spectrum is not what is wanted (e.g., masses of
spin 0 and 2 states are lower than for spin 1 [3]) and
fermions would be confined into boundstates, which is
not the case. Coupling a Higgs field causes a deconfining
phase transition, so that fermions are liberated, a pho-
ton stays massless and glueballs break up into elementary
massive vector bosons. Such a confinement-Higgs transi-
tion has indeed been observed in pioneering lattice gauge
theory (LGT) investigations [4]. The present paper in-
troduces a different model for which a zero-temperature
deconfined phase breaks the Z2 center symmetry of SU(2)
and exhibits a massive vector boson triplet.
The motivation for the action defined in the next sec-

tion comes from properties of the U(1) Polyakov loop.
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FIG. 1: Scatter plot for U(1) Polyakov loops on a 124 lattice
at βa = 0.9 in the symmetric phase (center) and at βa = 1.1
in the broken phase (ring).

U(1) LGT confines fermions in the strong coupling limit
of its lattice regularization [5]. At weaker coupling it un-
dergoes a transition into the Coulomb phase as has been
rigorously proven [6]. In the Coulomb phase the effec-
tive potential of the U(1) Polyakov loop Pa assumes the
Mexican hat shape that is also characteristic for a com-
plex Higgs field in the broken phase. This is illustrated in
Fig. 1 by scatter plots of Polyakov loops in the symmetric
and in the broken phase. From the ring-like distribution
in the broken phase the similarity with the behavior of a
Higgs field is evident (details of the simulations for the
figure are given in section III).

We introduce a contribution to the action that is the
alternating product of SU(2) and U(1) gauge matrices
around a plaquette. It unifies SU(2) and U(1) gauge
transformations into a local U(2) symmetry, which we
take as the starting point of our presentation in sec-
tion II. A gauge invariant regularization is obtained by
coupling two scalar fields [7] and leads to our model by
freezing these fields up to their gauge transformations,
here called London [8] limit. The scalar fields can then
be absorbed by extended gauge transformations, which
were introduced and discussed in [9, 10]. Some techni-
cal details of section II encountered in the investigation of
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the classical continuum limit are relegated to appendixes.
In section III we investigate the quantum field theory

numerically in the lattice regularization. Evidence for a
SU(2) deconfining phase transition, first observed in [9],
and results for the particle spectrum are presented. A
massless photon is found in both phases. Noisy correla-
tions (as usual) indicate massive SU(2) glueballs, which
appear to jump to unphysically high mass values in the
deconfined phase. A beautiful strong signal for correla-
tion functions of a massive vector boson triplet is seen
in the deconfined phase, while it does not exist on the
confined side.
Summary, outlook and conclusions follow in the final

section IV.

II. ACTION AND GAUGE
TRANSFORMATIONS

Introducing gauge fields is often motivated by promot-
ing a global symmetry of matter fields to a local one. Let
us assume a global U(2) symmetry:

ψ → ψ ′ = Gψ with G = G1G2 , (5)

G1 ∈ U(1) and G2 ∈ SU(2) .

The ψγµ∂µψ part of the free fermion Lagrangian breaks
(5) as a local symmetry. This is overcome by coupling to
gauge fields, whose transformation behavior cancels the
unwanted contributions out. In the lattice regularization
the relevant coupling reads

a3Kµ ψ(na)Uµ(na)Vµ(na)ψ(na+ µ̂a) , (6)

where n = (n1, n2, n3, n4) is a vector of integers, µ̂ is the
unit vector in µ direction, a the lattice spacing (x = na),

Uµ = eigaaAµ ∈ U(1) and Vµ = eigbaBµ ∈ SU(2) . (7)

Here ga and gb are introduced as U(1) and SU(2) coupling
constants. The precise definition of the fermions (see
for instance [11, 12]) in Eq. (6) is accomplished by Kµ

and irrelevant in our context as we discuss only their
gauge transformations. The classical continuum limit is
for a → 0 obtained from a4 contributions, whose sum
becomes an integration over space.
In the lattice formulation it is obvious that the local

gauge transformations

ψ(na) → G(na)ψ(na) = G1(na)G2(na)ψ(na) (8)

will be absorbed by imposing the transformations

Uµ(na) → G1(na)Uµ(na)G
−1
1 (na+ µ̂a) , (9)

Vµ(na) → G2(na)Vµ(na)G
−1
2 (na+ µ̂a) , (10)

on the vector fields, provided that their contributions to
the action are gauge invariant. This is (for instance)
fulfilled for the Wilson action

Sgauge =
βa
2

∑

p

ReTrUp +
βb
2

∑

p

Tr Vp (11)

where the sums are over all plaquettes and Up, Vp are
oriented products of gauge matrices around the plaquette
loop. E.g., for a Vp plaquette in the µν, µ 6= ν plane:

Vµν(x) = Tr
[

Vµ(x)Vν (x+ µ̂a)V †
µ (x+ ν̂a)V †

ν (x)
]

.

As it turns out to be convenient, we represent here and
in the following U(1) phase factors by diagonal 2 × 2
matrices with aµ (1) and Aµ (7) related by

Aµ =
1

2
τ0 aµ , (12)

where τ0 is the 2 × 2 unit matrix. The electromagnetic
contribution to the Lagrangian (1) reads then

La = − 1

2
TrF aµνF

a
µν , F aµν = ∂µAν − ∂νAµ . (13)

The equations

βa =
1

g2a
and βb =

4

g2b
. (14)

relate βa and βb of (11) to the couplings ga and gb of (7).
More lattice actions that give the classical continuum
limit (1) are discussed in [13].
There is an asymmetry in the way the gauge transfor-

mations work: A transformation of either the U(1) or the
SU(2) matrices implies the corresponding transformation
for the fermion field, while there is no such effect on the
other gauge field. Another remarkable [14] feature of the
action (11) is that it is additive and not multiplicative
in the U(1) and SU(2) fields. Changing also the fermion
terms (6) to additive

a3Kµ ψ(na)Uµ(na)ψ(na+ µ̂a) (15)

+ a3Kµ ψ(na)Vµ(na)ψ(na+ µ̂a) , (16)

the a4 contributions to the classical a → 0 limit re-
main unchanged, while the gauge transformations be-
come symmetrical in all fields, because Eq. (9) and (10)
have to be replaced by local U(2) transformations

Uµ(na) → G(na)Uµ(na)G
−1(na+ µ̂a) , (17)

Vµ(na) → G(na)Vµ(na)G
−1(na+ µ̂a) , (18)

which we call extended gauge transformations while re-
serving the notation gauge transformations for their con-
ventional version.
The gauge part (11) of the action is invariant under

local U(2) transformations. After a generic transforma-
tion former U(1) and SU(2) matrices will both be in U(2)
and their identification as U(1) or SU(2) has become con-
verted into constraints on the gauge manifold. The spe-
cial gauge in which they are actually in U(1) and SU(2),
i.e. Eq. (7) holds, will be called diagonal gauge. In this
gauge the U(1) part is not only diagonal but proportional
to the unit matrix. With reference to the existence of this
gauge we keep the U(1) and SU(2) matrix identifications.
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Requiring invariance only under extended gauge trans-
formations (17) and (18) allows for new additions to the
action. Numerically we investigate

Sadd =
∑

µν

Sadd
µν , Sadd

µν = (19)

λ

2
ReTr

[

Uµ(x)Vν (x+ µ̂a)U †
µ(x + ν̂a)V †

ν (x)
]

. (20)

A gauge invariant regularization is [7]

Ss =
∑

x

{

∑

µν

Ssµν + κTr
[

(

Φ†Φ− τ0
)2
]

}

, (21)

Ssµν =
λs

4
ReTr {Uµ(x)U †

µ(x + ν̂a) (22)

[Φ†(x+ µ̂a)Vν(x+ µ̂a)Φ(x+ µ̂a+ ν̂a)]

[Φ†(x)Vν (x)Φ(x + ν̂a)]†}

where Φ is a 2×2 matrix scalar field that is charged with
respect to U(1) and SU(2). Its gauge transformations
are

Φ → e−iα gΦ , (23)

where g ∈ SU(2), eiα ∈ U(1). In the London [8] limit
κ→ ∞ this action is equivalent to (19), because Φ takes
on it vacuum value, which is a pure gauge

Φ = e−iα g . (24)

Fixing the gauge to Φ = τ0 yields (19) and on finite lat-
tices properties at sufficiently large κ values are expected
to be practically identical.
It is only in the limit κ → ∞ that the coupling con-

stant λs together with the dimensions of the scalar fields
becomes the dimensionless coupling λ of (19) (recall that
the dimensionless lattice field Φ is related to the physical
scalar field Φphys by Φ = aΦphys [12]). This is opposite
to what happens in the SU(2) Higgs model where the
interaction between scalar field and SU(2) field, as for
instance given in [15], is proportional to

λsh
∑

x

4
∑

µ=1

Tr
(

φ†x+µ̂a Vµ(x)φx

)

, (25)

with φ = ρ g, ρ > 0, g ∈ SU(2). Here λsh is dimensionless,
and fixing the gauge in the London limit to φ = τ0 leads
to the gauge symmetry breaking contribution

λh
∑

x

4
∑

µ=1

Tr Vµ(x) , (26)

where λh acquires the dimension of the φ†φ scalar fields.
The extended gauge transformations (17) and (18) re-

store the transformation (23) without using scalar fields
by absorbing the exp(−iα) phase factor into the Vµ and

the SU(2) transformation g into the Uµ field. This re-
quires the action (19), or similar, and is not possible in
the London limit (26) of the Higgs model.
Before investigating the quantum field theory (19) nu-

merically, we consider the classical continuum limits of
(19) and (21).

A. Classical continuum limit

The classical Lagrangian is expected to be the effective
theory at energy scales much larger than the masses of
the model. In the limit a → 0 the a4 contributions of
(20) give

Ladd = −λ
4
Tr
(

F add
µν F add

µν

)

, (27)

F add
µν = gb∂µBν − ga∂νAµ + i gagb [Aµ, Bν ] , (28)

where the commutator reflects that Bµ and Aν will in
general not commutate unless we are in the diagonal
gauge, defined in-between Eq. (18) and (19).
Let us translate the extended gauge transformations

(17) and (18) into continuum notation. Consider the
gauge-covariant derivative

Dem
µ = ∂µ + igaaµ (29)

of an electromagnetic field aµ(x) on a complex fermion
field ψ(x). With the gauge transformations

ψ → ψ′ = eiα(x) ψ , (30)

aµ(x) → a′µ = aµ − i

ga
∂µα(x) (31)

one finds

Dem
µ ψ → D

′em
µ ψ′ = eiα(x)Dem

µ ψ , (32)

so that the Lagrangian

Lem
ψ = ψ

(

iγµD
em
µ −m

)

ψ − 1

4
F em
µν F

em
µν (33)

is gauge invariant, where

F em
µν =

1

iga

[

Dem
µ , Dem

ν

]

. (34)

is the field tensor.
Assume now that ψ(x) is a complex doublet, which

transforms under local U(2) transformations

ψ → ψ′ = G(x)ψ , (35)

G(x) = exp

(

i

2

3
∑

i=0

τiαi(x)

)

. (36)

Here τ0 is as in (12) the 2 × 2 unit matrix and τi, i =
1, 2, 3 are the Pauli matrices. We still can couple ψ in an
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invariant way to an electromagnetic field. We define the
gauge covariant derivative by

Da
µ = ∂µ + igaAµ (37)

and the extended gauge transformations of Aµ by (com-
pare for instance Ref. [1] for usual SU(2) gauge transfor-
mations)

Aµ → A′
µ = GAµG

−1 +
i

ga
(∂µG)G

−1 (38)

which adds to the U(1) field the transformation of a null
SU(2) field and yields the desired result

Da
µψ → D

′a
µ ψ

′ = GDa
µψ . (39)

The field tensor defined by

F aµν =
1

iga

[

Da
µ, D

a
ν

]

(40)

transforms as

F aµν → F
′a
µν = GF aµνG

−1 (41)

so that the Lagrangian

Laψ = ψ
(

iγµD
a
µ −m

)

ψ − 1

2
Tr
(

F aµνF
a
µν

)

(42)

stays invariant. The local U(2) transformations do not
destroy the fact that Aµ describes just an electromagnetic
field. Any Aµ(x) field is gauge equivalent to one in the
diagonal gauge for which Aµ is proportional to the unit

matrix. Consequently, F
′a
µν stays always diagonal and the

G matrices can be omitted in (41).
Similarly, we extend gauge transformations of a SU(2)

field Bµ(x) by a phase. The gauge covariant derivative is

Db
µ = ∂µ + igbBµ with Bµ =

1

2
~τ ·~bµ (43)

and the extended gauge transformations of Bµ are

Bµ → B′
µ = GBµG

−1 +
i

gb
(∂µG)G

−1 . (44)

Equations (39) to (42) carry simply over by replacing all
labels a by b.
An electroweak Lagrangian of the type

Labψ = −1

2
Tr
(

F aµνF
a
µν

)

− 1

2
Tr
(

F bµνF
b
µν

)

(45)

+ ψ
(

iγµD
a
µ −m

)

ψ + ψ
(

iγµD
b
µ −m

)

ψ

allows one to add (27). Under extended gauge transfor-
mations (38) for Aµ and (44) for Bµ, the F add

µν tensor
(28) transforms according to

F add
µν → F

′add
µν = GF add

µν G−1 , (46)

so that Ladd is invariant. The algebra for (46) is given in
appendix A.
As it is tedious and not very enlightening to calcu-

late the classical continuum limit of the action (21) with
scalar fields, we relegate its discussion to appendix B.
The essence is caught by a much simpler gauge invariant
classical interaction with two scalar fields, which reduces
also to (27) in the London limit, but has a lattice regu-
larization that differs from (21).
Let us introduce the scalar fields

φ1 = ρ eiα τ0, ρ > 0 and φ2 = σ g, σ > 0 (47)

with g ∈ SU(2). It is then easy algebra to show that the
field tensor

Ssµν = φ†2D
b
µD

b
ν φ2 + (Db

µ φ2)
†Db

ν φ2

− φ†1D
a
ν D

a
µ φ1 − (Da

ν φ1)
†Da

µ φ1 (48)

reduces by gauge fixing in the London limit to i F add
µν (28)

in the diagonal gauge, so that

Ls = −λ
4
Tr
[

(

Ssµν
)†
Ssµν

]

(49)

becomes a gauge invariant extension of (27).

III. NUMERICAL INVESTIGATION

Pure U(1) LGT with the Wilson action has at βa ≈
1.01 a phase transition from its confined into its Coulomb
phase. Presumably the transition is weakly first order as
first reported in [16]. We have calculated lattice aver-
ages of U(1) Polyakov loops Pa by Monte Carlo (MC)
simulations on a 124 lattice with periodic boundary con-
ditions with a statistics of 10,000 sweeps for equilibration
and 160,000 sweeps with measurements. Measurements
are plotted every 20 sweeps. Figure 1 compares scatter
plots at βa = 0.9 in the disordered confined phase and at
βa = 1.1 in the ordered Coulomb phase. In the unbro-
ken disordered phase the values scatter about zero, while
they form a ring in the broken ordered phase. As the
transition happens at zero temperature, this holds on a
symmetric lattice for Polyakov loops winding in any one
of the four directions through the torus (ordered starts
are used to avoid metastabilities of the MC algorithm).
In the following MC simulations with the plaquette

action

S = Sgauge + Sadd (50)

are performed, where Sgauge is defined by (11) and Sadd

by (19). We use lattice units a = 1 in this section.

A. Integration measure and Monte Carlo updating

Our MC procedure proposes the usual U(1) and SU(2)
changes. For the update of a U(1) matrix Uµ(n) we need
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the contribution to (50), which comes from the eight sta-
ples containing this matrix

U⊔,µ(n) =
βa
2

∑

ν 6=µ

[

Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n)

+ U †
ν (n+ µ̂− ν̂)U †

µ(n− ν̂)Uν(n− ν̂)
]

+
λ

2

∑

ν

[

Vν(n+ µ̂)U †
µ(n+ ν̂)V †

ν (a)

+ V †
ν (n+ µ̂− ν̂)U †

µ(n− ν̂)Vν(n− ν̂)
]

(51)

and correspondingly for the SU(2) matrix Vµ(n)

V⊔,µ(n) =
βb
2

∑

ν 6=µ

[

Vν(n+ µ̂)V †
µ (n+ ν̂)V †

ν (n)

+ V †
ν (n+ µ̂− ν̂)V †

µ (n− ν̂)Vν(n− ν̂)
]

+
λ

2

∑

ν

[

Uν(n+ µ̂)V †
µ (n+ ν̂)U †

ν (n)

+ U †
ν (n+ µ̂− ν̂)V †

µ (n− ν̂)Uν(n− ν̂)
]

. (52)

Updates are then performed with the Gibbs-Boltzmann
weights

dUµ(n) exp {ReTr [Uµ(n)U⊔,µ(n)] } , (53)

dVµ(n) exp {ReTr [Vµ(n)V⊔,µ(n)] } . (54)

where the dUµ(n) integration is from −π to +π over
the phase φµ(n) of the matrix Uµ(n) = exp[i φµ(n)] and
dVµ(n) is over the SU(2) Hurwitz [17] measure. This is
well suited and done with the biased Metropolis-heatbath
algorithm [18].
It is instructive to discuss (54) for the case in which

the U(1) matrices in (52) are aligned as it is approxi-
mately the case in the U(1) Coulomb phase. Then the
U(1) matrices cancel out, so that large values of λ fa-
vor Tr[Vµ(n)V

†
µ (n + ν̂)] = Tr[Vµ(n)V

†
µ (n − ν̂)] = 2 and,

hence, the SU(2) matrices are also aligned, Vµ(n) =
Vµ(n + ν̂) = Vµ(n − ν̂). SU(2) deconfinement (break-
ing of the Z2 center group) is achieved when this effect
(spoiled by U(1) fluctuations at finite λ) becomes strong
enough. Integrations with the measures (53) and (54)
do not include extended gauge transformations (17) and
(18). Updates stay within the diagonal gauge defined in
section II. Within the MC procedure only global SU(2)
transformations Vµ(n) → GVµ(n)G

−1 with the same G
for all SU(2) matrices remain.
The partition function of the MC calculation

Z{G(n)} =

∫

∏

n

4
∏

µ=1

dUµ(n) dVµ(n) e
S{Uµ(n),Vµ(n)}

(55)
is invariant under extended U(2) gauge transformation
(17) and (18). The Jacobian determinants of both
∏

n

∏

µ dUµ(n) and
∏

n

∏

µ dVµ(n) are one and the ac-

tion (50) is by construction invariant. U(1) and SU(2)

Wilson loops are invariant operators as the U(2) trans-
formations drop out in the trace. As usual [11, 12] their
physical interpretation can be derived by imagining a
coupling to static quarks. In addition to the normal Wil-
son loops traces of corresponding mixed products of U(1)
and SU(2) matrices are also invariant, but we make no
use of them in the following.
With normalization of the integration over the U(2)

measure to one, the identity

Z =

∫

∏

n

dG(n)Z{G(n)} = Z{G(n)} (56)

holds under extended gauge transformations. This inte-
gration can easily be added to the updates: At site n
all matrices on links emerging at n will be transformed
according to

Uµ(n) → G(n)Uµ(n) , Vµ(n) → G(n)Vµ(n) (57)

and all matrices on links ending at n according to

Uµ(n− µ̂) → Uµ(n− µ̂)G−1(n) ,

Vµ(n− µ̂) → Vµ(n− µ̂)G−1(n) . (58)

The acceptance rate of such updates is 100% as no change
in the value of the action is implied.
The unusual feature is that the integration measure

of the vector fields Uµ(n) and Vν(n) in the functional
integral (55) is not identical with the gauge measures
in (56). However, for gauge transformations of scalar
and fermion fields we are used to this and there appears
no strong argument against having a distinction of these
measures also for vector fields (calling them gauge fields
may have added to the expectation that functional and
gauge measures are the same).

B. Zero temperature SU(2) deconfining transition

We keep the U(1) coupling at βa = 1.1 and for the
SU(2) coupling the values βb = 2.3 is used. At λ = 0,
without interaction, βa is in the U(1) Coulomb phase and
βb in the SU(2) scaling region. Runs are performed on
124 lattices. Data points are based on a statistics of at
least 210 sweeps without measurements and subsequently
32× 210 sweeps with measurements. Error bars are cal-
culated with respect to the 32 blocks.
With increasing λ one finds a strong first order phase

transition, which is illustrated in Fig. 2 for the expec-
tation values of the various plaquette actions. From up
to down: 〈ReTrUp〉/2 for U(1), 〈TrVp〉/2 for SU(2) both
contributing to (11) and λ−1

∑

µν〈Sadd
µν 〉/16 for Mixed

(19), which drives the transition. Disordered starts are
marked by “d” and ordered starts by “o”. The values are
compiled in table I.
Creutz ratios [20] for the SU(2) and U(1) string ten-

sions are calculated from Wilson loops up to size 5 × 5.
Fig. 3 shows for βb = 2.3 the behavior of the square roots
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FIG. 2: Plaquette expectation values on a 124 lattice as func-
tion of λ with βa = 1.1 and βb = 2.3 (ordered o and disordered
d starts).

TABLE I: Plaquette expectation values of Fig. 2.

λ U(1) SU(2) Mixed

0.30 d 0.716576 (17) 0.601961 (29) 0.040142 (08)

0.40 d 0.717373 (17) 0.602630 (27) 0.054590 (08)

0.50 d 0.719702 (21) 0.604709 (21) 0.070845 (08)

0.60 d 0.721775 (19) 0.606398 (22) 0.087592 (10)

0.70 d 0.725563 (21) 0.609602 (29) 0.107814 (21)

0.76 d 0.836426 (08) 0.723714 (08) 0.641590 (14)

0.78 d 0.837722 (08) 0.725532 (09) 0.644591 (14)

0.80 d 0.839750 (07) 0.727838 (09) 0.650849 (10)

0.82 d 0.841460 (34) 0.729742 (11) 0.654499 (56)

0.90 d 0.850887 (07) 0.740039 (07) 0.687311 (11)

1.00 d 0.859572 (07) 0.750205 (08) 0.712059 (07)

0.30 o 0.718566 (19) 0.603975 (21) 0.042148 (06)

0.40 o 0.719359 (19) 0.603618 (25) 0.056604 (09)

0.50 o 0.794571 (11) 0.680028 (10) 0.461244 (39)

0.60 o 0.814685 (11) 0.700420 (07) 0.558826 (22)

0.70 o 0.829112 (08) 0.715794 (08) 0.615873 (14)

0.80 o 0.840897 (09) 0.728681 (09) 0.656371 (15)

0.90 o 0.850874 (06) 0.740036 (08) 0.687314 (07)

1.00 o 0.859553 (08) 0.750204 (08) 0.712054 (09)

of the string tensions in lattice units a = 1 as function of
λ. Error bars are calculated with respect to 32 jackknife
bins, following the scheme of [19]. While the jump in the
plaquette actions is similar for U(1) and SU(2), this is
not the case for the string tensions. For SU(2)

√
κ de-

creases at the transition by a factor 3.5, whereas the drop
of

√
κ for U(1) is just 25%. The

√
κ values are compiled

in table II.
The interpretation of Fig.3 is that the U(1) string ten-

sion signals the deconfined phase on both sides of the
transition, while the SU(2) string tension is character-
istic for the confined phase at small λ and for a zero-
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FIG. 3: SU(2) and U(1) string tensions from Creutz ratios
on a 124 lattice as function of λ with βa = 1.1 and βb = 2.3
(disordered d and ordered o starts).

TABLE II: String tension values
√

κ of Fig. 3.

λ U(1) d SU(2) d U(1) o SU(2) o

0.30 0.0873 (16) 0.356 (32) 0.0837 (13) 0.391 (25)

0.40 0.0868 (18) 0.393 (30) 0.0855 (16) 0.426 (22)

0.50 0.0835 (16) 0.418 (18) 0.07045 (64) 0.1166 (25)

0.60 0.0847 (17) 0.423 (20) 0.06694 (45) 0.1050 (13)

0.70 0.0858 (16) 0.378 (15) 0.06388 (40) 0.0982 (13)

0.76 0.06117 (35) 0.0940 (10) − −

0.78 0.11887 (21) 0.1007 (09) − −

0.80 0.11979 (21) 0.1027 (10) 0.06124 (33) 0.0913 (12)

0.82 0.0720 (12) 0.1051 (10) − −

0.90 0.05839 (32) 0.0886 (08) 0.05874 (33) 0.0869 (07)

1.00 0.05714 (28) 0.0860 (08) 0.05704 (27) 0.0847 (09)

temperature deconfined phase at large λ. The latter
point is supported by comparison with the behavior of
the U(1) string tension for βb = λ = 0 at the U(1) decon-
fining phase transition as shown in Fig. 4. The disconti-
nuity in the string tension is as in Fig. 3 for SU(2), only
that no strong metastabilities are observed for U(1).
Polyakov loop measurements support also the SU(2)

deconfining phase transition. Fig. 5 shows histograms
for SU(2) Polyakov loops Pb at λ = 0.4 in the confined
and at λ = 0.9 in the deconfined phase. In the con-
fined phase the values scatter symmetrically about zero,
whereas in the deconfined phase the Z2 center symmetry
is broken and the values scatter about a mean of 0.14458
(45). A very long run would produce a double peak at
λ = 0.9, but our run time was far too short to overcome
the free energy barrier between the two peaks. Scatter
plots of the U(1) Polyakov loops at the same couplings
give in good approximation the ring of Fig. 1 at λ = 0.4
and a more pronounced ring at λ = 0.9, both deconfined.
This interpretation is confirmed by evidence for a mass-
less photon on both sides and of interest because compact
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FIG. 5: Normalized SU(2) Polyakov loop histogram H at
βa = 1.1, βb = 2.3 with λ = 0.4 (left) and λ = 0.9 (right).

U(1) LGT allows in contrast to non-compact U(1) LGT
also for a confined phase.

C. Spectrum calculations

Mass spectrum calculations were performed on lattices
of size N3Nt, Nt > N in the range 4316 to 12364 with
a statistics of neq sweeps for reaching equilibrium and
32× neq sweeps with measurements. Data analysis with
respect to 32 bins follows again the jackknife scheme
of [19]. The neq values used for different lattice sizes
are contained in table III. All simulations reported in
this section are at βa = 1.1 and βb = 2.3.

First, we estimate the photon mass at λ = 0.4 in the
disordered SU(2) phase and in the ordered SU(2) phase
at λ = 0.9. Following [21] this is done via the lattice
dispersion relation (derived for a free field, for instance,

TABLE III: Lattice sizes, statistics and photon mass esti-
mates at λ = λ1 = 0.4 and λ = λ2 = 0.9.

Lattice nes m2
photon(λ1) m2

photon(λ2) 4 sin2(k1/2)

4316 211 −0.252 (20) −0.289 (21) 2

6324 213 −0.080 (11) −0.0728 (78) 1

8332 214 −0.0138 (18) −0.0248 (14) 0.585786

10348 214 −0.0100 (20) −0.0123 (11) 0.381966

12364 214 −0.0034 (12) −0.0061 (07) 0.267949
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 1
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(t
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FIG. 6: Correlation functions data and fits for the photon
mass estimates. The up-down order of the curves agrees with
that of the labeling. The upper in a pair of curves is always
at λ = 0.9 and the lower at λ = 0.4.

in [12])

m2
photon = E2

k1
− 4 sin2

(

k1
2

)

(59)

whereEk1 is the energy of the U(1) momentum eigenstate
(k1, 0, 0), k1 = 2π/N , of the plaquette trial operator in
the T+−

1 representation of the cubic group. Energies are
estimated from correlation functions c(t) of operators by
the usual two parameter (a1 and E) cosh fits

c(t) = a1

(

e−E t + e−E (Nt−t)
)

(60)

in a range t1 ≤ t ≤ t2, so that the goodness of fit in the
sense discussed for correlated data in [19] is acceptable.
Our Ek1 correlations functions at λ = 0.4 and λ = 0.9
are shown in Fig. 6. The correspondingm2

photon estimates
are compiled in table III. The last column of the table
gives the lowest non-zero lattice momentum squared.
While in [21] the photon mass estimates from simula-

tions on 4316 lattices were within statistical errors con-
sistent with zero, this is due to increased statistical accu-
racy no longer true, instead m2

photon comes out negative.

This holds not just for our action, but also for pure U(1)
LGT, where we obtained m2

photon = −0.2102 (17) on a

4316 lattice at βa = 1.1. Apparently we are dealing with
an infrared cutoff effect, which disappears with increasing
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FIG. 7: Glueball and vector boson mass estimates on a 4316
lattice (o ordered and d disordered SU(2) starts).

lattice size and becomes thus consistent with [22] where
m2

photon = 0 was again found within statistical errors for

pure U(1) LGT. So, we conclude that m2
photon → 0 for

N → ∞ holds also in our cases.
For an overview of the SU(2) glueball spectrum a 4316

lattice appears to be large enough, because glueball mass
values turn out to be high. Compared to the Ek1 corre-
lations, the signal from glueball correlation functions is
very noisy, strongest for the lowest lying zero momen-
tum A++

1 representation of the cubic group. In Fig. 7
we give for the A++

1 plaquette operator estimates m(1)
from correlations 0 ≤ t ≤ 1 and m(2) from 1 ≤ t ≤ 2. In
the disordered phase one has also signals for t = 3 which
tend to give somewhat lower values than m(2), but are
so noisy that they overlap within statistical errors with
m(2). In the ordered phase signals are even weaker, so
that the correlations at t = 2 include in most cases zero
within two error bars. We give therefore only the m(1)
values, which lie considerably higher than in the disor-
dered phase, with a hysteresis visible at the transition.
One may conjecture that there are no glueball states in an
eventual quantum continuum limit of the ordered phase.
Instead, as shown next, with vanishing SU(2) string ten-
sion the glueball spectrum appears to break up into mas-
sive vector bosons.
Within Higgs model simulations on the lattice trial op-

erators for the W mass are given by [23]

Wi,µ(x) = −iTr [τiWµ(x)] , (61)

where Wµ(x) is the gauge invariant link variable

Wµ(x) = g†(x+ µ̂a)Vµ(x) g(x) (62)

and the SU(2) matrix g(x) collects the angular variables
of a complex doublet scalar field. This is also a gauge
invariant operator for our action (21) with scalar fields.
Our simulations correspond to this action at very large
κ after fixing the gauge, so that (61) becomes

Vi,µ(x) = −iTr [τi Vµ(x)] . (63)

TABLE IV: Effective 0++ glueball masses for t = 1, 2 and
vector boson mass mW .

λ = 0.4 λ = 0.9

Lat m(1) m(2) m(1) m(2) mW

4316 2.144 (14) 1.551 (49) 3.471 (40) noise 0.4706 (65)

6324 2.0925 (46) 1.451 (23) 3.380 (21) 2.99 (32) 0.3385 (32)

8332 2.1175 (37) 1.509 (18) 3.396 (16) 2.70 (26) 0.2901 (13)

10348 2.1144 (38) 1.498 (13) 3.393 (12) 2.91 (24) 0.2729 (09)

12364 2.1173 (32) 1.509 (12) 3.400 (12) 2.83 (20) 0.2677 (09)
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FIG. 8: Vector boson correlation function on a 4316 lattice at
t = 1 (o ordered and d disordered SU(2) starts).

In the following we calculate vector boson masses from
correlations of this operator.

In contrast to the zero momentum correlations of our
glueball trial operators, those of Vi,µ turn out to be beau-
tifully strong in the ordered phase, while they are zero in
the disordered phase. For the 4316 lattice the hysteresis
of the t = 1 correlation is shown in Fig. 8. At large λ val-
ues (λ = 1.0 and λ = 1.2) domain walls appear to prevent
equilibration of disordered starts. Mass estimates in the
ordered phase from cosh fits (60) are found in the lower
right part of Fig. 7 (left of the transition mW masses are
infinite). As these masses rely on long range correlations
finite size corrections are substantial. For several lattice
sizes mW estimates at λ = 0.9 are collected in table IV,
where we also see that there are almost no finite size
effects for glueball masses.

The correlation function for the mW fit at λ = 0.9 on
our largest lattice is depicted in Fig. 9. The signal can
be followed up to more than 20 lattice spacings in the
Nt extension. While significant for small volumes, finite
size corrections decrease quickly for larger volumes. For
our N ≥ 8 lattices a fit of the form mW (N) = mW +
const/N3 works well and is depicted in Fig. 10. It yields
the infinite volume extrapolation mW = 0.2567 (10) with
Q = 0.22 goodness of fit.
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FIG. 10: Finite size extrapolation of the W mass.

IV. SUMMARY, OUTLOOK AND
CONCLUSIONS

We have introduced a model of SU(2) and U(1) vector
fields, which can be obtained from the gauge invariant
interaction (21) between a scalar matrix field and the
vector fields in the London limit (Φ†Φ)2 → τ0 (τ0 2 × 2
unit matrix), i.e., κ→ ∞ in Eq. (21). On a finite lattice
this interaction is for sufficiently large κ supposed to be
indistinguishable from the κ→ ∞ limit. MC simulations
of the quantum field theory on the lattice exhibits a phase
transition between a deconfined phase with a glueball
spectrum and a deconfined phase with a massive vector
boson triplet. A massless photon is found in the spectrum
of both phases.
Whether this quantum field theory just lives on the

lattice or has a quantum continuum limit remains to be
clarified. The question of its renormalizability requires
perturbative investigations, which are beyond the scope
of this paper. Due to the London limit the scalar field
becomes that of a non-linear σ model, which is usually

non-renormalizable. However, our situation is peculiar,
because the scalar field can be absorbed into extended
gauge transformations of the SU(2) and U(1) vector fields
(17), (18) and the theory we are interested in is the one
without scalar fields as first formulated in [9].
In itself the lattice properties are rather remarkable,

most of all the evidence from Fig. 8 to 10 for a massive
vector boson triplet in the deconfined, but not in the
confined, phase.

Acknowledgments

This work was in part supported by the DOE grant
DE-FG02-97ER41022 and by a Research Award of the
Humboldt Foundation. Part of the work was done at
Leipzig University and I am indebted to Wolfhard Janke
and his group for their kind hospitality. Further, I thank
Holger Perlt and Arwed Schiller for useful discussions.
Some of the computer programs used rely on collabora-
tions with Alexei Bazavov and benefited from programing
help by Hao Wu.

Appendix A: Invariance under Extended Gauge
Transformations.

Following [10] we show the invariance of (27) under ex-
tended gauge transformations. Expanding a calculation
of [1] slightly, we find

ga∂µA
′
ν − gb∂νB

′
µ = (A1)

∂µ[GgaAνG
−1 + i(∂νG)G

−1]

− ∂ν [GgbBµG
−1 + i(∂µG)G

−1] =

G(ga∂µAν − gb∂νBµ)G
−1 (A2)

+ [(∂µG)gaAν − (∂νG)gbBµ]G
−1

+ G[gaAν(∂µG
−1)− gbBµ(∂νG

−1)]

+ i [(∂νG)(∂µG
−1)− (∂µG)(∂νG

−1)]

Using (∂µG
−1)G+G−1(∂µG) = ∂µ(G

−1G) = 0, this can
be transformed to

ga∂µA
′
ν − gb∂νB

′
µ = (A3)

G (ga∂µAν − gb∂νBµ)G
−1

+ G
{[

G−1(∂µG), gaAν
]

−
[

G−1(∂νG), gbBµ
]}

G−1

− i G[(∂µG
−1)(∂νG)− (∂νG

−1)(∂µG)]G
−1 .

The commutator term transforms as

i gagb [B
′
µ, A

′
ν ] = (A4)

i gagb [(GBµG
−1 + (i/gb)(∂µG)G

−1),

(GAνG
−1 + (i/ga)(∂νG)G

−1)]
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= i gagbG[Bµ, Aν ]G
−1 (A5)

− G{[G−1(∂µG), gaAν ]− [G−1(∂νG), gbBµ]}G−1

+ i G[(∂µG
−1)(∂νG)− (∂νG

−1)(∂µG)]G
−1 .

Combining (A3) and (A5) yields (46).

Appendix B: Classical continuum limit of the action
with scalar fields.

We write the scalar matrix field of the action (21) as

Φ(x) = φ1(x)φ2(x) (B1)

with φ1 and φ2 defined by (47) and factor (21) into the
form

Ssµν =
λs

4
ReTr (S1µν) Tr (S2µν) + h.c.

+ κTr [(Φ†Φ− τ0)
2] . (B2)

As calculation of the classical continuum limit of this ac-
tion leads to tedious algebra, we rely on the algebraic
program FORM [24]. For this it is convenient to write
(B2) in a symmetric form with the position x at the cen-
ter of the plaquette:

S1µν = (B3)
[

φ†1

(

x− µ̂
a

a
− ν̂

a

2

)

Uµ

(

x− ν̂
a

2

)

φ1

(

x+ µ̂
a

2
− ν̂

a

2

)]

[

φ†1

(

x− µ̂
a

2
+ ν̂

a

2

)

Uµ

(

x+ ν̂
a

2

)

φ1

(

x+ µ̂
a

2
+ ν̂

a

2

)]†

,

S2µν = (B4)
[

φ†2

(

x+ µ̂
a

2
− ν̂

a

2

)

Vν

(

x+ µ̂
a

2

)

φ2

(

x+ µ̂
a

2
+ ν̂

a

2

)]

[

φ†2

(

x− µ̂
a

2
− ν̂

a

2

)

Vν

(

x− µ̂
a

2

)

φ2

(

x− µ̂
a

2
+ ν̂

a

2

)]†

.

We expand the scalar fields φi, i = 1, 2, to order a2. With
ǫ and η of order a:

φi(x+ ǫµ̂+ ην̂) = φi(x) + ǫ∂µφi(x) + η∂νφi(x)

+ ηǫ∂ν∂µφi(x) + . . . . (B5)

The gauge matrices defined by (7) have to be expanded
up to order a4 in the lattice spacing. For the gauge po-
tential the substitutions

Aµ (x+ ην̂) = Aµ(x) + η∂νAµ(x) , (B6)

Bν (x+ ǫµ̂) = Bν(x) + ǫ∂µBν(x) , (B7)

are done. These expansions generate more terms (the
computer does not care) than the analogue expansions of
(21), but avoid some complications in the identification
of covariant operators. We write now for i = 1, 2

Siµν =
(

φ†iφi

)2

+ a2 Siµν(2) + a4 Si(4) + . . . . (B8)

The traces of the order a and a3 terms of this expansion
are seen to vanish. The covariant contribution of

ReTr [S1µν(2)] Tr [S2µν(2)] (B9)

to (B2) comes from the anti-Hermitean terms

Tr [S2µν(2)] =
1

4
Tr
{

(

Db
ν φ2

)†
φ2
(

Db
µ φ2

)†
φ2

+
(

Db
ν φ2

)†
φ2 φ

†
2D

b
µ φ2 +

(

Db
µ φ2

)†
φ2
(

Db
ν φ2

)†
φ2

−
(

Db
µ φ2

)†
φ2 φ

†
2D

b
ν φ2 − φ†2D

b
ν φ2

(

Db
µ φ2

)†
φ2

−φ†2Db
ν φ2 φ

†
2D

b
µ φ2 + φ†2D

b
µ φ2

(

Db
ν φ2

)†
φ2

−φ†2Db
µ φ2 φ

†
2D

b
ν φ2 − 2φ†2 φ2

(

Db
ν φ2

)†
Db
µ φ2

−2φ†2 φ2
(

Db
µD

b
ν φ2

)†
φ2 + 2φ†2 φ2

(

Db
µ φ2

)†
Db
ν φ2

+2φ†2 φ2 φ
†
2D

b
µD

b
ν φ2

}

(B10)

and Tr [S1µν(2)], which is obtained by interchanging Aα
with Bα (Da

α with Db
α) and then the subscripts µ and ν.

In the London limit Tr [S1µν(2)] Tr [S2µν(2)] gives the
contribution ∼ Tr (∂νAµ ∂µBν) to the action (27). The
terms ∼ Tr (∂νAµ ∂νAµ) and ∼ Tr (∂µBν ∂µBν) of (27)

come from the a4 (φ†1 φ1)
2 S2µν(4) and a

4 S1µν(4) (φ
†
2 φ2)

2

contributions to (B2), whose calculation we found too te-
dious to pursue. For small oscillations about the expec-
tation value of the scalar fields

S1µν(4) = S1µν(2)
2 and S2µν(4) = S2µν(2)

2 (B11)

are good approximations, illustrating the typical gauge
invariant terms encountered.
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