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Abstract

Feynman’s path integrals in ordinary, p-adic and adelic quantum mechanics are consid-
ered. The corresponding probability amplitudes K(x

′′

, t
′′

;x′, t′) for two-dimensional systems
with quadratic Lagrangians are evaluated analytically and obtained expressions are gener-
alized to any finite-dimensional spaces. These general formulas are presented in the form
which is invariant under interchange of the number fields R ↔ Qp and Qp ↔ Qp′ , p 6= p′.
According to this invariance we have that adelic path integral is a fundamental object in
mathematical physics of quantum phenomena.

1 Introduction

To describe dynamics of a particle in classical mechanics, there are Hamiltonian and Lagrangian
formalisms which are equivalent. Quantum mechanics is usually related to quantization of a
classical Hamiltonian consisting of a particle in an effective field given by a potential.

Starting from the Hamiltonian there are two ways to treat quantum evolution of a physical
system: (i) the Heisenberg picture, where time dependence is directly related to the operator of
an observable A, i.e.

i~
dÂ

dt
= i~

∂Â

∂t
+ [Â, Ĥ], (1)

and (ii) the Schrödinger picture, where time evolution is governed by the Schrödinger equation

i~
∂Ψ(x, t)

∂t
= H(k̂, x)Ψ(x, t), k̂ = −i~

∂

∂x
. (2)

Both approaches are invented in the 1925-26 and shown to be equivalent versions of the same
theory called Quantum Mechanics.

Quantum mechanics related to the Lagrangian formalism started in the 1932 by Dirac’s
observation that the quantum state in a point q + dq at the time t + dt is connected with the
state in the point q at t by the transformation function exp

(
i L dt
~

)
, where L = L(q̇, q, t) is
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the classical Lagrangian. In the 1940’s, Feynman developed Dirac’s approach and shown that
dynamical evolution of the wave function Ψ(x, t) is

Ψ(x′′, t′′) =

∫
K(x′′, t′′;x′, t′)Ψ(x′, t′)dx′, (3)

where

K(x′′, t′′;x′, t′) =

∫ x′′,t′′

x′,t′
exp

(
2πi

h

∫ t′′

t′
L(q̇, q, t)dt

)
Dq, (4)

and
∫ t′′

t′
L(q̇, q, t) dt = S[q] is the action for a path q(t) connecting points x′ and x′′. The integral

in (4) is known as the Feynman path integral. In the Feynman definition [1], discretizing the
time t into equidistant subintervals, the path integral (4) is the limit of the corresponding
multiple integral of N variables qi = q(ti), (i = 1, 2, ..., N), when N → ∞. It is the primary
object of the Feynman’s path integral approach to quantum mechanics which is related to
the classical Lagrangian formalism. Feynman’s, Schrödinger’s and Heisenberg’s approaches to
ordinary quantum mechanics are equivalent, but their formalisms are not equally suitable in
some generalizations.

K(x′′, t′′;x′, t′) is the kernel of the corresponding unitary integral operator U(t′′, t′) acting as
follows:

Ψ(t′′) = U(t′′, t′)Ψ(t′). (5)

K(x′′, t′′;x′, t′) is also called the probability amplitude for a quantum particle to pass from a
point x′ at the time t′ to the other point x′′ at t′′. It is closely related to Green’s function and
the quantum-mechanical propagator.

Starting from (3) one can easily derive the following three general properties:
∫

K(x′′, t′′;x, t)K(x, t;x′, t′)dx = K(x′′, t′′;x′, t′), (6)

∫
K̄(x′′, t′′;x′, t′)K(y, t′′;x′, t′)dx′ = δ(x′′ − y), (7)

K(x′′, t′′;x′, t′′) = lim
t′→t′′

K(x′′, t′′;x′, t′) = δ(x′′ − x′), (8)

where integration is over all the configuration space.
For all its history, the path integral has been a subject of great interest in theoretical and

mathematical physics. It has became, not only in quantum mechanics (see, e.g. [2]) but also in
the entire quantum theory, one of its the most profound and suitable approaches to foundations
and elaborations. Feynman’s path integral construction is also a natural and very successful
instrument in formulation and investigation of p-adic [3] and adelic [4, 5] quantum mechanics.
Moreover there are no p-adic analogs of the differential equations (1) and (2).

Adelic quantum mechanics contains complex-valued functions of real and all p-adic argu-
ments in the adelic form. There is not the corresponding Schrödinger equation for p-adic dy-
namics, but Feynman’s path integral method is quite appropriate. Feynman’s path integral for
probability amplitude in p-adic quantum mechanics Kp(x

′′, t′′;x′, t′) [3], where Kp is complex-
valued and x′′, x′, t′′, t′ are p-adic variables, is a direct p-adic generalization of (4), i.e.

Kp(x
′′, t′′;x′, t′) =

∫ x′′,t′′

x′,t′
χp

(
−
1

h

∫ t′′

t′
L(q̇, q, t)dt

)
Dq, (9)
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where χp(a) = exp 2πi{a}p is p-adic additive character. The Planck constant h in (4) and (9) is

the same rational number. We consider p-adic valued integral
∫ t′′

t′
L(q̇, q, t)dt as the difference of

antiderivative (without pseudoconstants) of L(q̇, q, t) in final (t′′) and initial (t′) times. In the
case of time discretization we have Dq =

∏N
i=1 dq(ti), where dq(ti) is the p-adic additive Haar

measure. Thus, p-adic path integral is the limit of the multiple Haar integral when N → ∞.
To calculate (9) in this way one has to introduce some ordering in the time t ∈ Qp, and it is
successfully done in [6]. On previous investigations of p-adic path integrals one can see [7, 8, 9, 10]
and references therein. Some mathematical aspects of Feynman’s path integral on real space
are vastly considered, e.g. see [11, 12, 13]. Path integral on p-adic space with p-adic valued
probability amplitude was considered in [14].

Our main task here is an analytic evaluation of the p-adic (9) and the corresponding adelic
Feynman path integrals for the general case of Lagrangians L(q̇, q, t), which are quadratic poly-
nomials in q̇ and q, without making time discretization. In fact, we will use the general require-
ments (in particular, (6) and (7)) which any (ordinary, p-adic and adelic) path integral must
satisfy. In some parts of this evaluation, there is some similarity with Ref. [11]. Adelic path
integral may be viewed as an infinite product of the ordinary one and p-adic path integrals for
all primes p. Formal definition of adelic path integral, with some of its basic properties, will be
presented in Section 5.

Some of the main motivations to apply p-adic numbers and adeles in quantum physics are:
(i) the field of rational numbers Q, which contains all observational and experimental numer-
ical data, is the dense subfield not only in the field of real numbers R but also in the fields
of p-adic numbers Qp, (ii) there is well developed analysis (e.g. see [15]) with p-adic valued
and complex-valued functions over Qp which is suitable in modern mathematical physics, (iii)
general mathematical methods and fundamental physical laws should be invariant[16] under an
interchange of the number fields R and Qp, (iv) there is a quantum gravity uncertainty ∆x of dis-
tances around the Planck length ℓ0, ∆x ≥ ℓ0 =

√
~G/c3 ∼ 10−33cm , which restricts priority of

archimedean geometry based on real numbers and gives rise to employment of nonarchimedean
geometry related to p-adic numbers [16], and (v) it seems to be quite natural to extend path
integral on real spaces to adelic one by adding probability amplitudes over the paths on all
p-adic spaces.

Since 1987, there have been many publications (for a review, see, e.g. [15, 17, 18, 19] )
on possible applications of p-adic numbers and adeles in modern theoretical and mathematical
physics. The first successful employment of p-adic numbers was in string theory. In Volovich’s
article [20], a hypothesis on the existence of nonarchimedean geometry at the Planck scale
was proposed and p-adic string theory was initiated. Using p-adic Veneziano amplitude as the
Gel’fand-Graev [21] beta function, Freund and Witten obtained [22] an attractive adelic formula,
which states that the product of the standard crossing symmetric Veneziano amplitude and all
its p-adic counterparts equals a constant. Such approach gives a possibility to consider some
ordinary string amplitudes as an infinite product of their inverse p-adic analogs. Many aspects
of p-adic string theory have been of the significant interest.

For a systematic investigation of p-adic quantum dynamics, two kinds of p-adic quantum
mechanics have been formulated: with complex-valued and p-adic valued wave functions of p-
adic variables (for a review, see [3, 15] and [18], respectively). This paper is related to the first
kind of quantum mechanics, which can be presented as a triple

(L2(Qp),W,U(t)), (10)
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where L2(Qp) is the Hilbert space on Qp. W denotes the Weyl quantization procedure and U(t)
is the unitary representation of an evolution operator on L2(Qp). In our approach, U(t) is nat-
urally realized by the Feynman path integral method. In order to connect p-adic with standard
quantum mechanics, adelic quantum mechanics was formulated [4]. Within adelic quantum
mechanics a few basic physical systems [23, 24], including some minisuperspace cosmological
models [25], have been successfully considered. As a result of p-adic effects in the adelic ap-
proach, a space-time discreteness at the Planck scale is obtained. Adelic path integral plays a
central role and provides an extension of contributions from quantum trajectories over real space
to probability amplitudes over paths in all p-adic spaces. There have been also investigations
on application of p-adic numbers in the spin glasses, Brownian motion, stochastic processes,
information systems, hierarchy structures, genetic code, dynamics of proteins and some other
phenomena related to very complex dynamical systems (for a review see [15, 18, 26, 27, 19]).

2 p-Adic Numbers, Adeles and Their Functions

In this section we give a brief review of some basic properties of p-adic numbers, adeles, and
their functions, which provides a minimum of mathematical background for next sections.

There are physical and mathematical reasons to start with the field of rational numbers Q.
From physical point of view, numerical results of all experiments and observations are some
rational numbers, i.e. they belong to Q. From algebraic point of view, Q is the simplest number
field of characteristic 0. Recall that any 0 6= x ∈ Q can be presented as infinite expansions into
the two different forms:

x =

−∞∑

k=n

ak10
k, ak = 0, 1, · · · , 9, an 6= 0, (11)

which is the ordinary one to the base 10, and the other one to the base p (p is any prime number)

x =

+∞∑

k=m

bkp
k, bk = 0, 1, · · · , p− 1, bm 6= 0, (12)

where n and m are some integers which depend on x. The above representations (11) and
(12) exhibit the usual repetition of digits, however the expansions are in the mutually opposite
directions. The series (11) and (12) are convergent with respect to the metrics induced by
the usual absolute value | · |∞ and p-adic norm | · |p, respectively. Note that these valuations
exhaust all possible inequivalent non-trivial norms on Q. Performing completions, i.e. allowing
all possible realizations of digits, one obtains standard representation of real and p-adic numbers
in the form (11) and (12), respectively. Thus, the field of real numbers R and the fields of p-
adic numbers Qp exhaust all number fields which may be obtained by completion of Q, and
which contain Q as a dense subfield. Since p-adic norm of any term in (12) is |bkp

k|p = p−k if
bk 6= 0, geometry of p-adic numbers is the nonarchimedean one, i.e. strong triangle inequality
|x + y|p ≤ max(|x|p, |y|p) holds and |x|p = p−m. R and Qp have many distinct algebraic and
geometric properties.

There is no natural ordering on Qp. However one can introduce a linear order on Qp in the
following way: x < y if |x|p < |y|p, or if |x|p = |y|p then there exists such index r ≥ 0 that digits
satisfy xm = ym, xm+1 = ym+1, · · · , xm+r−1 = ym+r−1, xm+r < ym+r. Here, xk and yk are digits
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related to x and y in expansion (12). This ordering is very useful in time discretization and
calculation of p-adic functional integral as a limit of the N -multiple Haar integral when N → ∞.

There are mainly two kinds of analysis on Qp which are of interest for physics, and they are
based on two different mappings: Qp → Qp and Qp → C, where C is the field of ordinary complex
numbers. We use both of these analyses, in classical and quantum p-adic models, respectively.

Elementary p-adic valued functions and their derivatives are defined by the same series as in
the real case, but the regions of convergence of these series are determined by means of p-adic
norm. As a definite p-adic valued integral of an analytic function f(x) = f0 + f1x+ f2x

2 + · · ·
we take difference of the corresponding antiderivative in end points, i.e.

∫ b

a

f(x) =

∞∑

n=0

fn
n+ 1

(
bn+1 − an+1

)
.

Usual complex-valued functions of p-adic variable, which are employed in mathematical
physics, are: (i) an additive character χp(x) = exp 2πi{x}p, where {x}p is the fractional part
of x ∈ Qp, (ii) a multiplicative character πs(x) = |x|sp, where s ∈ C, and (iii) locally constant
functions with compact support, like Ω(|x|p), where

Ω(|x|p) =

{
1, |x|p ≤ 1,

0, |x|p > 1.
(13)

There is well defined Haar measure and integration. So, we have
∫

Qp

χp(ayx) dx = δp(ay) = |a|−1
p δp(y), a 6= 0, (14)

∫

Qp

χp(αx
2 + βx) dx = λp(α) |2α|

− 1

2

p χp

(
−
β2

4α

)
, α 6= 0, (15)

where δp(u) is the p-adic Dirac δ-function. The number-theoretic function λp(x) in (15) is a
map λp : Q

∗
p → C defined as follows [28]:

λp(x) =





1, m = 2j, p 6= 2,
√(

−1
p

)(
xm

p

)
, m = 2j + 1, p 6= 2,

(16)

λ2(x) =

{
exp [πi(1/4 + xm+1)], m = 2j,

exp [πi(1/4 + xm+1/2 + xm+2)], m = 2j + 1,
(17)

where x is presented in the form (12), j ∈ Z,
(
xm

p

)
is the Legendre symbol defined as

(
a

p

)
=

{
1, if a ≡ y2(mod p) ,
−1, if a 6≡ y2(mod p) ,

(18)

and Q∗
p = Qp \{0}. We will also take λp(0) = 1. It is often sufficient to use standard properties:

λp(a
2x) = λp(x), λp(x)λp(−x) = 1, λp

(
xy

x+ y

)
=
λp(x)λp(y)

λp(x+ y)
,
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λp(x)λp(y) = (x, y)p λp(xy)λp(1), |λp(x)|∞ = 1, a 6= 0, (19)

where (x, y)p is the Hilbert symbol. Recall that the Hilbert symbol (a, b)p , a, b ∈ Qp, is +1
or −1 if there exist such x, y, z ∈ Qp that equation a x2 + b y2 = z2 has or has not a nontrivial
solution, respectively.

Recall that the real analogs of (14) and (15) have the same form , i.e.

∫

Q∞

χ∞(ayx) dx = δ∞(ay) = |a|−1
∞ δ∞(y) , a 6= 0, (20)

∫

Q∞

χ∞(αx2 + βx) dx = λ∞(α) |2α|
− 1

2

∞ χ∞

(
−
β2

4α

)
, α 6= 0, (21)

where Q∞ ≡ R, χ∞(x) = exp (−2πix) is additive character in the real case and δ∞ is the
ordinary Dirac δ-function. Function λ∞(x) is defined as

λ∞(x) = exp
[
−πi

sgn x

4

]
, x ∈ R∗ = R \ {0} (22)

and exhibits the same properties (19), i.e. equalities (19) have place if we replace index p by ∞.
In the real case, the Hilbert symbol (x, y)∞ is equal to −1 if x < 0, y < 0 and otherwise is +1.

Since we are interested in Feynman’s path integral on spaces with any finite number of
dimensions, generalization of some previous formulas has to be introduced.

Definition 2.1. Let

Λv(x1 , x2 , · · · , xn) =

n∏

i=1

λv(xi) (23)

be new number-theoretic functions, where subscript v = ∞, 2, 3, · · · , p, · · · denotes real as well
as any p-adic case.

Proposition 2.2. The new functions Λv(x1 , x2 , · · · , xn) satisfy the following property:

Λv(x1 , x2 , · · · , xn) = λv(x1x2 · · · xn)λ
n−1
v (1)

∏

i<j≤n

(xi, xj)v . (24)

Proof. Formula (24) follows from the above property λv(a)λv(b) = (a, b)v λv(1)λv(ab) and the
properties of the Hilbert symbol: (a, b)p = (b, a)p and (a, bc)p = (a, b)p (a, c)p, see [28]. �

Proposition 2.3. Let x = (x1 , x2 , · · · , xn), y = (y1 , y2 , · · · , yn) be column vectors, and let
B = (Bkl) be a nonsingular n× n matrix, where xk, yk, Bkl ∈ Qv. Then

∫

Qn
v

χv(y
TBx) dnx = |det(Bkl)|

−1
v

n∏

k=1

δv(yk) , (25)

where yT denotes transpose map of y.
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Proof. Let us change variables of integration by zk =
∑n

l=1Bklxl. Then we have dnz =
|det(Bkl)|v d

nx. The integral (25) can be rewritten as |det(Bkl)|
−1
v

∏n
k=1

∫
Qv
χv(ykzk) dzk. Ac-

cording to (14) and (20), we obtain (25). �

Proposition 2.4. Let x = (x1, x2, · · · , xn), β = (β1, β2, · · · , βn) be two column vectors, and let
α = (αkl) be a nonsingular symmetric n× n matrix, where xk, βk, αkl ∈ Qv. Then

∫

Qn
v

χv(x
Tαx+ βTx) dnx = Λv(α1, α2, · · · , αn) |det(2αkl)|

− 1

2

v χv

(
−
1

4
βTα−1β

)
, (26)

where α1, α2, · · · , αn are eigenvalues of the matrix α.

Proof. Consider first the case β = 0. Using an orthogonal rotation n× n matrix A such that
x′ = Ax and xTαx = x′Tα′x′, where α′ = AαAT = diag(α1, α2, · · · , αn), one obtains

∫

Qn
v

χv(x
Tαx) dnx =

n∏

k=1

∫

Qv

χv(x
′
kαkx

′
k) dx

′
k =

n∏

k=1

λv(αk) |2αk|
− 1

2

v

= Λ(α1, α2, . . . , αn)| det(2αkl)|
− 1

2

v .

Employing (15) and (21), as well as (23) and the property that the determinant of a matrix
is the product of all its eigenvalues, we gain (26) for β = 0. The final result follows from the
identity

xTαx+ βTx = (x+
1

2
α−1β)Tα (x+

1

2
α−1β)−

1

4
βTα−1β

and after shifting the integration variable. �

Remark 2.5. Since the determinant of a matrix is the product of all its eigenvalues, it is worth
noting that according to (24) one can express Λv(α1α2 · · ·αn) in (26) in the following form:

Λv(α1 , α2 , · · · , αn) = λv(det(αkl))λ
n−1
v (1)

∏

i<j≤n

(αi, αj) . (27)

For more information on usual properties of p-adic numbers and related analysis one can see
[15, 21, 29].

Real and p-adic numbers are unified in the form of adeles. An adele x [21] is an infinite
sequence

x = (x∞, x2, · · · , xp, · · ·), (28)

where x∞ ∈ R and xp ∈ Qp with the restriction that for all but a finite set P of primes p one has
xp ∈ Zp, where Zp = {a ∈ Qp : |a|p ≤ 1} is the ring of p-adic integers. Componentwise addition
and multiplication are natural operations on the ring of adeles A, which can be regarded as

A =
⋃

P

A(P), A(P) = R×
∏

p∈P

Qp ×
∏

p 6∈P

Zp. (29)

A is a locally compact topological space.
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There are also two kinds of analysis over topological ring of adeles A, which are generaliza-
tions of the corresponding analyses over R and Qp. The first one is related to mapping A → A

and the other one to A → C. In complex-valued adelic analysis it is worth mentioning an
additive character

χ(x) = χ∞(x∞)
∏

p

χp(xp), (30)

a multiplicative character

|x|s = |x∞|s∞
∏

p

|xp|
s
p, s ∈ C, (31)

and elementary functions of the form

φ(x) = φ∞(x∞)
∏

p∈P

φp(xp)
∏

p 6∈P

Ω(|xp|p), (32)

where φ∞(x∞) is an infinitely differentiable function on R such that |x∞|n∞φ∞(x∞) → 0 as
|x∞|∞ → ∞ for any n ∈ {0, 1, 2, · · ·}, and φp(xp) are locally constant functions with compact
support. All finite linear combinations of elementary functions (32) make the set S(A) of the
Schwartz-Bruhat adelic functions. The Fourier transform of φ(x) ∈ S(A), which maps S(A)
onto S(A), is

φ̃(y) =

∫

A

φ(x)χ(xy)dx, (33)

where χ(xy) is defined by (30) and dx = dx∞dx2dx3 · · · is the Haar measure on A.
It is worth mentioning the following adelic products [28]:

χ∞(x)
∏

p

χp(x) = 1, x ∈ Q (34)

|x|s∞
∏

p

|x|sp = 1, x ∈ Q∗, s ∈ C (35)

λ∞(x)
∏

p

λp(x) = 1, x ∈ Q∗ (36)

(x, y)∞
∏

p

(x, y)p = 1, x, y ∈ Q∗. (37)

One can define the Hilbert space on A, which we will denote by L2(A). It contains infinitely
many complex-valued functions of adelic argument (for example, Ψ1(x),Ψ2(x), · · ·) with scalar

product (Ψ1,Ψ2) =
∫
A
Ψ̄1(x)Ψ2(x)dx and norm ||Ψ|| = (Ψ,Ψ)

1

2 < ∞ , where dx is the Haar
measure on A. A basis of L2(A) may be given by the set of orthonormal eigefunctions in spectral
problem of the evolution operator U(t), where t ∈ A. Such eigenfunctions have the form

ψP,α(x, t) = ψ(∞)
n (x∞, t∞)

∏

p∈P

ψ(p)
αp

(xp, tp)
∏

p 6∈P

Ω(|xp|p), (38)
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where ψ
(∞)
n and ψ

(p)
αp are eigenfunctions in ordinary and p-adic cases, respectively. Ω(|xp|p) is

defined by (13) and presents a state invariant under transformation of Up(tp) evolution operator.
Adelic quantum mechanics [4, 5] may be regarded as a triple

(L2(A),W (z), U(t)),

where W (z) and U(t) are unitary representations of the Heisenberg-Weyl group and evolution
operator on L2(A), respectively.

3 Quadratic Lagrangians and Their Actions

A general quadratic Lagrangian can be written in matrix form as follows:

L(q̇, q, t) =
1

2
q̇T A q̇ + q̇T B q +

1

2
qT C q +DT q̇ + ET q + ε (39)

where A = (αkl(t)) is a regular symmetric matrix, C = (γkl(t)) is a symmetric matrix, B =
(βkl(t)) is a matrix, D = (δk(t)), E = (ηk(t)), q = (qk(t)) and q̇ = (q̇k(t)) are vectors in Rn.
All matrices are of type n × n with matrix elements viewed as analytic functions of the time
t. In fact, we want to consider the corresponding adelic Lagrangian, i.e. an adelic collection
of Lagrangians of the same form (39) which differ only by their valuations v = ∞, 2, 3, · · ·. In
this section we present some results valid simultaneously for real as well as for p-adic classical
mechanics. In adelic case their power series expansions will have the same rational coefficients
in the real and all p-adic cases.

The Euler-Lagrange equations of motion are

A q̈ + (Ȧ+B −BT ) q̇ + (Ḃ −C) q = E − Ḋ. (40)

Generally, (40) represents a system of n coupled linear inhomogeneous differential equations of
the second order. When it is coupled, starting from the homogeneous system and eliminating
derivatives of all but one coordinate, one can construct a system of n uncoupled (resolvent)
homogeneous linear differential equations of the 2n order. Thus a general solution of (40),
which describes classical trajectory, can be found by means of solution of the corresponding
uncoupled equations. In this way we have

qk = xk(t) =

2n∑

m=1

fkm(t)Cm + ξk(t), or q = x(t) = F (t) C + ξ(t), (41)

where F (t) = [fkm(t)] ∈ Mn,2n is a solution of the corresponding system of homogeneous dif-
ferential equations, C = [Cm] ∈ M2n,1 is the vector of constants, and ξ(t) = [ξk(t)] ∈ Mn,1 is a
particular solution of the complete system of differential equations (40). If we choose f1m(t) as
linearly independent solutions for x1(t) then solutions fkm(t) for xk(t), k 6= 1, are determined
by the system (40) and they are related to f1m(t).

For the boundary conditions x′k = xk(t
′) and x′′k = xk(t

′′), let us introduce the following
useful notations:

fi(t) = [fi1(t), . . . , fi 2n(t)], f i(t′′, t′) = [f1i(t
′′), . . . , fni(t

′′), f1i(t
′) . . . , fn i(t

′)]T , (42)

f ′′i = fi(t
′′), f ′i = fi(t

′), ḟ ′′i = ḟi(t
′′), ḟ ′i = ḟi(t

′), (43)

9



F = F(t′′, t′) =

[
F (t′′)
F (t′)

]
=

[
F ′′

F ′

]
=

{
[f1(t

′′), . . . , fn(t
′′), f1(t

′), . . . , fn(t
′)]T

[f1(t′′, t′), f2(t′′, t′), . . . , f2n(t′′, t′)],
(44)

where [f1(t
′′), .., fn(t

′′), f1(t
′), .., fn(t

′)]T is a matrix with rows f1(t
′′), .., fn(t

′)

△ = △(t′′, t′) = detF , Fij = (ij)-algebraic complement of F , △i,j = detFij , (45)

F ′′ = F (t′′), F ′ = F (t′), xξ = [x′′1 − ξ′′1 , . . . , x
′′
n − ξ′′n, x

′
1 − ξ′1, . . . , x

′
n − ξ′n]

T (46)

△i = △i(t
′′, t′) = det[f1(t′′, t′), . . . , f i−1(t′′, t′), xξ, f i+1(t′′, t′) . . . , f2n(t′′, t′)] , (47)

△̇i(f
′
j)(t

′′, t′) = △̇i(f
′
j) = det[ f ′′1 , .., f

′′
i−1, ḟ

′
j, f

′′
i+1, .., f

′′
n , f

′
1, .., f

′
n ] , i, j = 1, .., n, (48)

△̇i+n(f
′′
j )(t

′′, t′) = △̇i+n(f
′′
j ) = det[ f ′′1 , .., f

′′
n , f

′
1, .., f

′
i−1, ḟ

′′
j , f

′
i+1, .., f

′
n ], i, j = 1, .., n. (49)

Proposition 3.1. Imposing the boundary conditions x′k = xk(t
′) and x′′k = xk(t

′′), vector of
constants of integration C becomes:

C = C(t′′, t′) =
1

△(t′′, t′)
[△1(t

′′, t′),△2(t
′′, t′), . . . ,△2n(t

′′, t′)]T . (50)

Proof. It follows after performing relevant computations. �

Note that in the real case for periodic solutions fkm(t + T ) = fkm(t), the determinant △
can be singular. To avoid such problem one has then to restrict the time interval t′′ − t′ to be
smaller than the period T .

Taking into account (50), one can rewrite (41) in the following form

xk(t) =
1

△(t′′, t′)

2n∑

i=1

△i(t
′′, t′)fki(t) + ξk(t) , k = 1, 2, . . . , n .

Using the equations of motion (40), the Lagrangian (39) can be rewritten as

L(ẋ, x, t) =
1

2

d

dt

[
xTA ẋ+ xT B x+DTx

]
+

1

2

(
DT ẋ+ ETx

)
+ ε (51)

where x(t) denotes now the classical trajectory (41).
Using method which was described in [12] in the case n = 3 one can find the following very

important result.

Theorem 3.2. Let {f1j , j = 1, 2, . . . , 2n} be any linearly independent solutions of the resolvent
equation for x1(t) in (40), then solutions fkm(t) for xk(t), k 6= 1, are determined by the system
(40) and the following equality holds

det

[
F (t)

Ḟ (t)

]
=

D

detA
, (52)

where D is a non-zero constant, which could be chosen to be equal 1.
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Proposition 3.3. The general form of the action for classical trajectory x(t) of a quadratic
Lagrangian, for a particle being in point x′ at the time t′ and in position x′′ at t′′, is

S̄(x′′, t′′;x′, t′) =
1

2
x′′T Ā x′′ + x′′T B̄ x′ +

1

2
x′T C̄ x′ + D̄Tx′′ + ĒT x′ + ε̄, (53)

where Ā = [Ākl], B̄ = [B̄kl], C̄ = [C̄kl], D̄ = [D̄k], and Ē = [Ēk].

Ākl = Ākl(t
′′, t′) =

∂2S̄0
∂x′′

k
∂x′′

l

, B̄kl = B̄kl(t
′′, t′) =

∂2S̄0
∂x′′

k
∂x′

l

, C̄kl = C̄kl(t
′′, t′) =

∂2S̄0
∂x′

k
∂x′

l

,

D̄k = D̄k(t
′′, t′) =

∂S̄0
∂x′′

, Ē = Ēk(t
′′, t′) =

∂S̄0
∂x′

, ε̄ = ε̄(t′′, t′) = S̄0

and subscript 0 in the classical action means that after performing derivatives of the S̄(x′′, t′′;x′, t′)
one has to replace x′′ and x′ by x′′ = x′ = 0.

Proof. From (50) it is clear that constants of integration Ci(t
′′, t′) are linear in x′′k and x′l.

Then the corresponding classical action

S̄(x′′, t′′;x′, t′) =

∫ t′′

t′
L(ẋ, x, t) dt =

1

2

[
xTA ẋ+ xTB x+DT x

]
|t

′′

t′

+
1

2

∫ t′′

t′

(
DT ẋ+ ETx

)
dt+

∫ t′′

t′
ε(t) dt (54)

is quadratic in x′′k and x′l, where subscripts run again the same values, k, l = 1, · · · , n. �

For our evaluation of the path integrals it is especially important to have explicit dependence
of coefficients Ākl, B̄kl and C̄kl on coefficients in the Lagrangian (39) and on ingredients of the
classical trajectory (41). Because of that, we can rewrite (54) in the following way:

S̄(x′′, t′′;x′, t′) =

∫ t′′

t′
L(ẋ, x, t) dt =

1

2

[
xTA ẋ+ xTB x

]
|t

′′

t′ + Lin(x′′, x′) (55)

=
1

2
[ (CTF (t′′)T + ξ(t′′)T )A(t′′) (CḞ (t′′) + ξ̇(t′′)) + (CTF (t′′)T + ξ(t′′)T )

×B(t′′)(CF (t′′) + ξ(t′′))− (CTF (t′)T + ξ(t′)T )A(t′) (CḞ (t′) + ξ̇(t′))

+ (CTF (t′)T + ξ(t′)T )B(t′)(CF (t′) + ξ(t′))] + Lin(x′′, x′)

=
1

2
[ CTF (t′′)TA(t′′) CḞ (t′′) + CTF (t′′)TB(t′′)CF (t′′)

− CTF (t′)TA(t′)CḞ (t′)− CTF (t′)TB(t′)CF (t′)] + L̃in(x′′, x′),

where Lin(x′′, x′) means that this expression is linear in x′′ and x′. Since we want to find
Ḡ ∈ {Ā, B̄, C̄}, and e.g.

Ḡkl = Ḡkl(t
′′, t′) =

∂2S̄0
∂x′′

k
∂x′′

l

=
1

2

∂2
( [
xTA ẋ+ xTB x

]
|t

′′

t′

)

∂x′′
k
∂x′′

l

, (56)
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it is necessary to have the following properties.

Lemma 3.4 The following relations hold

∂CT

∂x′′k
=

1

△
[ (−1)k+1△k,1, (−1)k+2△k,2, . . . , (−1)k+2n△k,2n ] ,

∂CT

∂x′
k

=
1

△
[ (−1)n+k+1△n+k,1, (−1)n+k+2△n+k,2, . . . , (−1)n+k+2n△n+k,2n ] ,

∂(CT F T (t′′))

∂x′′k
=
∂CT

∂x′′k
F T (t′′) = [ 0, . . . , 0,

k

1, 0, . . . , 0 ] ,

∂(CT F T (t′))

∂x′′k
=
∂CT

∂x′′k
F T (t′) = 0 =

∂CT

∂x′k
F T (t′′) =

∂(CT F T (t′′))

∂x′k
,

∂(Ḟ ′C)

∂x′′k
= Ḟ ′ ∂C

∂x′′k
=

1

△
[ △̇k(f

′
1), △̇k(f

′
2), . . . , △̇k(f

′
n) ] , (57)

∂(Ḟ ′′C)

∂x′′k
= Ḟ ′′ ∂C

∂x′′k
=

1

△
[ △̇k(f

′′
1 ), △̇k(f

′′
2 ), . . . , △̇k(f

′′
n) ] ,

∂(Ḟ ′C)

∂x′k
= Ḟ ′ ∂C

∂x′k
=

1

△
[ △̇n+k(f

′
1), △̇n+k(f

′
2), . . . , △̇n+k(f

′
n) ] ,

∂(Ḟ ′′C)

∂x′k
= Ḟ ′′ ∂C

∂x′k
=

1

△
[ △̇n+k(f

′′
1 ), △̇n+k(f

′′
2 ), . . . , △̇n+k(f

′′
n) ] .

Let us find now, the matrix elements Ākl, B̄kl and C̄kl. Firstly we have

∂2(x(t′′)T A′′ ẋ(t′′))

∂x′′k∂x
′′
l

=
∂2(CTF ′′ T A′′ Ḟ ′′C)

∂x′′k∂x
′′
l

=
∂

∂x′′k

(
∂(CTF ′′ T A′′ Ḟ ′′C)

∂x′′l

)

=
∂

∂x′′k

(
∂CT

∂x′′l
F ′′ T A′′ Ḟ ′′C + CTF ′′ T A′′ Ḟ ′′ ∂C

∂x′′l

)

C is linear in x′′k and x′′l =
∂CT

∂x′′l
F ′′ T A′′ Ḟ ′′ ∂C

∂x′′k
+
∂CT

∂x′′k
F ′′ T A′′ Ḟ ′′ ∂C

∂x′′l

(57)
=

=
1

△
[ 0, . . . , 0,

l

1, 0, . . . , 0 ]A′′ [ △̇k(f
′′
1 ), △̇k(f

′′
2 ), . . . , △̇k(f

′′
n) ]

T

+
1

△
[ 0, . . . , 0,

k

1, 0, . . . , 0 ]A′′ [ △̇l(f
′′
1 ), △̇l(f

′′
2 ), . . . , △̇l(f

′′
n) ]

T

=
1

△

∑

t

(
α′′
lt△̇k(f

′′
t ) + α′′

kt△̇l(f
′′
t )
)
. (58)

∂2(x(t′)T A′ ẋ(t′))

∂x′′
k
∂x′′

l

=
∂2(CTF ′ T A′ Ḟ ′C)

∂x′′
k
∂x′′

l

=
∂

∂x′′
k

(
∂(CTF ′ T A′ Ḟ ′C)

∂x′′
l

)
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=
∂CT

∂x′′
l

F ′ T A′ Ḟ ′ ∂C

∂x′′
k

+
∂CT

∂x′′
k

F ′ T A′ Ḟ ′ ∂C

∂x′′
l

(57)
= 0 . (59)

∂2(x(t′)T A′ ẋ(t′))

∂x′
k
∂x′

l

=
∂2(CTF ′ T A′ Ḟ ′C)

∂x′
k
∂x′

l

=
∂

∂x′
k

(
∂(CTF ′ T A′ Ḟ ′C)

∂x′
l

)

=
1

△

∑

t

(
α′
lt△̇n+k(f

′
t) + α′

kt△̇n+l(f
′
t)
)
. (60)

∂2(x(t′′)T A′′ ẋ(t′′))

∂x′
k
∂x′

l

=
∂2(CTF ′′ T A′′ Ḟ ′′C)

∂x′
k
∂x′

l

=
∂

∂x′
k

(
∂(CTF ′′ T A′′ Ḟ ′′C)

∂x′
l

)

=
∂CT

∂x′l
F ′′ T A′′ Ḟ ′′ ∂C

∂x′k
+
∂CT

∂x′k
F ′′ T A′′ Ḟ ′′ ∂C

∂x′′l

(57)
= 0 . (61)

∂2(x(t′′)T B′′ x(t′′))

∂x′′
k
∂x′′

l

=
∂2(CTF ′′ T B′′ F ′′C)

∂x′′
k
∂x′′

l

=
∂

∂x′′
k

(
∂(CTF ′′ T B′′ F ′′C)

∂x′′
l

)

=
∂CT

∂x′′l
F ′′ T B′′ F ′′ ∂C

∂x′′k
+
∂CT

∂x′′k
F ′′ T B′′ F ′′ ∂C

∂x′′l

(57)
=

= [ 0, . . . , 0,
k

1, 0, . . . , 0 ]B′′ [ 0, . . . , 0,
l

1, 0, . . . , 0 ]T

+ [ 0, . . . , 0,
l

1, 0, . . . , 0 ]B′′ [ 0, . . . , 0,
k

1, 0, . . . , 0 ]T = β′′lk + β′′kl , (62)

∂2(x(t′)T B′ x(t′))

∂x′
k
∂x′

l

= β′lk + β′kl , (63)

∂2(x(t′′)T B′′ x(t′′))

∂x′k∂x
′
l

=
∂2(x(t′)T B′ x(t′))

∂x′′k∂x
′′
l

= 0 . (64)

∂2(x(t′′)T A′′ ẋ(t′′))

∂x′′k∂x
′
l

=
∂2(CTF ′′ T A′′ Ḟ ′′C)

∂x′′k∂x
′
l

=
∂

∂x′′k

(
∂(CTF ′′ T A′′ Ḟ ′′C)

∂x′l

)

=
∂CT

∂x′l
F ′′ T A′′ Ḟ ′′ ∂C

∂x′′k
+
∂CT

∂x′′k
F ′′ T A′′ Ḟ ′′ ∂C

∂x′l

(57)
=

=
1

△
[ 0, . . . , 0,

k

1, 0, . . . , 0 ]A′′ [ △̇n+l(f
′′
1 ), △̇n+l(f

′′
2 ), . . . , △̇n+l(f

′′
n) ]

T

=
1

△

∑

t

α′′
kt△̇n+l(f

′′
t ) , (65)

∂2(x(t′)T A′ ẋ(t′))

∂x′′k∂x
′
l

=
∂2(CTF ′ T A′ Ḟ ′C)

∂x′′k∂x
′
l

=
∂

∂x′′k

(
∂(CTF ′ T A′ Ḟ ′C)

∂x′l

)
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=
∂CT

∂x′
l

F ′ T A′ Ḟ ′ ∂C

∂x′′
k

+
∂CT

∂x′′
k

F ′ T A′ Ḟ ′ ∂C

∂x′
l

(57)
=

=
1

△
[ 0, . . . , 0,

l

1, 0, . . . , 0 ]A′ [ △̇k(f
′
1), △̇k(f

′
2), . . . , △̇k(f

′
n) ]

T

=
1

△

∑

t

α′
lt△̇k(f

′
t) . (66)

∂2(x(t′′)T B′′ x(t′′))

∂x′′k∂x
′
l

=
∂2(CTF ′′ T B′′ F ′′C)

∂x′′k∂x
′
l

=
∂

∂x′′k

(
∂(CTF ′′ T B′′ F ′′C)

∂x′l

)

=
∂CT

∂x′
l

F ′′ T B′′ F ′′ ∂C

∂x′′
k

+
∂CT

∂x′′
k

F ′′ T B′′ F ′′ ∂C

∂x′
l

(57)
= 0 , (67)

∂2(x(t′)T B′ x(t′))

∂x′′k∂x
′
l

=
∂2(CTF ′ T B′ F ′C)

∂x′′k∂x
′
l

=
∂

∂x′′k

(
∂(CTF ′ T B′ F ′C)

∂x′l

)

=
∂CT

∂x′
l

F ′ T B′ F ′ ∂C

∂x′′
k

+
∂CT

∂x′′
k

F ′ T B′ F ′ ∂C

∂x′
l

(57)
= 0 . (68)

Now, using (56), as well as (57)-(68) we have Theorem 3.5. The related coefficients are:

Ākl = Ākl(t
′′, t′) =

1

2△

n∑

t=1

(
α′′
lt△̇k(f

′′
t ) + α′′

kt△̇l(f
′′
t )
)
+
β′′lk + β′′kl

2
, (69)

B̄kl = B̄kl(t
′′, t′) =

1

2△

n∑

t=1

(
α′′
kt△̇n+l(f

′′
t )− α′

lt△̇k(f
′
t)
)

(70)

C̄kl = C̄kl(t
′′, t′) =

−1

2△

n∑

t=1

(
α′
lt△̇n+k(f

′
t) + α′

kt△̇n+l(f
′
t)
)
−
β′lk + β′kl

2
. (71)

4 Path Integrals on Real and p-Adic Spaces

According to Feynman’s path integral approach, discussed in the Introduction, to obtain the
complete transition amplitude from (x′, t′) to (x′′, t′′) one has to take sum of amplitudes over
all possible trajectories q(t) which interpolate between points (x′, t′) and (x′′, t′′). Any quantum
path may be regarded as a deviation y(t) with respect to the classical one x(t), i.e. q(t) =
x(t) + y(t), where y′ = y(t′) = 0 and y′′ = y(t′′) = 0. The corresponding Taylor expansion of
the quadratic action functional S[q] around classical path x(t) is

S[q] = S[x+ y] = S[x] + δS[x] +
1

2!
δ2S[x] (72)

= S[x] +
1

2

∫ t′′

t′

(
ẏk

∂

∂q̇k
+ yk

∂

∂qk

)2

L(q̇, q, t)dt.

Since our Lagrangian is a polynomial up to quadratic order in q̇k and qk, the terms with higher
derivatives in (72) are equal zero. Note also that the classical path x(t) gives an extremum of
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the action and hence we take δS[x] = 0. According to (4) and (9), for any v = ∞, 2, 3, · · ·, we
can write

Kv(x
′′, t′′;x′, t′) =

∫
χv

(
−
1

h
S[x+ y]

)
Dy, (73)

where we replaced Dq by Dy, since x is a fixed classical trajectory. Due to (72), the expression
(73) gains the more explicit form

Kv(x
′′, t′′;x′, t′) = χv

(
−
1

h
S̄(x′′, t′′;x′, t′)

)
(74)

×

∫ y′′→0,t′′

y′→0,t′
χv

(
−

1

2h

∫ t′′

t′

(
ẏk

∂

∂q̇k
+ yk

∂

∂qk

)2

L(q̇, q, t)dt

)
Dy,

where we used y′′ = y′ = 0, S[x] = S̄(x′′, t′′;x′, t′).

Proposition 4.1. Kv(x
′′, t′′;x′, t′) has the form

Kv(x
′′, t′′;x′, t′) = Nv(t

′′, t′)χv

(
−
1

h
S̄(x′′, t′′;x′, t′)

)
, (75)

where Nv(t
′′, t′) does not depend on end points x′′ and x′.

Proof. It follows from (74). �

To compute Nv(t
′′, t′), let us note that (74) can be rewritten as

Kv(x
′′, t′′;x′, t′) = χv

(
−
1

h
S̄(x′′, t′′;x′, t′)

)
Kv(0, t

′′; 0, t′), (76)

where Kv(0, t
′′; 0, t′) = Kv(y

′′, t′′; y′, t′)|y′′=y′=0 and

Kv(y
′′, t′′; y′, t′) =

∫ y′′,t′′

y′,t′
χv

(
−
1

h

∫ t′′

t′

[
1

2
ẏk αkl ẏl + ẏk βkl yl +

1

2
yk γkl yl

])
Dy. (77)

Note that coefficients αkl, βkl and γkl are those of the initial Lagrangian (39). According to
(75) and (76) one has

Nv(t
′′, t′) = Kv(y

′′, t′′; y′, t′)|y′′=y′=0, (78)

where

Kv(y
′′, t′′; y′, t′) = Nv(t

′′, t′)χv

(
−
1

h

[
1

2
y′′k Ākl y

′′
l + y′′k B̄kl y

′
l +

1

2
y′k C̄kl y

′
l

])
. (79)

with Ākl, B̄kl and C̄kl given by equations (69)-(71).
To find the corresponding expression for Nv(t

′′, t′) we shall employ conditions (6) and (7).
The unitary condition (7) now reads:

∫

Qn
v

K̄v(y
′′, t′′; y′, t′)Kv(y, t

′′; y′, t′) dny′ =
n∏

k=1

δv(y
′′
k − yk). (80)
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Proposition 4.2. The absolute value of Nv(t
′′, t′) in (75) is

|Nv(t
′′, t′)|∞ =

∣∣∣∣
1

hn
det

[
∂2

∂x′′k∂x
′
l

S̄0(x
′′, t′′;x′, t′)

]∣∣∣∣

1

2

v

. (81)

Proof. Substituting Kv(y
′′, t′′; y′, t′) from (79) to (80), and taking into account that the time

t′′ is the same in points y′′ and y, one obtains

|Nv(t
′′, t′)|2∞χv

[
1

2h
Ākl(t

′′, t′)(y′′ky
′′
l − ykyl)

] ∫

Qn
v

χv

[
1

h
(y′′k − yk)B̄kl(t

′′, t′)y′l

]
dny′ =

=

n∏

k=1

δv(y
′′
k − yk). (82)

Using (25), one has

|Nv(t
′′, t′)|2∞χv

[
1

2h
Ākl(t

′′, t′)(y′′ky
′′
l − ykyl)

] ∣∣∣∣det
[
1

h
B̄kl(t

′′, t′)

]∣∣∣∣
−1

v

n∏

k=1

δv(y
′′
k − yk)

=

n∏

k=1

δv(y
′′
k − yk). (83)

Performing integration in (83) over variable yk, it follows

|Nv(t
′′, t′)|∞ =

∣∣∣∣det
(
1

h
B̄kl(t

′′, t′)

)∣∣∣∣

1

2

v

. (84)

Since B̄kl(t
′′, t′) is the same for S̄(x′′, t′′;x′, t′) and S̄(y′′, t′′; y′, t′), according to (54) one

obtains (81). �

We have now

Nv(t
′′, t′) =

∣∣∣∣det
(
1

h

∂2S̄0(y
′′, t′′; y′, t′)

∂y′′k∂y
′
l

)∣∣∣∣

1

2

v

Av(t
′′, t′), (85)

where |Av(t
′′, t′)|∞ = 1 and Av(t

′′, t′) remains to be determined explicitly. To this end, we use
condition (6), which has now the form

∫

Qn
v

Kv(y
′′, t′′; y, t)Kv(y, t; y

′, t′) dny = Kv(y
′′, t′′; y′, t′). (86)

Inserting (79) into (86), where Nv(t
′′, t′) has the form (85), we get the following equation:

Nv(t
′′, t′)χv

(
−

1

h

(1
2
y′′T Ā(t′′, t′)y′′ + y′′T B̄(t′′, t′)y′ +

1

2
y′T C̄(t′′, t′)y′

))
= Nv(t

′′, t)Nv(t, t
′)

×

∫

Qn

v

χv

(
−

1

h

(1
2
y′′T Ā(t′′, t)y′′ + y′′T B̄(t′′, t)y + yT

1

2
C̄(t′′, t)y +

1

2
yT Ā(t, t′)y + yT B̄(t, t′)y′

+ y′T
1

2
C̄(t, t′)y′

))
dny = Nv(t

′′, t)Nv(t, t
′)χv

(
−

1

2h

(
y′′T Ā(t′′, t)y′′ + y′T C̄(t, t′)y′

))
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×

∫

Qn

v

χv

(
yT
( C̄(t′′, t) + Ā(t, t′)

−2h

)
y +

(y′′T B̄(t′′, t) + y′T B̄T (t, t′)

−h

)
y
)
dny = {Prop. 2.4}

= Nv(t
′′, t)Nv(t, t

′)χv

(
−

1

2h

(
y′′T Ā(t′′, t)y′′ + y′T C̄(t, t′)y′

))
Λv(α1, α2, . . . , αn) | det(2H)|

−
1

2

v

×χv

(
−

1

4

(
zTH−1z

))
,

where α1, . . . , αn are eigenvalues of the symmetric matrix

H =
C̄(t′′, t) + Ā(t, t′)

−2h
and z =

y′′T B̄(t′′, t) + y′T B̄T (t, t′)

−h
.

Taking into account (85), we can expect the following relations

∣∣∣∣det
(1
h

∂2

∂y′′∂y
S̄0(y

′′, y)
)∣∣∣∣

1

2

v

∣∣∣∣det
(1
h

∂2

∂y∂y′
S̄0(y, y

′)
)∣∣∣∣

1

2

v

| det(2H)|
−

1

2

v

=

∣∣∣∣det
( 1
h

∂2

∂y′′∂y′
S̄0(y

′′, y′)
)∣∣∣∣

1

2

v

, (87)

χv

(
−

1

h

(1
2
y′′T Ā(t′′, t′)y′′ + y′′T B̄(t′′, t′)y′ +

1

2
y′T C̄(t′′, t′)y′

))

= χv

(
−

1

2h

(
y′′T Ā(t′′, t)y′′ + y′T C̄(t, t′)y′

))
χv

(
−

1

4

(
zTH−1z

))
, (88)

which implies the third one

Av(t
′′, t)Av(t, t

′)Λv(α1, α2, · · · , αn) = Av(t
′′, t′). (89)

Let us introduce the following notations

U = (Uij), Uij =
1

2

△̇i(fj)(t, t
′)

△(t, t′)
−

1

2

△̇n+i(fj)(t
′′, t)

△(t′′, t)
,

H = Ā(t, t′) + C̄(t′′, t) = A(t)× U = (wij) , wij = αi · Uj + αj · Ui ,

(90)

where αi is i−th column of matrix A, and Uj is j−th row of matrix U. By the multi-linearity of
determinant one reads

detH =
∑

i1<i2...<ik
j1<j2...<jn−k

det[αi1 , . . . , αik , U j1 , . . . , U jn−k ] det[U i1 , . . . , U ik , αj1 , . . . , αjn−k ] .

Then one can see that above determinant is equal to

detH = 2n det[α1, α2, . . . , αn ] det[U1, U2, . . . , Un ] + S

= detA det 2U + S. (91)

Using Euler-Lagrange equations following ideas in [12] one can find that S = 0.
For X = (xij), Y = (yij), Z = (zij) and W = (wij) arbitrary matrices (n, 2n) (n ∈ N), and

let Ykl be obtained from Y replacing k−th row of Y by the l−th row of X (k, l = 1, 2 . . . , n).
Define the (n, n) matrix T = (tkl) by

tkl = det

[
Ykl
Z

]
det

[
Y
W

]
− det

[
Ykl
W

]
det

[
Y
Z

]
.
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Then the following identity holds

detT =

(
det

[
Y
Z

])n−1 (
det

[
Y
W

])n−1

det

[
Z
W

]
det

[
X
Y

]
. (92)

Using identity (92) one can find the following relation

det 2U = (−1)n
△(t′′, t′)

△(t′′, t)△(t, t′)
det

[
F (t)

Ḟ (t)

]
, (93)

which combined with the relations (52) (with D = 1), and (91) implies

detH = (−1)n
△(t′′, t′)

△(t′′, t)△(t, t′)
, (94)

and since H = −2hH, we have

det 2H = det(
−1

h
H) =

(−1)n

hn
detH =

1

hn
△(t′′, t′)

△(t′′, t)△(t, t′)
. (95)

Now, it is clear that to prove (87) is enough to show that

det B̄(t′′, t′) =
1

△(t′′, t′)
, (96)

where B̄(t′′, t′) is the matrix (B̄kl(t
′′, t′)).

In the case n = 1, it is shown (see [8]) that (96) holds and relations (87)-(89) are satisfied
with

Av(t
′′, t′) = λv

(
−

1

2h

∂2

∂y′′∂y′
S̄0(y

′′, t′′; y′, t′)

)
. (97)

In the case n = 2, using expressions (70) after long calculations, we find

det B̄(t′′, t′) = B̄11B̄22 − B̄12B̄21 =

(
detA(t′′) det

[
F (t′′)

Ḟ (t′′)

]
+ detA(t′) det

[
F (t′)

Ḟ (t′)

])
△(t′′, t′)

4△(t′′, t′)2

+
Tr((A(t′)⊗A(t′′)) △̃)

4△(t′′, t′)2
=

1

2△(t′′, t′)
+

Tr((A(t′)⊗A(t′′)) △̃)

4△(t′′, t′)2
, (98)

where △̃ =




△2,1△4,1 △2,1△4,2 −△1,1△4,1 −△1,1△4,2

△2,2△4,1 △2,2△4,2 −△1,2△4,1 −△1,2△4,2

−△2,1△3,1 −△2,1△3,2 △1,1△3,1 △1,1△3,2

−△2,2△3,1 −△2,2△3,2 △1,2△3,1 △1,2△3,2


 and where△i,j = △̇i(f

′
j), i =

1, 2; j = 1, 2 and △i,j = △̇i(f
′′
j ), i = 3, 4; j = 1, 2.

From the properties of the function λv, we have

λv

(1
a

)
= λv

(
a2

1

a

)
= λv(a), λv

( 1
x
+

1

y

)
= λv

(x+ y

x y

)
= λv

( x y

x+ y

)
=
λv(x)λv(y)

λv(x+ y)
. (99)
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Let us introduce the following notations

x = △(t′′, t) =
1

det B̄(t′′, t)
, y = △(t, t′) =

1

det B̄(t, t′)
,

then one can write (as in n = 1 case)

λv(△(t′′, t) +△(t, t′)) = λv(△(t′′, t′)) . (100)

Note that now

Λv(α1, α2, · · · , αn) = λn−1
v (1)λv(detH)

∏

i<j≤n

(αi, αj)v =
Av(t

′′, t′)

Av(t′′, t)Av(t, t′)
. (101)

Generally, product of the Hilbert symbols can be +1 or −1, and we will take here that it is +1,
i.e. Λv(α1, α2, · · · , αn) = λn−1

v (1)λv(detH). Then we want to show that Av(t
′′, t′) has the form

Av(t
′′, t′) = λ1−n

v (1)λv(−ξ△(t′′, t′)) = λ1−n
v (1)λv(−ξ/△(t′′, t′)), where ξ = 1

(2h)n . Since

λv(detH) = λv

( ξ△(t′′, t′)

ξ△(t′′, t)ξ△(t, t′)

)
= λv

(ξ△(t′′, t) ξ△(t, t′)

ξ△(t′′, t′)

)

=
λv(ξ△(t′′, t))λv(ξ△(t, t′))

λv(ξ△(t′′, t) + ξ△(t, t′))
=
λv(ξ△(t′′, t))λv(ξ△(t, t′))

λv(ξ△(t′′, t′))

=
λv(ξ det B̄(t′′, t))λv(ξ det B̄(t, t′))

λv(ξ det B̄(t′′, t′))
=

λv(−ξ det B̄(t′′, t′))

λv(−ξ det B̄(t′′, t))λv(−ξ det B̄(t, t′))
.(102)

So, if we compare (101) and (102) we see that we obtain one class of solutions for

Av(t
′′, t′) = λ1−n

v (1)λv

(
−1

(2h)n
det B̄(t′′, t′)

)
. (103)

In virtue of the above evaluation one can formulate the following

Theorem 4.3.The v-adic kernel Kv(x
′′, t′′;x′, t′) of the unitary evolution operator, defined by (1)

and evaluated as the Feynman path integral, for quadratic Lagrangians (39) (and consequently,
for quadratic classical actions (51)) has the form

Kv(x
′′, t′′;x′, t′) = λ1−n

v (1)λv

(
−1

(2h)n
det

(
∂2

∂x′′k∂x
′

l

S̄0(x
′′, t′′;x′, t′)

)) ∣∣∣∣det
(
1

h

∂2

∂x′′k∂x
′

l

S̄0(x
′′, t′′;x′, t′)

)∣∣∣∣

1

2

v

×χv

(
−
1

h
S̄(x′′, t′′;x′, t′)

)
(104)

and satisfies the general properties (6)-(7).

Proof. The formula (104) is a result of the above analytic evaluation, and one has to show
that this expression also satisfies explicitly (8). �

Starting from (104) and using definition (22) for λ∞-function one can rederive well-known
result in ordinary quantum mechanics:

K∞(x′′, t′′;x′, t′) =

√
1

(ih)n
det

(
−

∂2

∂x′′k∂x
′
l

S̄0(x′′, t′′;x′, t′)

)
exp

(
2πi

h
S̄(x′′, t′′;x′, t′)

)
. (105)
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5 Adelic Path Integral

Adelic path integral can be introduced as a generalization of ordinary and p-adic path integrals.
As adelic analogue of (3) it is related to eigenfunctions in adelic quantum mechanics in the form

ψP,α(x
′′, t′′) =

∫

A

KA(x
′′, t′′;x′, t′)ψP,α(x

′, t′)dx′, (106)

where ψP,α(x, t) has the form (32). Since the equation (106) must be valid for any set P of
primes p, and adelic eigenstate is an infinite product of real and p-adic eigenfunctions, it is
natural to consider adelic probability amplitude in the following form:

KA(x
′′, t′′;x′, t′) = K∞(x′′∞, t

′′
∞;x′∞, t

′
∞)
∏

p

Kp(x
′′
p, t

′′
p;x

′
p, t

′
p), (107)

where K∞(x′′∞, t
′′
∞;x′∞, t

′
∞) and Kp(x

′′
p, t

′′
p;x

′
p, t

′
p) are probability amplitudes in ordinary and p-

adic quantum mechanics, respectively.
From (107), we see that one can introduce adelic path integral as an infinite product of

ordinary and p-adic path integrals for all primes p. We consider adelic Feynman’s path integral
as a path integral on an adelic space. Now we can rewrite (107) in the form

KA(x
′′, t′′;x′, t′) =

∫ x′′,t′′

x′,t′
χA

(
−
1

h
SA[q]

)
DAq, (108)

where χA(x) is adelic additive character, SA[q] and DAq are adelic action and the Haar measure,
respectively. For practical considerations, we define adelic path integral in the form

KA(x
′′, t′′;x′, t′) =

∏

v

∫ x′′
v ,t

′′
v

x′
v,t

′
v

χv

(
−
1

h

∫ t′′v

t′v

L(q̇v, qv, tv)dtv

)
Dqv. (109)

Adelic Lagrangian is the infinite sequence

LA(q̇, q, t) = (L(q̇∞, q∞, t∞), L(q̇2, q2, t2), L(q̇3, q3, t3), · · · , L(q̇p, qp, tp), · · ·), (110)

where |L(q̇p, qp, tp)|p ≤ 1 for all primes p but a finite set P of them. Consequently, an adelic
quadratic Lagrangian looks like (110), where each element L(q̇v, qv, tv) has the same form (39).

Taking into account results obtained in the previous sections, we can write adelic path
integral for n-dimensional quadratic Lagrangians (and consequently, quadratic classical actions)
as

KA(x
′′, t′′;x′, t′) =

∏

v

λ1−n
v (1) λv

[
−

1

(2h)n
det

(
∂2

∂x′′(v)k∂x
′
(v)l

S̄0(x
′′
v , t

′′
v ;x

′
v, t

′
v)

)]

×

∣∣∣∣∣det
(
1

h

∂2

∂x′′(v)k∂x
′
(v)l

S̄0(x
′′
v , t

′′
v ;x

′
v, t

′
v)

)∣∣∣∣∣

1

2

v

χv

(
−
1

h
S̄(x′′v , t

′′
v ;x

′
v, t

′
v)

)
. (111)

Note that vacuum state Ω(|xp|p) transforms as

Ω(|x′′p|p) =

∫

Qp

Kp(x
′′
p, t

′′
p;x

′
p, t

′
p)Ω(|x

′
p|p)dx

′
p =

∫

Zp

Kp(x
′′
p, t

′′
p;x

′
p, t

′
p)dx

′
p. (112)
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As a consequence of (112) one has

∫

Zp

Kp(x
′′
p, t

′′
p;xp, tp)Kp(xp, tp;x

′
p, t

′
p)dxp = Kp(x

′′
p, t

′′
p;x

′
p, t

′
p), (113)

which may be viewed as an additional condition on p-adic path integrals in adelic quantum
mechanics for all but a finite number of primes p. Conditions (112) and (113) impose a restriction
on a dynamical system to be adelic. It is practically a restriction on time tp to have consistent
adelic time t.

6 Concluding Remarks

Evaluating path integrals simultaneously on real and p-adic n-dimensinal spaces, in the previous
sections we derived some general expressions related to probability amplitudes K(x′′, t′′;x′, t′)
in ordinary, p-adic and adelic quantum mechanics. It has been done for Lagrangians L(q̇, q, t)
which are polynomials at most the second degree in dynamical variables q̇k and qk, where
k = 1, 2, · · · , n.

It is worth pointing out that the formalism of ordinary and p-adic path integrals can be
regarded as the same at different levels of evaluation, and the obtained results have the same
form. In fact, this property of number field invariance has to be natural for general mathematical
methods in theoretical physics and fundamental physical laws (cf. [16]).
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