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ABSTRACT
This paper presents a novel semi-automatic image processing technique to estimate accu-
rately, and objectively, the disc parameters of a planetary body on an astronomical image. The
method relies on the detection of the limb and/or the terminator of the planetary body with
the VOronoi Image SEgmentation (VOISE) algorithm (Guio, P. and Achilleos, N. 2009). The
resulting map of the segmentation is then used to identify the visible boundary of the plane-
tary disc. The segments comprising this boundary are then used to perform a “best” fit to an
algebraic expression for the limb and/or terminator of the body. We find that we are able to
locate the centre of the planetary disc with an accuracy of a few tens of one pixel. The method
thus represents a useful processing stage for auroral “imaging” based studies.

Key words: methods: data analysis — methods: miscellaneous — methods: statistical —
techniques: image processing.

1 INTRODUCTION

During the last two decades, the Hubble Space Telescope (HST)
has provided resolved images of both Jupiter and Saturn in the ul-
traviolet (UV) spectral region. Such images capture with high sen-
sitivity and high resolution, the spectacular auroral phenomena oc-
curring in the polar regions of the gas giants as a result of energetic
magnetospheric particles raining down onto the planet’s upper at-
mosphere. Auroral images have become a particularly useful diag-
nostic tool for morphological characterisations of the aurora and
its boundaries. This is a crucial prerequisite for identifying the au-
rora’s physical origin (e.g. Prangé et al. 1996, 1998; Grodent et al.
2003b,a; Clarke et al. 2005; Badman et al. 2008; Lamy et al. 2009).

Imaging is also complementary to in situ measurements of the
plasma environment provided, e.g. by the Cassini spacecraft, cur-
rently orbiting Saturn. Combining remote imaging with in situ data
allows the study of magnetospheric processes and how they affect
the planet’s upper atmosphere, and ionosphere via the planet’s mag-
netic field (Dougherty et al. 1998; Clarke et al. 2002; Bunce et al.
2008; Talboys et al. 2009), and the footprint auroral emission of
satellites (Clarke et al. 2002; Bonfond et al. 2007; Wannawichian
et al. 2008). Such studies require accurate projection of the geo-
graphic and geomagnetic coordinate systems of the planet onto the
plane of the two-dimensional image. Auroral dynamics can be stud-
ied using time series of images. For these purposes, the location of
the planet centre needs to be known accurately. Unfortunately, HST
pointing parameters are not generally known with sufficient accu-
racy for such applications. The precision of the guide star catalogue
together with the uncertainty in the start time of the tracking motion
is on the order of 1 arc sec while it is desired to have an accuracy of
the order of 1 pixel, i.e. 0.02–0.03 arc sec for the Space Telescope
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imaging spectrograph (STIS) and Advanced Camera for Surveys
(ACS) instruments, in order to to locate any structure accurately or
to build polar projections of the auroral emissions.

In addition, ground-based observations with telescopes such
as the NASA Infrared Telescope Facility (IRTF) and United King-
dom Infra-Red Telescope (UKIRT), both located at Mauna Kea,
Hawaii, have provided images of Jupiter and Saturn with resolved
auroral structures in the infrared (IR) waveband. IR images and
spectra also allow the study of the dynamics and morphology of
the H+

3 molecular ion, a principal component of giant ionospheres
(Miller et al. 2006). Again, the location of the planet centre needs
to be known accurately to make use of these images, but for similar
reasons as the HST case, the pointing parameters are not known
with sufficient accuracy for the images from IRTF and UKIRT
telescopes. The resolution of the IRTF imaging facility and the
UKIRT imager-spectrometer (UIST) are respectively of the order
of 0.04 arc sec pixel−1 and 0.12 arc sec pixel−1 or better.

The problem of the location of the planet on auroral images
has been addressed by various authors and studies (e.g. Bonfond
et al. 2007; Nichols et al. 2008; Bonfond et al. 2009) but to our
knowledge no published work provides any detailed description of
the method used. Here we propose a novel semi-automatic method
to estimate accurately and objectively the position, size and orien-
tation of a planetary body. The method consists of three phases:
(i) detection of the limb of the planet disc using our image seg-
mentation algorithm VOronoi Image SEgmentation (VOISE) (see
Guio, P. and Achilleos, N. (2009) for details), (ii) selection of points
(Voronoi seeds) from the VOISE map that surround the limb, and
(iii) nonlinear fit (Levenberg-Marquardt algorithm) of the selected
set of data from VOISE to a disc model. Phase (i) is performed once
while phases (ii) and (iii) can be repeated in order to improve the
accuracy.

In section 2, we give analytic expressions for the projection
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Figure 1. Sketch of the geometry of the planet and the observer. The eccen-
tricity of the planetary ellipsoid is exaggerated for clarity.

of the limb and the terminator in the sky-plane. In section 3, the
method is developed. In section 4 we illustrate our method on IR
images of Jupiter collected with the IRTF and UKIRT telescopes.
We discuss the performance of our method and summarise our con-
clusions in section 5.

2 LIMB AND TERMINATOR EQUATIONS

A planet’s pressure surface can be modelled by an ellipsoid, more
precisely an oblate spheroid, with equatorial radius (semi-major
axis) re and polar radius (semi-minor axis) rp, where r2p =
r2e(1−e2), and e is the eccentricity of the spheroid. The parameters
are readily available, for instance, from the NASA Navigation and
Ancillary Information Facility SPICE system (Acton 1996). The
planet rotation vector is assumed to be along the z-axis with posi-
tive angular velocity ω as shown in Fig. 1. Without loss of general-
ity, we can further assume that the observer is located in the (x, z)-
plane, i.e. setting the longitude of the observer λ⊕=0, and the ob-
serving direction as the vector δ⊕ = (cosβ⊕, 0, sinβ⊕) where β⊕
is the planetocentric latitude (sub-Earth latitude), the (negative) an-
gle between the x-axis and δ⊕ in Fig. 1. The limb of the planet
consists of the points on the planet surface where the local normal
n̂S is perpendicular to the observing direction δ⊕, i.e. n̂S ·δ⊕ = 0.
The entire limb is contained in a single plane and is an ellipse, and
the normal vector to the plane containing the limb n̂L has coordi-
nates (cosβn̂L

, 0, sinβn̂L
) where

cosβn̂L
=

(1−e2) cosβ⊕√
(1−e2)2 cos2 β⊕ + sin2 β⊕

(1)

sinβn̂L
=

sinβ⊕√
(1−e2)2 cos2 β⊕ + sin2 β⊕

(2)

The ellipse of the limb can then be projected onto the plane of the
sky (xs, ys), i.e. on a plane perpendicular to the observing direction
δ⊕ (see Fig. 1). The projection of the limb in the sky-plane is also
an ellipse with the following algebraic equation in the sky plane
coordinate system

x2s
r2e

+
y2s

r2e(1−e2 cos2 β⊕)
= 1. (3)

where the ys-axis is chosen to lie in the (x, z)-plane. It can be seen
from Eq. (3) that the limb always appears with a semi-major axis
equal to the equatorial radius of the planet and a semi-minor axis
between the polar radius of the planet (in the case of an equatorial
view β⊕ = 0) and the equatorial radius of the planet (in the case
of a polar view β⊕ = ±π/2). Equivalently the eccentricity of the
ellipse formed by the limb in the sky is eL = e cosβ⊕.

The terminator (boundary between day and night side) can be
visualised as the limb for the direction corresponding to the loca-
tion of the Sun δ� (i.e. such that the local normal n̂T is perpen-
dicular to δ�) but projected onto the sky plane along the observ-
ing direction δ⊕, i.e. directed towards Earth. The Sun direction is
defined by its planetocentric latitude β� (sub-solar latitude) and
its relative longitude (solar phase angle) to the observing direction
∆λ = λ�−λ⊕. In the coordinate system (x′, y′, z′) where z′ is
also aligned to the rotation axis of the planet but the plane (x′, z′)
has been rotated about the planet rotation axis to contain the Sun
direction, the vector n̂T has coordinates (cosβn̂T

, 0, sinβn̂T
)

where

cosβn̂T
=

(1−e2) cosβ�√
(1−e2)2 cos2 β� + sin2 β�

, (4)

sinβn̂T
=

sinβ�√
(1−e2)2 cos2 β� + sin2 β�

(5)

In the situation where δ⊕ × n̂T = 0, the limb and the terminator
are coincident. Otherwise the vector δ⊕ × n̂T is contained in the
sky plane (since it is perpendicular to δ⊕) and in the plane of the
terminator. Therefore the projections onto the sky-plane of the limb
and the terminator intersect at two points called the cusps, and the
line joining the two cusps has direction δ⊕ × n̂T .

The two cusp points define the major axis of the ellipse formed
by the sky projection of the terminator. This shape is a tilted ellipse
with tilt angle θT with respect to the xs-axis given by

θT =

tan−1

(
(1−e2) cosβ� sin ∆λ

(1−e2) cosβ� cos ∆λ sinβ⊕− sinβ� cosβ⊕

)
. (6)

The semi-major and semi-minor axes of the projection of the full
terminator (i.e. its visible and invisible parts) onto the sky-plane are

a2T = (u2+v2)t21 (7)

b2T = (u2+v2)t22. (8)

where the vector u = (u, v) lies in the direction defined by
δ⊕×n̂T ,

u = (1−e2) cosβ� cos ∆λ sinβ⊕ − sinβ� cosβ⊕, (9)

v = (1−e2) cosβ� sin ∆λ, (10)

and t1 and t2 are scalars analytically derivable from u and v

t21 =
r2e(1−e2 cos2 β⊕)

u2(1−e2 cos2 β⊕) + v2
, (11)

t22 =
r2e(1−e2β�)(ad−bc)2

(dv+bu)2(1−e2β�) + (cv+au)2
(12)

where eβ� is the eccentricity of the ellipse formed by the termi-
nator in its own plane and can be expressed as function of the Sun
planetocentric latitude β� and the eccentricity of the spheroid e

e2β� = e2
(

1− sin2 β�
1− e2 cos2 β�

)
, (13)
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and where

a = cos ∆λ, (14)

b = − sinβn̂T
sin ∆λ, (15)

c = sin ∆λ sinβ⊕, (16)

d = sinβn̂T
cos ∆λ sinβ⊕+ cosβn̂T

cosβ⊕ (17)

Finally the signed distance (as measured along n̂T ) between
a point (xT , yT ) of the projection of the terminator onto the sky-
plane, and the plane of the terminator itself is given by

DT = (cosβn̂T
sin ∆λ)xT+

(− cosβn̂T
cos ∆λ sinβ⊕+ sinβn̂T

cosβ⊕)yT , (18)

and points with DT>0 belong to the visible terminator (from the
Earth observer’s point of view) while points with DT<0 are hid-
den, and the case DT=0 corresponds to cusp points. Similarly the
signed distance (measured along δ�) between a point of the limb’s
projection onto the sky-plane (xL, yL), and the plane perpendicular
to the direction of the Sun δ� is given by

DL = (cos δ� sin ∆λ)xL+(
− cos δ� cos ∆λ sinβ⊕+ sin δ�

cosβ⊕
1−e2

)
yL, (19)

and points such that DL>0 belong to the illuminated limb while
points such that DL<0 are in the shade, and the case DL=0 corre-
sponds to cusp points.

3 PLANETARY DISC EXTRACTION METHOD

As pointed out the proposed method to extract the orientation and
shape of the planetary disc from an image consists of three phases,
described in the following sections.

3.1 Phase (i) VOISE image reduction

The first stage consists of partitioning the image into regions, i.e.
simplify and/or change the representation of an image into some-
thing that is more physically meaningful and easier to analyse.
VOISE is a dynamic algorithm for partitioning the underlying pixel
grid of an image into regions according to a prescribed homogene-
ity criterion (Guio, P. and Achilleos, N. 2009). A VOISE segmen-
tation returns a map of the image in the form of a Voronoi dia-
gram (VD) where each Voronoi region (VR) is a polygon, within
which the data are homogeneous with respect to prescribed crite-
ria. When running the VOISE segmentation algorithm on an image
of a planetary object we expect that the transition region between
the illuminated planet and the sky (i.e. the limb or the terminator)
consists of a ring of relatively small Voronoi polygons, indicating
that at this region, the intensity is changing very quickly over small
spatial scales. In this representation we can classify the “ring” of
tiny Voronoi polygons surrounding the larger central polygons as
a cluster in itself that can be used for fitting a terminator and/or a
limb. The map generated at the end of the VOISE division phase
provides the largest number of seeds and smallest Voronoi poly-
gons (see Guio, P. and Achilleos, N. (2009) for more detail).

3.2 Phase (ii) points selection

The selection of seeds from the computed VOISE map requires
“crude” estimates for the planet centre (xc, yc), the equatorial ra-
dius (semi-major axis) re, the polar radius (semi-minor axis) rp
and the tilt angle α. The seeds from the segmentation are consid-
ered part of the neighbourhood of the limb and/or terminator if they
lie inside a prescribed elliptic torus. A point belongs to the torus if
its coordinates (x, y) fulfil the following inequalities

ε2m 6
x′

2

a2
+
y′

2

b2
6 ε2M , (20)

where εm and εM (with εm < 1 < εM ) represent the inner and
outer ellipses of the torus, and where (x′, y′) are obtained from
(x, y) by translation with −(xc, yc) followed by rotation with−α,
i.e. [

x′

y′

]
=

[
cosα sinα
− sinα cosα

] [
x−xc
y−yc

]
. (21)

As well as satisfying the condition given by Eqs. (20–21), the poly-
gons used in the fitting procedure must also have a surface area
smaller than a prescribed value (equivalently a “length scale” L
smaller than a maximum prescribed value LM ). The maximum
length scale LM has to be larger than the minimum distance be-
tween seeds dm that is set for the VOISE division phase.

It is also possible to filter out “bands” of polar angle in order
to remove those regions with auroral emission clearly outside the
planetary limb as illustrated in section 4.

3.3 Phase (iii) fitting of points

Fitting of quadrics (such as circles and ellipses) to a given set of
points in the plane is a problem that arises in many application ar-
eas, e.g. computer graphics, pattern recognition, coordinate meteo-
rology. Many algorithms minimise a quantity in some least-square
sense. Such fitting algorithms for quadrics can be separated into
categories of “best fit” (“geometric fit”) and “algebraic fit” (Gan-
der et al. 1994; Fitzgibbon et al. 1999). In addition the clustering
technique is another technique to fit an ellipse, such as methods
based on the Hough transform (Yuen et al. 1989).

In the “best fit”, the quantity to minimise is the geometric dis-
tance between the fitted curve and the given set of points. In this
case, curves may be represented in parametric form, which is well
suited for minimising the sum of the squares of the distances.

In the “algebraic fit” the curve is represented algebraically,
i.e. in the plane by an equation of the form F (x, y) = 0. If a
point is on the curve, then its coordinates (x, y) are a zero of the
function F and represent an algebraic distance. These methods are
usually equivalent to solving a linear system of equations subject
to some constraint on the quadric coefficients (Bookstein 1979;
Taubin 1991; Fitzgibbon et al. 1999). The constraint may be such
that the optimal solution is computed directly, and no iterations are
needed. The disadvantage of the “algebraic fit” is that we are un-
certain what we are minimising in a geometrical sense and in many
cases those constraints lead to fits which are not invariant under Eu-
clidean transformations such as translations and rotations, i.e. dif-
ferent coordinate systems produce different fitted curves. Another
limitation is that these methods can fit only one primitive (or shape)
at a time, therefore the data should be segmented into a set of ba-
sic shapes before fitting each shape independently. Nonetheless the
algebraic solution is useful as an initial guess for the geometrical
fit.

We have developed a “best fit” tool based on the the

c© 2010 RAS, MNRAS 000, 1–9
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Levenberg-Marquardt method (Marquardt 1963), for solving non-
linear least-square problems. This method performs a minimisa-
tion of the sum of the squares of the weighted distances between
the m selected seeds si (i=1 . . .m) from the Voronoi map, and
the “best”-fitting curve with parametric representation (x, y) =
f(φ;p) (Bard 1974; Gander et al. 1994). The minimisation con-
sists in adjusting iteratively the set of curve parameters {φi} (that
locate the “best” points on the curve), together with the vector of
global parameters p (that describe the global shape of the curve).
Mathematically the function to minimise is written

Q(φ1, φ2, . . . , φm,p) =

m∑
i=1

‖si − f(φi;p)‖2

σ2
i

. (22)

The parametric representation f for a circle and an ellipse are given
by Eq. (23) and Eq. (24) respectively. σ2

i represents the variance
of the location of a given seed. An estimate for this uncertainty
can be readily computed as the mean distance from the seed to all
the points within the VR. Alternatively a length scale Li of the
polygon can be inferred from the square root of its surface area
(Guio, P. and Achilleos, N. 2009), and can be thought of as the “av-
erage” section length through the polygon in all directions. Thus
considering the disc with same surface area A as the polygon, the
variance in distance of the disc points from its centre is given by
σ2 = A/(2π) = L2/2 (where surface area is used as the weight-
ing factor for variance). This expression can thus be used as a rea-
sonable approximation for the variance of the location of the seeds.

The Levenberg-Marquardt method is optimised to switch con-
tinuously from a method which quickly approaches the minimum
(the steepest descent method), when far from the minimum, to a
more precise but slower method (the Newton method), when ap-
proaching the minimum.

Finally we note that a priori knowledge about any of the pa-
rameters can be used to constrain the fitting, otherwise an appropri-
ate number of free parameters may be simultaneously determined
from the fitting procedure.

3.3.1 Fitting a circle

The parametric form used for the circle is given by

f(φ; [xc, yc, r]) =

[
xc
yc

]
+r

[
cosφ
sinφ

]
. (23)

where xc, yc and r are respectively the coordinates of the centre and
the radius of the circle. Note that the values of φ for each data point
si are updated along with the global parameters p = [xc, yc, r]
at each iteration. The parameter φ represents the polar angle, mea-
sured from the x-axis, of the line joining the centre (xc, yc) of the
circle to the point on the circle which is associated with the relevant
data point.

3.3.2 Fitting an ellipse

The parametric form used for the ellipse is given by

f(φ; [xc, yc, a, b, α]) =[
xc
yc

]
+

[
cosα − sinα
sinα cosα

] [
a cosφ
b sinφ

]
(24)

where xc, yc, a, b and α are respectively the coordinates of the
centre, the semi-major axis, semi-minor axis and the tilt angle of
the ellipse (angle measured from the x-axis to the semi-major axis).
In this case the parameter φ does not represent the polar angle,

measured from the x-axis, of the line joining the centre (xc, yc) of
the ellipse to the point on the ellipse. The parameter φ is sometimes
referred to as eccentric anomaly and is related to the polar angle θ
by the following equation:

b tanφ = a tan(θ−α). (25)

3.3.3 Fitting the limb and the terminator

Note that the the limb and terminator can be represented in a single
parametric form [xLT (φ), yLT (φ)] = fLT (φ) using the equations
given in section 2. This shape can be fitted by considering the three
following transformations: homothetic transformation with scale
factor c, rotation with angle α and translation by (xc, yc)

f(φ; [xc, yc, c, α]) =[
xc
yc

]
+c

[
cosα − sinα
sinα cosα

] [
xLT (φ)
yLT (φ)

]
(26)

In this case the global parameters for fLT (φ) are the geometric
parameters β⊕, β�, ∆λ, re, rp introduced in section 2 (as well as
the distance from the observer to the planet to convert projected
length into pixels units). These parameters may be determined by
e.g. SPICE. The unknown global parameters to optimise for f(φ)
are the planet centre (xc, yc), the scale factor c and tilt angle α.

3.4 Algorithm

Phase (i) is performed once while phases (ii) and (iii) can be iter-
ated. The iteration process improves the selection of seeds for the fit
and removes any “outliers” that might be included using the crude
estimates for the parameters, therefore improving the accuracy of
the fit. The tolerance on fractional improvement of Q defined in
Eq. (22) is set to 10−3. Such tolerance ensures convergence of the
Levenberg-Marquardt algorithm in a few iterations leading to an
accuracy of the estimate of the centre coordinates and the radii of
the order of one pixel or better.

4 APPLICATION TO PLANETARY IMAGES

4.1 Ellipse for complete planet

The image presented here (see upper panel of Fig. 2) to illustrate
the location method of a complete planetary disc has been obtained
using the 3.8 m UKIRT at Mauna Kea observatory, Hawaii, with
the near-IR UIST guide camera (Ramsay Howat et al. 2004). This
image has not been flux calibrated but the sky background noise
has been subtracted, and the intensities are thus in arbitrary units.

UIST is a 1–5µm imager-spectrometer with a
1024×1024 pixels InSb array. In imaging mode there are
two plate scales available, with resolution 0.12 arc sec/pixel and
0.06 arc sec pixel−1, giving fields of view of 2×2 arc min2 and
1×1 arc min2 respectively.

UIST was used to observe Jupiter at a resolution of
0.12 arc sec pixel−1, with the Brackett alpha filter (50 percent
cut-on at 4.024µm and 50 percent cut-off at 4.078µm) in expo-
sures of 10 s. The Brackett line is an IR emission line of the H atom.
Thus this emission should contribute many of the photons as well as
H+

3 . In this part of the IR spectrum, the emission of the giant planets
is dominated by several lines of H+

3 , and the spectral measurement
of individual lines allows determination of H+

3 temperatures and

c© 2010 RAS, MNRAS 000, 1–9
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Figure 2. In the upper panel, median-filtered IR image collected by UKIRT
(in arbitrary intensity unit) and in the lower panel the resulting Voronoi
tessellation from the VOISE algorithm. The 1612 tiles of the tessellation
are uniformly coloured using the median intensity of the pixels that are
lying within each polygon. The axes are labelled in pixels unit and the point
with coordinates (0, 0) is the centre of the image. The colour code for both
images is shown in Fig. 4.

column densities of the planet (Miller et al. 2006). The UIST cam-
era was used in conjunction with the dual-beam polarimeter module
IRPOL2 for spectropolarimetry measurements under an observa-
tion campaign of Jupiter on August 4, 2008.

Fig. 2 illustrates phase (i) of detection of the limb using
VOISE on an image collected by UKIRT at 10:13:00 UT. The size
of the image is 679×639 pixels and it has been pre-processed by
a nonlinear filter —a median filter— of size 11×11 pixels in order
to lower noise in the image (Gonzalez & Woods 2007). Whenever
such noise filter is used as pre-processing to the VOISE segmen-
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Figure 3. Selection of the seeds from the VOISE tessellation for two it-
erations of the phases (ii) and (iii). During the first iteration (upper plot)
666 seeds are selected as neighbours of the limb while for the second iter-
ation the numbers of seeds considered for the fit is reduced to 583 seeds.
The size of each coloured marker is proportional to the surface area of the
selected polygon. The limits of the torus are shown in thick red lines while
the nominal ellipse is shown as a thin red line and the red cross is the centre
of the torus.

tation, the size of the mask should be chosen to be larger than the
minimum seed distance dm to be of any effect. The main idea of
this filter is to slide a window with specified size and replace each
centre pixel of the window by the median of the pixels lying in
the window. The VOISE parameters (Guio, P. and Achilleos, N.
2009) are (i) division phase: d2m = 9 pixels2, pD = 97 percent
(ii) merging phase: pM = 50 percent, ∆µ = 20 percent and
∆H = 30 percent (iii) two iterations in the regularisation phase.
The resulting segmentation contains 1612 polygons (lower panel
in Fig. 2). Note the compactness of the polygons in regions with
small length scales along the limb and near the equator.

Fig. 3 illustrates phase (ii) of selecting the set of points from
the segmentation to be used as the neighbourhood of the plane-
tary limb. The upper panel shows the first iteration, using crude

c© 2010 RAS, MNRAS 000, 1–9



6 P. Guio and N. Achilleos

Table 1. Parameters of the fitted ellipse resulting from two iterations of phases (ii) and (iii). The ellipses are shown in Fig. 4. Note that the tilt angle has not
been fitted and has been fixed to α = 0. # iter is the number of iterations performed in order to converge with the prescribed tolerance and the normalised χ2

provides an indication of the goodness of the fit. The “guess”, “fit 1” and “fit 2” ellipses are shown in Fig. 4.

xc yc a b α # iter χ2

guess 0.0 0.0 289.9 271.1 0

fit 1 −14.8±0.4 −4.2±0.7 287.4±0.4 270.7±1.2 0 3 4.10

fit 2 −15.5±0.3 −3.5±0.7 287.6±0.4 272.2±1.1 0 3 2.97

x [pixel]

y 
[p

ix
el

]
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Figure 4. Initial guess for the ellipse and the ellipses resulting from the two
successive fits for the original image shown in Fig. 2. The points selected
for each fit are as shown in Fig. 3.

estimates of the ellipse parameters to define the large torus with
εm = 0.9 and εM = 1.1, and a relatively large scale length param-
eter LM = 16 pixels. The lower panel shows the selection process
for the second iteration with parameters provided by the result of
the first fit. The torus has been re-centred and its thickness reduced
by setting εm = 0.9 and εM = 1.05. The scale length parame-
ter has also been reduced to LM = 12 pixels (to be compared to
dm = 3 pixels). In both iterations, seeds in the neighbourhood of
the faint emission outside the limb near the South pole have been
rejected whenever the polar angle of the seed ϕ with respect to the
centre C(xc, yc) is in the range −80 ◦<ϕ< − 65 ◦, i.e. the seed
lies inside the grey shaded sector depicted in Fig. 3.

Fig. 4 illustrates phase (iii) consisting of the nonlinear fitting
of the selected points (shown in Fig. 3) to an ellipse in parametric
form given by Eq. (24). The planetary disc modelled as a single el-
lipse is justified in the situation where the disc is nearly fully illumi-
nated, as is the case here. The curve labelled “guess” corresponds to
crude estimates of the ellipse parameters, i.e. the coordinates of the
planet centre correspond to the centre of the image and the equato-
rial and polar radii are derived using SPICE. The curve “fit1” is the
curve with parameters after first fit, i.e. with the seeds as seen in the
upper panel of Fig. 3 and the the curve labelled “fit2” corresponds
to seeds as seen in the lower panel of Fig. 3.

The parameters, error estimates and fitting parameters are
given in Table 1. It is interesting to note that the estimated param-
eters related to the x-direction (xc and a) have smaller errors com-
pared to the parameters relates to the y-direction (yc and b) which
is a consequence of the large sampling of seeds around the equator.
We have also checked, for consistency, that the curve parameters
{φi} and the global parameters p together with their errors {∆φi}
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Figure 5. Image scaled in arc sec and the projection in the sky-plane of a
latitude-longitude grid of Jupiter computed using data from SPICE and the
fitted parameters of Jupiter’s disc.

and ∆p provide error in positioning of the points consistent with
the values used for the weights σi in Eq. (22).

Fig. 5 presents the image with a (planetocentric) latitude-
longitude grid (with 10 ◦ step in latitude and 20 ◦ in longitude)
computed using the coordinates of the centre of Jupiter’s disc ob-
tained from the nonlinear fitting and the projection geometry com-
puted using SPICE. The Central Meridian Longitude (CML) of
Jupiter at the time of the observation is 157.5 deg. The limb is
shown on the right side of the planet (red solid line) while the ter-
minator is shown on the left side (green solid line). The parameters
are β⊕ = −1.5 ◦, β� = −1.4 ◦ and ∆λ = 5.3 ◦. The equato-
rial radius for the final fit is re = 70958 km with an eccentricity
e = 0.32 while the values provided by SPICE are re = 71492 km
and e = 0.35. The illuminated limb in the considered near-IR
waveband is thus slightly smaller than Jupiter’s 1 Bar pressure sur-
face as given by SPICE.

4.2 Circle for partial planet

The image presented in this section (upper panel in Fig. 6) has been
chosen to illustrate the case with partial occlusion of the planetary
disc. It was collected with NASA’s 3.8 m IRTF at Mauna Kea ob-
servatory, Hawaii using the imaging facility (Shure et al. 1994) at
wavelength 3.43µm (a wavelength sensitive to H3+). The image
was collected during a campaign on June 28, 1995 at 11:14:52 UT.
This image has not been flux calibrated but the sky background
noise has been subtracted, and the intensities are thus in arbitrary
units.

The NSFCAM is a 1–5µm imager with a 256×256 pixels
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Figure 6. In the top panel, IRTF image processed by a median filter fol-
lowed by histogram equalisation (in arbitrary intensity unit). In the lower
panel the result of the segmentation by VOISE. The colour code for the
494 tiles is the same as for the segmentation presented in the lower panel
in Fig. 2. The axes are labelled in pixels unit and coordinates (0, 0) cor-
respond to the centre of the planet provided by the original Image Reduc-
tion and Analysis Facility (IRAF) data reduction, taking into account an
estimate based on the telescope pointing (Satoh & Connerney 1999). The
colour code for both images is shown in Fig. 8.

InSb detector. Three different magnifications are avail-
able: 0.3 arc sec pixel−1, 0.15 arc sec pixel−1 and
0.06 arc sec pixel−1 corresponding to a field of view of
76.8 arc sec, 37.9 arc sec and 14.1 arc sec respectively.
The NSFCam has been upgraded (NSFCam 2) with a

Table 2. Resulting parameters for the circle during the two iterations of fit.
The number of iterations and the resulting normalised χ2 are also given.
The corresponding “guess”, “fit 1” and “fit 2” circles are shown in Fig. 8.

xc yc R # iter χ2

guess 0.0 0.0 143.9

fit 1 −0.3±0.9 2.5±0.9 149.8±0.9 3 2.87

fit 2 −0.3±0.8 3.5±0.8 150.3±0.8 3 1.71

2048×2048 pixels Hawaii-2RG detector. The image scale
will be 0.04 arc sec pixel−1 with field of view 80×80 arc sec2.

Fig. 6 shows the results of phase (i) of the method using
VOISE on an image collected by UKIRT at 0721 UT. The im-
age has size 256×256 pixels. Note that the image has been pre-
processed by a median filter of size 7×7 pixels to lower noise level,
followed by a histogram equalisation (Gonzalez & Woods 2007).
The histogram equalisation is performed in order to increase the
global contrast of the original image (which is shown in Fig. 9).
It consists of a nonlinear adjustment of the intensities in order to
better distribute the image intensity histogram and accomplishes
this by effectively “spreading out” the most frequent intensity val-
ues. Alternatively, the contrast in the low intensity range can also
be enhanced by taking the logarithm of the ratio of the image pix-
els relative to the estimated noise level, if available. Note that we
haven’t pre-processed the UKIRT image for the first example as
the limb boundary was already substantially more intense than the
background. The VOISE parameters have been set to (i) division
phase: d2m = 4 pixels2, pD = 98 percent (ii) merging phase:
pM = 50 percent, ∆µ = 20 percent and ∆H = 30 percent
(iii) two iterations in the regularisation phase.

Fig. 7 illustrates phase (ii) of selecting the set of points from
the Voronoi map to be used as within the limb neighbourhood. Note
that the points with polar angle ϕwith respect to the centre estimate
C(xc, yc) such that −115 ◦<ϕ< − 65 ◦ (inside the grey shaded
sector in Fig. 7) are filtered out to avoid bias from the seeds cor-
responding to the the emission outside the limb which has been
highlighted by the histogram equalisation.

Fig. 8 illustrates phase (iii) consisting of the nonlinear fitting
of the selected points (shown in Fig. 7) to a circle in parametric
form Eq. (23). The global parameters of the circle fitted together
with estimates for the error are given in Table 2. The circle as a
model for the disc is justified in situations where only a portion
of the planetary disc is in the field of view, as it is the case in the
present image. Note also that in this case the distribution of the
seeds is uniform from the equator to the South pole and therefore
the estimated parameters related to the x-direction have similar er-
rors as those related to the y-direction.

Fig. 9 presents the image with the same (planetocentric)
latitude-longitude grid resolution as in Fig. 5 calculated with the
coordinates of the centre and radius of Jupiter’s disc obtained from
the nonlinear fitting, and the projection geometry from SPICE. The
CML of Jupiter at the time of the observation is 13.5 deg. The limb
and terminator are shown as red and green solid lines respectively,
and the thick black line is the noon-meridian. The parameters pro-
vided by SPICE are β⊕ = −2.9 ◦, β� = −2.8 ◦ and ∆λ = 5.3 ◦.
The radius for the final fit (“fit 2”) is re = 72466 km. The illumi-
nated limb in this waveband is slightly larger than Jupiter’s 1 bar
pressure surface. We also tried to fit an ellipse and it leads to a simi-
lar estimate for the centre coordinates but with larger error bars due
to the increased degrees of freedom.

c© 2010 RAS, MNRAS 000, 1–9
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Figure 7. Seeds selection for two iterations of phase (ii). For details see
Fig. 3.

5 DISCUSSION

We have presented a novel semi-automatic method to estimate ac-
curately, and objectively, the disc parameters in an image of an
illuminated planetary disc. The method is based on the “best” fit
of a set of points selected from a segmentation map generated by
VOISE to a curve described in a parametric form.

The segmentation phase can be improved by pre-processing
the image using different techniques such as noise filtering and con-
trast adjustment.

Basic shapes to describe the boundary of a planetary disc in-
clude the circle and the ellipse. We also provide analytic expres-
sions for the projection in the sky-plane of the limb and terminator
of a planet modelled as ellipsoid. These expressions can easily be
used to describe both limb and terminator as single curve in para-
metric form.

Note that the VOISE algorithm generates “intermediate” tes-
sellations, one at the end of the division phase and one at the end
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Figure 8. Initial guess for the circle and the circles “fit 1” and “fit 2” result-
ing from two iterations of the phases (ii) and (iii). The selected points for
each iteration are shown in Fig. 7.
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Figure 9. Original image scaled in arc sec together with the sky-plane pro-
jection of a latitude-longitude grid computed using data from SPICE and
the fitted parameters of Jupiter’s disc, i.e. the circle parameters.

of the merging phase. It is worth noting that fitting an ellipse gives
the best result (smallest χ2) for the regularised tessellation (i.e. af-
ter merging), but errors in the fitted parameters are smaller when
considering the map at the end of the division phase. The largest
χ2 is obtained for the map generated at the end of the merging
phase. This confirms that the tessellation obtained after division is
optimum for our purposes. The reason for this is that VOISE merg-
ing generates more regular polygons, but very slightly degrades the
position information from the division phase.

We have shown that our novel objective method to locate the
planetary disc on images provides improved estimates of the centre
position (as compared to the guide star catalogue) as well as the
altitude when the disc is illuminated for the corresponding obser-
vational waveband.
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We also showed that the use of histogram equalisation en-
hances the auroral emission outside the limb and therefore allows
a better and unbiased estimate of the limb by allowing removal of
points from this auroral emission region.

The software implementing this method is written in MAT-
LAB R© and can be made available by request to the authors.
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