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Abstract

The (G, θ)-Lie algebras are structures which unify the Lie algebras
and Lie superalgebras. We use them to produce solutions for the quan-
tum Yang–Baxter equation. The constant and the spectral-parameter
Yang-Baxter equations and Yang-Baxter systems are also studied.

1 Introduction

The (G, θ)-Lie algebras are structures which unify the Lie algebras and Lie
superalgebras, and, in this paper, they will be used to produce solutions
for the celebrated quantum Yang–Baxter equation (QYBE). The theory of
integrable Hamiltonian systems makes great use of the solutions of the one-
parameter form of the QYBE (which are related to the two-parameter form
of the QYBE), since coefficients of the power series expansion of such a
solution give rise to commuting integrals of motion. Yang–Baxter systems
emerged from the study of quantum integrable systems, as generalizations
of the QYBE related to nonultralocal models.

This paper presents some of the latest results on Yang-Baxter opera-
tors from algebra structures and related topics, such as enhanced versions of
Theorem 1 (from [17]). Also, we study Yang-Baxter operators from Lie su-
peralgebras and from (G, θ)-Lie algebras. The following authors constructed
Yang-Baxter operators from Lie (co)algebras and Lie superalgebras before:
[12], [1], [14], etc. We extend some of the above results to Yang-Baxter
systems and spectral-parameter dependent Yang-Baxter equations.
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2 The constant QYBE

Throughout this paper k is a field. All tensor products appearing in this
paper are defined over k. For V a k-space, we denote by τ : V ⊗V → V⊗V

the twist map defined by τ(v⊗w) = w⊗v, and by I : V → V the identity
map of the space V.

We use the following notations concerning the Yang-Baxter equation.
If R : V⊗V → V⊗V is a k-linear map, then R12 = R⊗I,R23 =

I⊗R,R13 = (I⊗τ)(R⊗I)(I⊗τ).

Definition 2.1. An invertible k-linear map R : V⊗V → V⊗V is called a
Yang-Baxter operator if it satisfies the equation

R12 ◦R23 ◦R12 = R23 ◦R12 ◦R23 (2.1)

Remark 2.2. The equation (2.1) is usually called the braid equation. It is a
well-known fact that the operator R satisfies (2.1) if and only if R◦τ satisfies
the constant QYBE (if and only if τ ◦R satisfies the constant QYBE):

R12 ◦R13 ◦R23 = R23 ◦R13 ◦R12 (2.2)

Remark 2.3. (i) τ : V ⊗ V → V⊗V is an example of a Yang-Baxter
operator.

(ii) An exhaustive list of invertible solutions for (2.2) in dimension 2 is
given in [7] and in the appendix of [9].

(iii) Finding all Yang-Baxter operators in dimension greater than 2 is
an unsolved problem.

Let A be a (unitary) associative k-algebra, and α, β, γ ∈ k. We define
the k-linear map: RA

α,β,γ : A⊗A → A⊗A, RA
α,β,γ(a⊗b) = αab⊗1+β1⊗ab−

γa⊗b.

Theorem 2.4. (S. Dăscălescu and F. F. Nichita, [3]) Let A be an associa-
tive k-algebra with dimA ≥ 2, and α, β, γ ∈ k. Then RA

α,β,γ is a Yang-Baxter
operator if and only if one of the following holds:

(i) α = γ 6= 0, β 6= 0;
(ii) β = γ 6= 0, α 6= 0;
(iii) α = β = 0, γ 6= 0.
If so, we have (RA

α,β,γ)
−1 = RA

1

β
, 1
α
, 1
γ

in cases (i) and (ii), and (RA
0,0,γ)

−1 =

RA
0,0, 1

γ

in case (iii).

Remark 2.5. The Yang–Baxter equation plays an important role in knot
theory. Turaev has described a general scheme to derive an invariant of
oriented links from a Yang–Baxter operator, provided this one can be “en-
hanced”. In [13], we considered the problem of applying Turaev’s method to
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the Yang–Baxter operators derived from algebra structures presented in the
above theorem. We concluded that Turaev’s procedure invariably produces
from any of those enhancements the Alexander polynomial of knots.

Remark 2.6. Let us observe that R′ = RA
α,β,α◦τ is a solution for the equation

(2.2). In dimension two, after getting rid of the auxiliary parameters, we
obtain the simplest form of R′:









1 0 0 0
0 1 0 0
0 1− q q 0
η 0 0 −q









(2.3)

where η ∈ {0, 1}, and q ∈ k − {0}. The matrix form (2.3) was obtained
as a consequence of the fact that isomorphic algebras produce isomorphic
Yang-Baxter operators, and it is compatible with Remark 2.3 (ii).

3 The two-parameter form of the QYBE

Formally, a colored Yang-Baxter operator is defined as a function R : X ×
X → Endk(V ⊗ V ), where X is a set and V is a finite dimensional vector
space over a field k. Thus, for any u, v ∈ X, R(u, v) : V ⊗ V → V ⊗ V

is a linear operator. We consider three operators acting on a triple tensor
product V ⊗ V ⊗ V , R12(u, v) = R(u, v) ⊗ I, R23(v,w) = I ⊗ R(v,w), and
similarly R13(u,w) as an operator that acts non-trivially on the first and
third factor in V ⊗ V ⊗ V .

R satisfies the two-parameter form of the QYBE if:

R12(u, v)R13(u,w)R23(v,w) = R23(v,w)R13(u,w)R12(u, v) (3.4)

∀ u, v, w ∈ X.

Theorem 3.1. (F. F. Nichita and D. Parashar, [15]) Let A be an associative
k-algebra with dimA ≥ 2, and X ⊂ k. Then, for any two parameters
p, q ∈ k, the function R : X ×X → Endk(A⊗A) defined by

R(u, v)(a ⊗ b) = p(u− v)1 ⊗ ab+ q(u− v)ab⊗ 1− (pu− qv)b⊗ a, (3.5)

satisfies the colored QYBE (3.4).

Remark 3.2. If pu 6= qv and qu 6= pv then the operator (3.5) is in-
vertible. Moreover, the following formula holds: R−1(u, v)(a ⊗ b) =

p(u−v)
(qu−pv)(pu−qv)ba⊗ 1 + q(u−v)

(qu−pv)(pu−qv)1⊗ ba− 1
(pu−qv)b⊗ a.
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Algebraic manipulations of the previous theorem lead to the following
result.

Theorem 3.3. Let A be an associative k-algebra with dimA ≥ 2 and q ∈ k.
Then the operator

S(λ)(a⊗ b) = (eλ − 1)1 ⊗ ab+ q(eλ − 1)ab⊗ 1− (eλ − q)b⊗ a (3.6)

satisfies the one-parameter form of the Yang-Baxter equation:

S12(λ1 − λ2)S
13(λ1 − λ3)S

23(λ2 − λ3) =

= S23(λ2 − λ3)S
13(λ1 − λ2)S

12(λ1 − λ2). (3.7)

If eλ 6= q, 1
q
, then the operator (3.6) is invertible.

Moreover, the following formula holds:

S−1(λ)(a⊗ b) = eλ−1
(qeλ−1)(eλ−q)

ba⊗ 1+ q(eλ−1)
(qeλ−1)(eλ−q)

1⊗ ba− 1
eλ−q

b⊗a.

Remark 3.4. The operator from Theorem 3.3 can be obtained from Theorem
2.4 and the Baxterization procedure from [5] (page 22).

Hint: Consider the operator RA
q, 1

q
, 1
q

: A⊗A → A⊗A, a⊗b 7→ qab⊗1+

1
q
⊗ab− 1

q
a⊗b and its inverse, RA

q, 1
q
,q
.

4 Yang-Baxter systems

From the physical point of view the above relations are used to study a
certain class of quantum integrable systems, the ultralocal models [6, 10].
However, interesting physical models which have nonultralocal interactions
appear, and they require the study of extensions of the QYBE [8, 9]. In the
following we describe the Yang-Baxter systems in terms of the Yang-Baxter
commutators.

Let V , V ′, V ′′ be finite dimensional vector spaces over the field k, and
let R : V⊗V ′ → V⊗V ′, S : V⊗V ′′ → V⊗V ′′ and T : V ′⊗V ′′ → V ′⊗V ′′

be three linear maps. The Yang–Baxter commutator is a map [R,S, T ] :
V⊗V ′⊗V ′′ → V⊗V ′⊗V ′′ defined by

[R,S, T ] := R12S13T 23 − T 23S13R12. (4.8)

Note that [R,R,R] = 0 is just a short-hand notation for writing the constant
QYBE (2.2).

A system of linear maps W : V⊗V → V⊗V, Z : V ′⊗V ′ →
V ′⊗V ′, X : V⊗V ′ → V⊗V ′, is called a WXZ–system if the following
conditions hold:

[W,W,W ] = 0 [Z,Z,Z] = 0 [W,X,X] = 0 [X,X,Z] = 0 (4.9)
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Remark 4.1. It was observed that WXZ–systems with invertible W,X and
Z can be used to construct dually paired bialgebras of the FRT type leading
to quantum doubles. The above is one type of a constant Yang–Baxter
system that has recently been studied in [15] and also shown to be closely
related to entwining structures [2].

Theorem 4.2. (F. F. Nichita and D. Parashar, [15]) Let A be a k-algebra,
and λ, µ ∈ k. The following is a WXZ–system:

W : A⊗A → A⊗A, W (a⊗b) = ab⊗1 + λ1⊗ab− b⊗a,
Z : A⊗A → A⊗A, Z(a⊗b) = µab⊗1 + 1⊗ab− b⊗a,
X : A⊗A → A⊗A, X(a⊗b) = ab⊗1 + 1⊗ab− b⊗a.

Remark 4.3. Let R be a solution for the two-parameter form of the QYBE,
i.e. R12(u, v)R13(u,w)R23(v,w) = R23(v,w)R13(u,w)R12(u, v) ∀ u, v, w ∈
X.

Then, if we fix s, t ∈ X, we obtain the following WXZ–system:
W = R(s, s), X = R(s, t) and Z = R(t, t).

5 Lie superalgebras

Using some of the above techniques we now present enhanced versions of
Theorem 1 (from [17]).

Theorem 5.1. (F. F. Nichita and B. P. Popovici, [16]) Let V = W ⊕ kc

be a k-space, and f, g : V⊗V → V k-linear maps such that f, g = 0 on
V⊗c+ c⊗V . Then, R : V⊗V → V⊗V, R(v⊗w) = f(v⊗w)⊗c+ c⊗g(v⊗w)
is a solution for QYBE (2.2).

Definition 5.2. A Lie superalgebra is a (nonassociative) Z2-graded algebra,
or superalgebra, over a field k with the Lie superbracket, satisfying the two
conditions:

[x, y] = −(−1)|x||y|[y, x]

(−1)|z||x|[x, [y, z]] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0

where x, y and z are pure in the Z2-grading. Here, |x| denotes the degree of
x (either 0 or 1). The degree of [x, y] is the sum of degree of x and y modulo
2.

Let (L, [, ]) be a Lie superalgebra over k, and Z(L) = {z ∈ L : [z, x] =
0 ∀ x ∈ L}.

For z ∈ Z(L), |z| = 0 and α ∈ k we define:
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φL
α : L⊗L −→ L⊗L

x⊗y 7→ α[x, y]⊗z + (−1)|x||y|y⊗x .

Its inverse is:

φL
α

−1
: L⊗L −→ L⊗L

x⊗ y 7→ αz ⊗ [x, y] + (−1)|x||y|y ⊗ x

Theorem 5.3. Let (L, [, ]) be a Lie superalgebra and z ∈ Z(L), |z| = 0, and
α ∈ k. Then: φL

α is a YB operator.

Proof. The verification of the Yang-Baxter equation follows below:

φL23

α φL12

α φL23

α (a⊗b⊗c) = φL12

α φL23

α φL12

α (a⊗b⊗c),

φL23

α φL12

α φL23

α (a⊗b⊗c) = φL23

α φL12

α (αa⊗[b, c]⊗z + (−1)|b||c|a⊗c⊗b) =

φL23

α (α2[a, [b, c]]⊗z⊗z + (−1)|a||[b,c]|α[b, c]⊗a⊗z + (−1)|b||c|α[a, c]⊗z⊗b+

(−1)|b||c|(−1)|a||c|c⊗a⊗b) = α2[a, [b, c]]⊗z⊗z + (−1)|a||[b,c]|α[b, c]⊗z⊗a+

(−1)|b||c|α[a, c]⊗b⊗z + (−1)|b||c|(−1)|a||c|αc⊗ [a, b]⊗z +

(−1)|b||c|(−1)|a||c|(−1)|a||b|c⊗b⊗a

(5.10)

φL12

α φL23

α φL12

α (a⊗b⊗c) = φL12

α φL23

α (α[a, b]⊗z⊗c+ (−1)|a||b|b⊗a⊗c) =

φL12

α (α[a, b]⊗c⊗z + (−1)|a||b|αb⊗[a, c]⊗z + (−1)|a||b|(−1)|a||c|b⊗c⊗a) =

α2[[a, b], c]⊗z⊗z + (−1)|[a,b]||c|αc⊗[a, b]⊗z + (−1)|a||b|α2[b, [a, c]]⊗z⊗z +

(−1)|a||b|(−1)|[a,c]||b|α[a, c]⊗ b⊗z + (−1)|a||b|(−1)|a||c|α[b, c]⊗z⊗a

+(−1)|a||b|(−1)|a||c|(−1)|b||c|c⊗b⊗a

(5.11)

i.e.

α2[a, [b, c]]⊗z⊗z + (−1)|a||[b,c]|α[b, c]⊗z⊗a+ (−1)|b||c|α[a, c]⊗b⊗z +

(−1)|b||c|+|a||c|αc⊗ [a, b]⊗z = α2[[a, b], c]⊗z⊗z + (−1)|[a,b]||c|αc⊗[a, b]⊗z +

(−1)|a||b|α2[b, [a, c]]⊗z⊗z + (−1)|a||b|(−1)|[a,c]||b|α[a, c]⊗ b⊗z +

(−1)|a||b|(−1)|a||c|[b, c]⊗z⊗a

(5.12)
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and the two terms are equal given the choice of z and the Jacobi
relations for the superalgebra:

α2[a, [b, c]]⊗z⊗z = α2[[a, b], c]⊗z⊗z + (−1)|a||b|α2[b, [a, c]]⊗z⊗z

(5.13)

It is easily checked that the two operators are inverse to each other.

φL
αφ

L
α

−1
(x⊗y) = φL

α(αz ⊗ [x, y] + (−1)|x||y|y ⊗ x) = α2[z, [x, y]]⊗z +

(−1)|[x,y]||z|α[x, y]⊗z + (−1)|x||y|α[y, x]⊗z + (−1)|x||y|(−1)|x||y|x⊗y = x⊗y

(5.14)

⊔⊓

Theorem 5.4. Let (L, [, ]) be a Lie superalgebra, z ∈ Z(L), |z| = 0, X ⊂ k,
and α, β : X ×X → k. Then, R : X ×X → Endk(L⊗ L) defined by

R(u, v)(a⊗ b) = α(u, v)[a, b] ⊗ z + β(u, v)(−1)|a||b|a⊗ b, (5.15)

satisfies the colored QYBE (3.4) ⇐⇒ β(u,w)α(v,w) = α(u,w)β(v,w).

Proof. Following similar steps as in the previous proof, we need that
the next relations are true:

α(u, v)α(v,w)β(u,w)[a, [b, c]]⊗z⊗z + (−1)|b||c|α(u, v)α(u,w)β(v,w)[[a, c], b]⊗z⊗z =

α(u, v)α(u,w)β(v,w)[[a, b], c]⊗z⊗z

(−1)|a||[b,c]|α(v,w)β(u,w)β(u, v)a⊗[b, c]⊗z = (−1)|a||b|+|a||c|α(v,w)β(u, v)β(u,w)a⊗[b, c]⊗z

(−1)|b||c|+|[a,c]||b|α(u,w)β(u, v)β(v,w)[a, c]⊗b⊗z = (−1)|a||b|α(u,w)β(u, v)β(v,w)[a, c]⊗b⊗z

(−1)|b||c|+|a||c|α(u, v)β(u,w)β(v,w)[a, b]⊗z⊗c = (−1)|[a,b]||c|α(u, v)β(u,w)β(v,w)[a, b]⊗z⊗c

(5.16)

It is easily observed that beside the first one all the relations are au-
tomatically fulfilled; as for the first relation, a sufficient condition is:

α(v,w)

α(u,w)
=

β(v,w)

β(u,w)
.

For example, α(u, v) = f(v) and β(u, v) = g(v) could be chosen. ⊔⊓

Remark 5.5. Letting u = v above, we obtain that:

φL
α,β : L⊗L −→ L⊗L

x⊗y 7→ α[x, y]⊗z + (−1)|x||y|βy⊗x .
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and its inverse:

φL
α,β

−1
: L⊗L −→ L⊗L

x⊗ y 7→
α

β2
z ⊗ [x, y] + (−1)|x||y|

1

β
y ⊗ x

are Yang-Baxter operators.

Remark 5.6. Let us consider the above data and apply it to Remark 4.3.
Then, if we let s, t ∈ X, we obtain the following WXZ–system:

W (a⊗ b) = R(s, s)(a⊗ b) = f(s)[a, b]⊗ z + g(s)(−1)|a||b|a⊗ b, and
Z(a⊗ b) = R(t, t)(a⊗ b) = X(a⊗ b) = R(s, t)(a⊗ b) = f(t)[a, b]⊗ z+

g(t)(−1)|a||b|a⊗ b.

Remark 5.7. The results presented in this section hold for Lie algebras as
well. This is a consequence of the fact that these operators restricted to the
first component of a Lie superalgebra have the same properties.

6 (G, θ)-Lie algebras

We now consider the case of (G, θ)-Lie algebras as in [18]: a generalization
of Lie algebras and Lie superalgebras.

A (G, θ)-Lie algebras consists of a G-graded vector space L, with L =
⊕g∈GLg, G a finite abelian group, a non associative multiplication 〈.., ..〉 : L×
L → L respecting the graduation in the sense that 〈La, Lb〉 ⊆ La+b, ∀a, b ∈
G and a function θ : G × G → C∗ taking non-zero complex values. The
following conditions are imposed:

• θ-braided (G-graded) antisymmetry: 〈x, y〉 = −θ(a, b)〈y, x〉

• θ-braided (G-graded) Jacobi id: θ(c, a)〈x, 〈y, z〉〉 + θ(b, c)〈z, 〈x, y〉〉 +
θ(a, b)〈y, 〈z, x〉〉 = 0

• θ : G×G → C∗ color function







θ(a+ b, c) = θ(a, c)θ(b, c)
θ(a, b+ c) = θ(a, b)θ(a, c)

θ(a, b)θ(b, a) = 1

for all homogeneous x ∈ La, y ∈ Lb, z ∈ Lc and ∀a, b, c ∈ G.

Theorem 6.1. Under the above assumptions,

R(x⊗ y) = α[x, y]⊗ z + θ(a, b)x⊗ y, (6.17)

with z ∈ Z(L), satisfies the equation ( 2.2 ) ⇐⇒ θ(g, a) = θ(a, g) =
θ(g, g) = 1, ∀x ∈ La and z ∈ Lg.

The inverse operator reads: R−1(x⊗ y) = α[y, x] ⊗ z + θ(b, a)x⊗ y

8



Proof. If we consider the homogeneous elements x ∈ La, y ∈ Lb,
t ∈ Lc, as before,

R12R13R23(x⊗y⊗t) = R23R13R12(x⊗y⊗t)

is equivalent to

θ(a, g)[x, [y, t]]⊗z⊗z + θ(b, c)[[x, t], y]⊗z⊗z = θ(g, g)[[x, y], c]⊗z⊗z (6.18)

θ(a, g)θ(a, b+ c)x⊗[y, t]⊗z = θ(a, b)θ(a, c)x⊗ [y, t]⊗z (6.19)

θ(b, c)θ(a+ c, b)[x, t]⊗y⊗z = θ(a, b)θ(b, g)[x, t]⊗y⊗z (6.20)

θ(b, c)θ(a, c)[x, y]⊗z⊗t = θ(a+ b, c)θ(g, c)[x, y]⊗z⊗t (6.21)

Due to the conditions 〈La, Lb〉 ⊆ La+b the above relations are true if
θ(a, g) = θ(b, g) = θ(g, c) = θ(g, g) = 1 is assumed. ⊔⊓

7 Conclusions

Motivated by the need to create a better frame for the study of Lie (su-
per)algebras than that presented in [17], this paper extends that construc-
tion and makes an analysis on the constructions of solutions for the two-
parameter form of the QYBE and Yang-Baxter systems.

Following a series of posters presented at National Conferences on The-
oretical Physics, our paper generalizes the constructions from [12] (to (G, θ)-
Lie algebras). Somewhat less sophisticated than that of [12] (we do not use
Category Theory), our approach is direct and more suitable for applica-
tions. [14] considered the constructions of Yang-Baxter operators from Lie
(co)algebras, suggesting an extension (to a bigger category with a self-dual
functor acting on it) for the duality between the category of finite dimen-
sional Lie algebras and the category of finite dimensional Lie coalgebras.
This duality extension was explained in [4].

Finally, some applications of these results could be in constructions of:
FRT bialgebras (from the Yang-Baxter operators obtained in this paper),
knot invariants (see Remark 2.5), solutions for the classical Yang-Baxter
equation (see below), etc.

Theorem 7.1. Let (L, [, ]) be a Lie algebra and z ∈ Z(L). Then:
r : L⊗L −→ L⊗L, x⊗y 7→ [x, y]⊗z

satisfies the classical Yang-Baxter equation:
[r12, r13] + [r12, r23] + [r13, r23] = 0.
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