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ABSTRACT

Noncommutative geometry can provide effective description of physics at very short distances tak-
ing into account generic effects of quantum gravity. Inflation amplifies tiny quantum fluctuations in
the early universe to macroscopic scales and may thus imprint high energy physics signatures in the
cosmological perturbations that could be detected in the CMB. It is shown here that this can give
rise to parity-violating modulations of the primordial spectrum and odd non-Gaussian signatures.
The breaking of rotational invariance of the CMB provides constraints on the scale of noncommuta-
tivity that are competitive with the existing noncosmological bounds, and could explain the curious
hemispherical asymmetry that has been claimed to be observed in the sky. This introduces also
non-Gaussianity with peculiar shape- and scale-dependence, which in principle allows an independent
cross-check of the presence of noncommutativity at inflation.
Subject headings: Cosmological inflation, Statistical anisotropy of the cosmic microwave background,

Scale-dependent non-Gaussianity, Noncommutative spacetime

1. INTRODUCTION

The statistics of the temperature anisotropies in the
cosmic microwave background (CMB) are measured by
the Planck satellite to an unprecedented accuracy. This
allows to efficiently probe, in addition to higher-order
correlations, i.e. possible non-Gaussianity, the detailed
structure of the two-point correlations, i.e. possible sta-
tistical anisotropy.
There is a number of anomalies already in the present

data, which have raised a lot curiosity both from the
theoretical side as well as from the data analysis side
(Hansen et al. 2008; Hoftuft et al. 2009; Koivisto & Mota
2006, 2008a,c; Rakic et al. 2006; Koivisto et al. 2009,
2010; Mota et al. 2007; Rakic & Schwarz 2007; Koivisto
& Mota 2008b; Jimenez et al. 2009; Zumalacarregui et al.
2010; Copi et al. 2010; Bennett et al. 2010). In particular,
the hemispherical asymmetry, first reported by Eriksen
et al. (2004), seems a quite unexpected feature within
the standard model of cosmology and hasn’t yet been a
satisfactorily traced to a possible systematic error. The
question whether the universe is odd was asked in (Land
& Magueijo 2005), and there are recent investigations
(Kim & Naselsky 2010a,b) finding hints of evidence for
a positive answer.
This prompts to look for possible cosmological ori-

gins of odd-parity statistical anisotropies. In the present
study, we investigate the effects of noncommutative ge-
ometry to the primordial spectrum of perturbations, usu-
ally assumed to be generated by quantum effects during
inflation or shortly afterwards. The observational impli-
cations are derived, in terms of the harmonic coefficients
of the CMB spectrum, and the non-Gaussianity param-
eter fNL. We find that in general the noncommutativ-
ity of spacetime geometry induces parity violating mod-
ulations of the spectra of fluctuations, thus generating
distinct signatures in the statistics of CMB. In particu-
lar, this suggests that the hemispherical asymmetry (and
various other anomalies) could originate from the funda-

mental properties of spacetime that are relevant at the
vast energy scales at play in the inflationary epoch.
Chu et al. (2001) remarked that spacetime noncom-

mutativity can be constrained by the statistics of in-
flationary fluctuations. The power spectrum has been
computed (Tsujikawa et al. 2003; Koh & Brandenberger
2007) and various other aspects of noncommutative in-
flation have been discussed in the literature (Alexander
et al. 2003; Calcagni 2004; Palma & Patil 2009). The
CMB constraints beyond the power spectrum have been
explored also (Lizzi et al. 2002; Akofor et al. 2008a, 2009;
Karwan 2010). Here will adopt the formalism of Akofor
et al. (2008a). What is new in particular, is that we
point out the presence of odd signatures and compute
the structure of the two-point and three-point correla-
tors in more detail and generality than previously.
We also clarify an ambiguity of the results, which forces

us to introduce an additional parameter. To assess the
robustness of the results, we consider in addition the al-
ternative approach of Kobakhidze (2008). It becomes
clear that the details of the predictions can depend upon
the particular model, but there are generic features which
appear already in the simplest cases (in particular, in the
case of canonical noncommutativity with constant θ in
the comoving frame). These nontrivial statistical fea-
tures may thus be present, at an observable level, even
in the simplest inflationary ΛCDM models, if one takes
into account the effect of spacetime uncertainty principle
on the inflationary fluctuations.
However, other means of generating parity violations

can be introduced too. A simple way is to assume an
inhomogeneity present at the early universe. (Erickcek
et al. 2009) considered that a large scale perturbation
of the curvaton field might result in a power asymme-
try. Tangen (2009) calculated the CMB pattern from
a single superhorizon perturbation, which indeed shows
couplings between adjacent multipoles. This is different
from the approach of considering dipole in the primor-
dial spectrum, which introduces adjacent-mode correla-
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tions for the anisotropies of the random fluctuations at
all scales, as will become clear below. One may also
contemplate on possible parity-violating couplings of the
inflaton field. Alexander (2008) has considered the possi-
ble role of Chern-Simons terms (Chern & Simons 1974).
Finally, spontaneously broken isotropy, occurring due
to imperfect dark energy, has been shown to produce
odd modulations (Gordon et al. 2005; Axelsson et al.
2010). There are qualitative differences to the present
case, which will be clarified in section 5.3.
In the following section 1 we review the basic results

of inflationary perturbations and discuss how these can
be applied when the spacetime is noncommutative. We
then implement this in section 3 in the case of canoni-
cally deformed spacetime commutation relations and in
section 4 in a framework based on deformed Heisenberg
algebra of quantum fields. We are then ready to discuss
the observable patterns in the CMB sky. The properties
of the two-point functions and of the non-Gaussianities
are clarified in section 5, and section 6 is a brief con-
clusion. The CMB two-point correlation in terms of the
multipole expansion of the primordial spectrum is given
in the section 5.1.

2. CURVATURE PERTURBATION IN
NON-COMMUTATIVE INFLATION

In the vast majority of models, primordial perturba-
tions originate from quantum fluctuations of light scalar
fields produced by the inflationary expansion. Their
properties depend on the physics operating at the very
high energy scales present during inflation. It is conceiv-
able that physics at such high energies becomes inher-
ently non-local; such models can be effectively described
by noncommutative theories. Here we are interested in
studying primordial perturbations generated in noncom-
mutative theories of inflation. We treat gravity as a clas-
sical background which is not affected by the noncom-
mutative effects. In this approach the noncommutativ-
ity affects only the properties of quantum fluctuations
generated during inflation.
To keep the discussion transparent, we restrict our

analysis on general single field models where primordial
perturbations effectively arise from fluctuations of a sin-
gle scalar degree of freedom φ while additional scalars
may affect the background evolution. This class of mod-
els obviously contains the standard single field inflation
in which case φ is the inflaton. In general, however, φ
can be a scalar field different from the inflaton-like fields
which dominate the energy density. Well known exam-
ples are the curvaton model and modulated reheating
scenario where primordial perturbations can arise solely
from fluctuations of a light field φ which remains sub-
dominant during inflation but affects the expansion his-
tory at a later stage (Lyth et al. 2003; Dvali et al. 2004).
The primordial perturbations are conveniently charac-

terized by the curvature perturbation ζ which measures
fluctuations in the spatial curvature on uniform energy
density hypersurfaces. Since we take gravity as a classical
background which is not affected by the noncommutative
effects, the curvature perturbation can be computed us-
ing the δN formalism in close analogue to the standard

commuting case. On superhorizon scales we can write

ζθ(t, x̄) = N ′(t, ti)δφθ(ti, x̄)+
1

2
N ′′(t, ti)δφθ(ti, x̄)

2+ . . . ,

(1)
where the subscript θ is introduced to denote noncommu-
tative variables. The scalar field perturbations δφθ gen-
erated during inflation are evaluated on a uniform curva-
ture hypersurface ti soon after the horizon crossing of all
the modes of interest. Their properties differ from the
corresponding commuting quantities δφ0 as we will dis-
cuss below. The function N(t, ti) measures the number
of e-foldings of a classical Friedmann-Robertson-Walker
(FRW) universe from the uniform curvature hypersur-
face at ti to a uniform density hypersurface at some final
time t when the universe is evolving adiabatically. The
primes denote derivatives with respect to the classical
background field φ. The derivatives of N(t, ti) describe
entirely classical properties of the theory and their val-
ues coincide with the corresponding commutative theory.
The curvature perturbations produced in a noncommu-
tative and commutative theory with the same classical
solutions therefore differ only by the different properties
of δφθ and δφ0. We turn to discuss the relation between
δφθ and δφ0 in more detail after briefly reviewing some
standard results for δφ0.

2.1. The mode functions in the commutative case

We consider the FRW metric in terms of conformal
time τ and including scalar perturbations in the Newto-
nian gauge in the absence of shear (Mukhanov 2007):

ds2 = −a2(τ)
[

dτ2 (1 + 2Φ)− dx2 (1 + 2Φ)
]

. (2)

A scalar field ψ can be expanded in terms of the annihi-
lation and creation operators as

ψ(x) =

∫

(

uk(τ)e
ik·xak + u∗k(τ)e

−ik·xa†k

) d3k

a(τ)(2π)3
.

(3)
The operators satisfy the canonical commutation rela-
tions. The canonical momentum can then be identified
as

π(x) =
d

dτ
(a(τ)ψ(x)) ≡ (aψ)′, . (4)

mode functions u(τ) obey the time evolution equation

u′′k +

(

k2 − a′′

a

)

uk = 0 , (5)

with the well known Hankel function solutions that, when
matched with the initial Bunch-Davies vacuum at early
times, reduce at late times outside the horizon to

uk(τ)=
e−ik(τ−τi)√

2k

(

i

kτ
− 1

)

, (6)

u′k(τ)=
ike−ik(τ−τi)√

2k

(

1− i

kτ
− 1

k2τ2

)

. (7)

The spectrum of scalar metric perturbation Φ in the con-
formal Newtonian gauge is then related to the spectrum
of the field fluctuation as

PΦ(k) =
16πG

9ǫ
Pψ(k) , (8)
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and evaluated at the horizon crossing a(η)H = k, where
the Hubble rate is approximately constant when the slow-
roll parameter

ǫ ≡ − Ḣ

H2
, (9)

is small. The spectrum of the metric perturbation Φ0 in
standard single field inflation can be known to be given
by

PΦ0
(t, k) =

8πG

9ǫk3a2(t)τ2(t)
. (10)

3. CANONICAL NONCOMMUTATIVITY

A canonical way of deforming the spacetime is to intro-
duce the commutation relations for the coordinate oper-
ators

[x̂µ, x̂ν ] = iθµν , (11)

where in the simplest case θµν is an antisymmetric con-
stant matrix of dimension length squared. It is well
known that this is the exact low-energy limit of open
string theory with a constant antisymmetric background
field (Seiberg & Witten 1999). In general, a commu-
tation relation of the form (11) induces the uncertainty
relation for coordinates

∆xµ∆xν ≥ 1

2
|θµν | , (12)

so that a spacetime point is heuristically replaced by
a Planck cell. The ordinary coordinates may then be
thought to be obtained by coarse-graining over scales
smaller than the fundamental scale of order

√

|θ| . Thus,
noncommutative spacetime provides a framework that is
compatible with generic features of quantum gravity like
the uncertainty principle and nonlocality.
The commutation relations (11) generally assumes

more complicated form when expressed in alternative co-
ordinate systems. It is thereby essential to specify in
which frame this relation is taken to hold as written down
above. In cosmology, a natural frame to consider is the
comoving one. We call the physical scale θphµν , whereas
θµν is the matrix corresponding to the coordinates of
an observer, to whom this matrix then is a constant
throughout the evolution of the universe. We perform
the computations in the comoving frame, but in the end
translate the result into the physical scale employing the
relations

θph0i = a(t)θ0i(t) , θphij = a2(t)θ0i(t) , (13)

where the θµν here and in the following is evaluated in
the comoving coordinates.
Consistent statistics in noncommutative spacetime

Akofor et al. (2008b) require deformation of the quan-
tum fields by the exponential operator defined by the
following relation:

ϕθ(x) = ϕ0(x) exp

(

− i
2

←−
∂ µθ

µν−→∂ ν
)

, (14)

where the lower index θ refers to the deformation, so ϕ0

is the corresponding field in the commutative case. In the
following we will be interested in the two-point correla-
tion of the inflaton field in this setting. This implies that

the vacuum expectation value of the two-point function
can now be written as

〈0|ϕ†
θ(x)ϕθ(x

′)|0〉 = e−
i
2
∂µθ

µν∂ν′ 〈0|ϕ0(x)ϕ0(x
′)|0〉 .

(15)
Writing this in terms of the Fourier image φθ(k, t) defined
by

ϕθ(x) =

∫

d3k

(2π)3
φ(k, t)eik·x , (16)

we obtain

〈0|ϕθ(x)†ϕθ(x′)|0〉 = (17)
∫

d3k

(2π)3
e−

i
2 (kiθ

i0∂t′−∂tθ
0iki)〈0|φ†0(k, t)φ0(k, t′)|0〉eik·x

where we have used the fact that in the usual case θ = 0
(only) the different wavemodes are uncorrelated,

〈0|φ†0(k, t)φ0(k′, t)|0〉 = (2π)3Pφ0
(k, t)δ3(k− k′) , (18)

where Pϕ(k, t) is the power spectrum. Let us call the
time-space components of the noncommutativity the

three-vector ~θ as
θ0i ≡ ~θi . (19)

By comparing the form (17) to the usual case we readily
infer that

〈0|φ†θ(k, t)φθ(k, t)|0〉= (20)

lim
t→t′

e−
1

2
~θ·k(∂t+∂t′ )×〈0|φ†0(k, t)φ0(k, t′)|0〉

=(2π)3Pφ0

(

k, t− 1

2
~θ · k

)

.

Consider then the spectrum of metric perturbation (10)
in near de Sitter space where H is approximately con-
stant is given by

τ ≃ −1
Ha(t)

e−Ht . (21)

Using this we can immediately combine equations (20)
and (10) to obtain the spectrum in noncommutative ge-
ometry. Evaluated at the horizon crossing, we have

PΦθ
(k) = PΦ0

(k)eH
~θ·k . (22)

Thus the spectrum will be direction-dependent. Further-
more, it is not parity invariant. We see that the leading

correction is a dipole with an amplitude A1m ∼ |~θ| and
blue-tilted spectral index n1,m ≃ 2. The next correction
is the even-parity quadropole term, with an amplitude

A2,m ∼ −|~θ|2 and spectral index n1,m ≃ 3, and so on.
However, we have to choose the consistent parts of the

correlator in order to obtain a physical result. As clear
from the subsection 5.1, the odd multipole modulations
should have imaginary coefficients, otherwise the result
is not sensible as the real-space correlators and the CMB
sky would not turn out real. This would be cured if we

promote ~θ into an imaginary parameter but this seems
inconsistent with 11. Therefore we adopt the following
prescription

〈. . .〉 → α〈. . .〉M + i(1− α)〈. . .〉A , (23)
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where 〈. . .〉 denotes schematically some a correlator,
〈. . .〉M is its self-adjoint, and 〈. . .〉A its anti-self-adjoint
part. Then α ∈ [0, 1] is a parameter which corresponds
to some kind of phase. Akofor et al. (2008a) considered
only the self-adjoint part of the correlators, which cor-
responds to α = 1 in our parametrization. However, we
do not know any physical reason why the remaining part
should not contribute to observed correlations. As we are
unable to determine the value of α from first principles, it
is left as a parameter to be determined by observations.
We then introduce the notation

expα(x) ≡ α cosh (x) + i(1− α) sinh (x) . (24)

In this prescription, the result (22) becomes

PΦθ
(k) = PΦ0

(k) expα(H
~θ · k) , (25)

which is the main result of this section.
The conceptual problem noted above appears in alter-

native frameworks too and is thus not merely a possible
inconsistency in of the particular formalism employed
here. In particular, one could also start by expanding
the action in the noncommutative parameter and derive
the correlations of the perturbations from the ensuing
equations of motion. One obtains also then imaginary
results, see e.g. the four-point function calculated by
Chu et al. (2001). It can be pointed out also that the
problematics of observing correlations of noncommuting
observables are independent of the nature of noncommu-
tativity. Noncommutativity between space and time has
not yet been put into theoretically rigorous footing but
generically seems to imply unitarity violations (Gomis
& Mehen 2000; Chaichian et al. 2001). Though in open
string theory with a constant electric background, which
is supposed to exhibit noncommutativity between space
and time, these problems are absent (Seiberg et al. 2000),
the noncommuting field theory with constant θµν can be
recovered from string theory only in the case of magnetic

background field which then corresponds to vanishing ~θ.
The need for the prescription (23) would nevertheless

reappear for higher order correlations even when ~θ = 0
as will be seen in section 5.4.

4. DEFORMATION OF THE HEISENBERG
ALGEBRA

Violation of microcausality in the spirit of (stringy)
uncertainty principle can also be described by imposing
noncommutativity of quantum fields (Dubovsky et al.
2008) (instead of the coordinate operators, as in the
previous subsection). Consider the following equal-time
commutation relations in expanding spacetime

[φ(x, τ), φ(y, τ)] =
iµ2(τ)

a2(τ)
f(x− y) , (26)

[π(x, τ), π(y, τ)] =0 , (27)

[φ(x, τ), π(y, τ)] =
i

a2(τ)
δ(x− y) . (28)

For notational convenience we parametrize µ(τ) =
µ0a(τ)

n
2 , where the constant where µ0 is the character-

istic scale of microcausality violation with the dimension
dim[φ]-dim[f ]/2. The scale-factor dependence is added
because we want to consider also the case where the form

of the commutator is constant in comoving coordinates,
n = 2. The time-dependence of the effective parame-
ter µ does not affect the computation and we return to
the different choices in the analysis of the results. The
derivation here follows closely Kobakhidze (2008), where
n = 0. The difference to the usual case is now only the
odd function f(r) appearing in the first commutator. It
is useful to note that by defining the field ψ(x) as1

φ(x) = ψ(x)− µ2(τ)

2a(τ)

∫

f(x− z)π(z, τ)d3z , (29)

we recover canonical commutation relations for the pair
(ψ, π). This observation allows us, analogously to the
previous subsection, to relate correlations in the noncom-
mutative case to the correlators in the standard case.
In particular, one may check that if the field ψ satis-
fies the equations for standard inflaton we described in
section 2.1, one can translate those conventional results
into the noncommutative set-up (26-28) by employing
the shift (29). The noncommutative inflaton field is then
expanded is terms of the mode functions uk introduced
in section 2.1 as

φ(x)=

∫

d3k

(2π)3

[

(

uk(τ) −
µ2(τ)

2
F (k)u′k(τ)

)

eik·xak

+

(

u∗k(τ) +
µ2(τ)

2
F (k)u∗k

′(τ)

)

e−ik·xa†k

]

1

a2(τ)
,(30)

where F (k) is the Fourier image of the function f(x),

F (k) =

∫

f(y)eik·yd3y . (31)

Since f(r) is an odd function, we have also F (−k) =
F (k). The two-point correlation function follows then
straightforwardly:

〈0|φ(x, τ)φ(y, τ)|0〉=
∫

d3kUk(τ)U
∗
−k(τ)e

ik·(x−y)

a2(τ)(2π)3

=

∫

Pµφ (k)e
ik·(x−y) d

3k

(2π)3
. (32)

where Uk̄(τ) is defined as

Uk(τ) = u′k(τ)−
µ2(τ)

2
F (k̄)u′k(τ) . (33)

In the second line we have identified the power spec-
trum of the non-selfcommuting field φ and denoted it by
Pµφ (k). It is easy to see that lest physical observables

become imaginary, the Fourier image F (k) must be real,
and thus we cannot express the first line of (32) as a
square2. Now using the relation of the inflaton and met-
ric perturbation spectra (8) and the late-time limit of the

1 The factor 1/a(τ) was missing in Eq.(6) of Kobakhidze (2008).
2 Our result (30) differs from the Eq.(13) in Kobakhidze (2008)

by the sign of the argument of the second F (k), but our (32) would
agree with the Eq.(14) in Kobakhidze (2008) if F (k) was imaginary.
This indeed seems to have been the assumption in Kobakhidze
(2008), which then however leads to imaginary temperature corre-
lations, see Eq.(23) there.
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mode function solutions (6,7) we obtain

PµΦ(k)=
8πG

9ǫk3a2τ2

[

1 + k2τ2
(

1 + iµ2kF (k)
)

− µ4

2τ2
F 2(k)

(

1− k2τ2 + k4τ4
)

]

. (34)

The leading order contribution in the parameter is thus
odd in parity.
Let us then look at some specific forms of the noncom-

mutativity. A simple assumption for the form of the func-
tion f(r) is a delta-function and that the commutator is
constant in comoving coordinates. An odd combination
is

µ2(τ)f(r) = 4π3iµ2
0a

2 [δ(r − v)− δ(−r− v)] . (35)

In this prescription, the commutator (26) gets contribu-
tion from spacelike separations equal to v. Then (34)
becomes, neglecting the decaying modes

PµΦ(k)=PΦ(k)
[

1 + k3(µ0aτ)
2 sin(k · v)

+

(

µ0a√
2τ

)4

sin2(k · v)
]

. (36)

Remarkably, at the leading order the predicted modula-
tion has the same form as in the previous case (22), if

we identify the vectors v = H~θ. One of course obtains
hyperbolic sinus instead of the ordinary one by promot-
ing v to an imaginary vector parameter (and dropping
the i in (35)). The second line in (36) contains modes
growing outside the horizon. They can be eliminated by
choosing n ≤ −1 in µ(τ) = µ0a

n(τ). If n < −1 both the
odd and the even contributions are decaying (regardless
of the form of f(r)). The spectral index of the leading
modification in (36) is nS + 3, but this depends sensi-
tively on the precise form of f(r). As an example, the
form

f(r)= i
π3

2

[

(rz − vz)σ(vx − rx)σ(vy − ry)σ(vz − rz)

+ (rz + vz)σ(vx + rx)σ(vy + ry)σ(vz + rz)
]

, (37)

where σ(x) is the sign of x, results in F (k̄) = sin(k ·
v)/(kxkyk

2
z), which results in a strongly blue-tilted spec-

tral index. Thus we may obtain similar correlations as
in section 3 by choosing a suitable function f(r).
For the three-point function one gets

〈φ(k̄1)φ(k̄2)φ(k̄3)〉=
Uk1

(τ)U∗
k3
(τ)

(2πa(τ))
6 (38)

[

δ3(k1 + k2 − k3)Uk2
(τ)+ δ3(k1 − k2 − k3)U

∗
k2
(τ)

]

.

in terms of the functions Uk̄(τ) defined in (33).

5. PATTERNS FROM NONCOMMUTATIVE
INFLATION

In this section we discuss some observational implica-
tions of the results at more length and derive an explicit
expression for the non-Gaussianity.

5.1. Multipole expansion of the primordial power
spectrum

The temperature anisotropy field is conventionally ex-
panded in terms of the spherical harmonics and on the
other hand considered in the Fourier space

Θ(x, ê, η) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓmYℓm =

∫

d3k

(2π)3
eik·xRkΘ(k, ê, η) ,

(39)
where we have normalized the transfer function Θ(k, e, η)
with respect to the initial amplitude of the primordial
curvature perturbation Rk). It follows that the coeffi-
cients aℓm are given by

aℓm = iℓ
∫

d3k

2π2
RkY

∗
ℓm(k̂)Θl(k). (40)

where we have introduced the transfer function which
depends only on the magnitude of the wavevector,

Θl(k) =

∫

jℓ(kr(η))Θ(k, η)dη , (41)

since we assume the evolution to be isotropic. The possi-
ble anisotropy appears in the primordial spectrum, which
can be expanded also in spherical harmonics as (we refer
to this expansion of the primordial spectra always with
capital letters indices to avoid confusion with the expan-
sion of the temperature anisotropies)

〈RkR∗
k′〉= δ3(k− k′)

2π2

k3
P(k) = (42)

δ3(k−k′)
2π2
√
4π

k3

∞
∑

L=1

M
∑

M=−L

ALM
(

k

k0

)nLM−1

YLM (k̂) ,

In the first equality we have used the WMAP conven-
tions, and in the second one employed the parametriza-
tion of Armendariz-Picon & Pekowsky (2009). They use
the pivot scale k0 = 2 · 10−3/Mpc. For the time being,
we allow independent spectral indices nLM for each mul-
tipole L,M . Using the formula (40) and the primordial
spectrum (42), the correlation matrix can be written as

〈aℓma∗ℓ′m′〉 = iℓ−ℓ
′

2π2

∞
∑

L=1

L
∑

M=−L

ALMξLMℓm;ℓ′m′ILMℓℓ′ . (43)

We have separated here the integrated contribution from
perturbations of all different magnitudes,

ILMℓℓ′ =

∫ ∞

0

dk

k

(

k

k0

)nLM−1

Θℓ(k)Θℓ′(k) . (44)

They are then weighted by the geometrical factors ξ
which happen to be proportional to the coefficients of
the Gaunt series. We may write them in terms of the
Wigners 3-functions as
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ξLMℓm;ℓ′m′ = (−1)m+1
√

(2ℓ+ 1)(2ℓ′ + 1)(2L+ 1)

(

ℓ ℓ′ L
0 0 0

)(

ℓ ℓ′ L
−m m′ M

)

, (45)

when ℓ, ℓ′ and L satisfy the triangle condition. For the dipole these become

ξL=1,M=−1
ℓm;ℓ′m′ =

√
3δm′,m−1

[

δℓ′,ℓ−1

√

(ℓ+m− 1)(ℓ+m)

2(2ℓ− 1)(2ℓ+ 1)
− δℓ′,ℓ+1

√

(ℓ−m+ 1)(ℓ−m+ 2)

2(2ℓ+ 1)(2ℓ+ 3)

]

, (46)

ξL=1,M=1
ℓm;ℓ′m′ =

√
3δm′,m+1

[

δℓ′,ℓ−1

√

(ℓ −m− 1)(ℓ−m)

2(2ℓ− 1)(2ℓ+ 1)
− δℓ′,ℓ+1

√

(ℓ+m+ 1)(ℓ +m+ 2)

2(2ℓ+ 1)(2ℓ+ 3)

]

, (47)

ξL=1,M=0
ℓm;ℓ′m′ =

√
3δm′,m

[

δℓ′,ℓ−1

√

(ℓ−m)(ℓ +m)

(2ℓ− 1)(2ℓ+ 1)
+ δℓ′,ℓ+1

√

(ℓ −m+ 1)(ℓ+m+ 1)

(2ℓ+ 1)(2ℓ+ 3)

]

. (48)

All odd multipole coefficients in the spectrum are imag-
inary A∗

2K+1,M = −A2K+1,M , and the even are real
A∗

2K,M = A2K,M for any K. The geometric coefficients

are symmetric, ξLMℓm;ℓ′m′ = ξLMℓ′m′;ℓm (one can check this

is the case for the dipole above). The angular correla-
tions of course turn out to be symmetric 〈aℓma∗ℓ′m′〉 =
〈aℓ′m′a∗ℓm〉, though the primordial spectrum may not be,
〈R(x)R(x)〉 6= 〈R(x′)R(x)〉. As shown above, this can
be understood by the noncommutative quantum nature
of the fields whose fluctuations are responsible for the
perturbations.

5.2. Anisotropic power spectrum

As found in sections 3 and 4, the two-point function ac-
quires typically exponential modulations from noncom-
mutative geometry. For clarity, let us focus on an ex-
ponential term eik·r0 in the following. This be decom-
posed using the Rayleigh formula and by expressing the
Legendre polynomial Pℓ in terms of sum of products of
spherical harmonics:

eik·r0 =

∞
∑

ℓ=0

iℓ(2ℓ+ 1)jℓ(kr0)Pℓ(k̂ · r̂0) = (49)

4 π

∞
∑

ℓ=0

iℓjℓ(kr0)

ℓ
∑

m=−ℓ

Y ∗
ℓm(Ωk)Y

∗
ℓm(Ωr0) .

Now comparing the spectra with the general form (42),
and using the orthogonality of spherical harmonics to-
gether with (49), we obtain the amplitudes of each mod-
ulations:

ALM = 4πiLjL(kr0)Y
∗
LM (Ωr0)A . (50)

Clearly the scale dependence of these coefficients cannot
be described by simple power-laws. Instead, the modu-
lations will be oscillating along the k-modes.
Let us first comment the power spectrum. we note

that already the isotropic spectrum is modified with re-
spect to the usual result A00(µ = 0) ≡ A, because
of the nontrivial k-dependence encoded in the function
j0(kr0) = sin(kr0)/kr0. In principle the oscillatory be-
havior of the modulation could result in ”wiggles” there
seem to appear in the observed spectrum. Such wig-
gles have also been predicted from transplanckian physics
(Martin & Brandenberger 2003) or from cyclic inflation

(Biswas et al. 2010), and the data has been shown to be
compatible with such features.
Furthermore, there is an infinite series of higher-

multipole modulations which will introduce statistically
anisotropic correlations. The reflects the nonlocality of
the underlying model. In principle all types of modu-
lations are present, meaning that every ℓ-mode is cou-
pled to any other. Each wavemode of perturbations that
contributes to the power spectrum is also relevant to
the anisotropic couplings. In particular, as one expects
from ultraviolet noncommutativity, small wavelengths
contribute most to the modulations at all scales. Contri-
bution from extremely small wavelengths would cancel
out due to rapid oscillations.
It is crucial to note however, that in practise the scales

at which the modulations are strongest, do not con-
tribute to the angular modes observed in the CMB un-
less the length scale of noncommutativity is much above
the Planck scale. The spherical Bessel functions jℓ(z)
have their highest peak at about z ∼ L, so each L-
modulation will be strongest at wavemodes correspond-
ing to k ∼ L/r0. On the other hand, the contribution to
the CMB anisotropy Θℓ(k) from inhomogeneous sources
Θ(k, τ) is also dependent on the spherical Bessel function

Θℓ(k) =

∫

jℓ(kτ)Θ(k, τ)dτ . (51)

The scales contributing most to the multipole ℓ are
k ∼ ℓ/τ∗, where the comoving distance to the last scat-
tering surface is about τ∗ ≈ 14000 Mpc. Thus the modu-
lation of the order L will affect maximally the correlators
corresponding to the multipole ℓ when

r0 ∼ 1.4 · 1061
(

L

ℓ

)

M−1
P ∼ Hθ ∼ H

µ2
, (52)

where M−1
P is the Planck length and µ−1 ∼ θ−

1

2 is the
noncommutative length scale. So, the dipole modula-
tion at the multipoles ℓ ∼ 1000 would be of order one if
µ ∼ 10−30MP ∼ 10−10ΛQCD at inflation. Now, to trans-
late this into the physical energy scale of noncommutativ-
ity observable today in laboratory we should recall the
relation (13). If the reheating temperature of the uni-
verse was close to the GUT scale ∼ 1016 GeV, the scale
factor at the end of inflation was about aRH ∼ 10−29

of its value normalized to unity at the present. This
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gives us µph ∼ (θph)−
1

2 ∼ 10−16MP ∼ 10 TeV. We
note also that at those multipoles the cosmic variance
is negligible and Planck can be expected to measure de-
viations from statistical anisotropy at percent level or so.
Furthermore, the total effect of the modulations does of
course not come from the peak of the Bessel functions in
(50) but is the cumulative contribution integrated from
all scales. We may then expect several orders of magni-
tude improvement to the above estimate of the maximal
noncommutative scale µ that may be observed in the
CMB. Conservative lower bounds from modifications to
standard model of particle physics give µ & few TeV
(Hewett et al. 2001; Mocioiu et al. 2000; Carroll et al.
2001). Thus, the tightest bounds may turn out to be
cosmological.
Full comparison with the data would require consid-

erable technical difficulties, firstly because all the ob-
served multipoles should be included in the analysis, and
even higher k-modes than usually corresponding to those
would have to be taken into account. Moreover, since
there occur couplings between arbitrarily separated ℓ-
modes, one cannot employ the previous techniques that
have been developed to deal with sparse correlation ma-
trices (with only the diagonal and some adjacent entries
nonvanishing). Finally, the distortion of the power spec-
tra should be tested in conjunction with the effects of the
anisotropic correlations.
Therefore, and because both observations and theory

suggest these effects should be small, let us then, instead
of the full pattern, consider the power series expansion

eik·r0 ≈ 1 + ik · r0 −
1

2
(k · r0)2 + . . . (53)

Note that the expansion of the more general parametriza-
tion (25) is essentially very similar. It is useful to sepa-
rate the magnitude r of r0 = rr̂, defining the unit direc-
tion vector r̂ decomposed as

r̂± = ∓
(

rx ∓ iry√
2r

)

, r̂0 =
rz
r
, r = |r0| . (54)

Then the nonvanishing contributions to the spectrum
may be written as the following. The amplitudes are

A00=A , A1(−1) = 2i

√

π

3
k0rr̂−A , (55)

A10=2i

√

π

3
k0rr̂0A , A1(+1) = 2i

√

π

3
k0rr̂+A ,

and the corresponding spectral indices are

n00 = ns , n1m = 1 + ns . (56)

In a companion paper we test the leading order dipole
correction given by (55) with the data, which is found to
slightly prefer the presence of the dipole (Groeneboom
et al. 2010).

5.3. Comparison with imperfect source models

Let us remark on the difference to the imperfect dark
energy model, where similar geometric modulations can
appear as well. There the dipole is due to an anisotropic
source, it’s contribution with respect to the quadropole
is subdominant. This is because there then occurs can-
cellation to the odd correlations, as they are proportional

to

〈aℓma∗(ℓ+L)m′〉DE ∼

A0

∫

d(log k)
[

Θℓ(k)Θ
A
ℓ+L(k)−Θℓ+L(k)Θ

A
ℓ (k)

]

,(57)

where A quantifies the magnitude of the anisotropy,
ΘAℓ (k) is the anisotropic transfer function and L is odd.
The function (51) gives the source contribution in the
isotropic case, in the presence of imperfect sources the
Θ’s depend also on the direction of the wavevector. Due
to the partial cancellation effect in such a case, Axelsson
et al. (2010) found the quadropole contribution dominant
even though it was suppressed by the small parameter
corresponding to A2

0. However, since in the present case
the dipole is of primordial origin, we have

〈aℓma∗(ℓ+L)m′〉 ∼ ALM
∫

d(log k)Θℓ(k)Θℓ+L(k) , (58)

and the magnitude of the odd and even modulations is
expected to be similar. A priori, higher multipoles are
again suppressed by some small parameter, and the dom-
inating correction to the monopole is now generically the
dipole.

5.4. Non-Gaussianities

The non-commutativity also affects the non-Gaussian
statistics of primordial perturbations. Here we discuss
non-Gaussianities in effective single field models, de-
scribed by (1), where the field φ affects very little the
classical dynamics during inflation, V ′/3H2M2 ∼ 0,
but becomes dynamically relevant at some later stage.
Such models can generate observable non-Gaussianities
in the usual commutative case (Enqvist & Vaihkonen
2004; Lyth & Rodriguez 2005), see e.g. works concern-
ing the curvaton scenario (Bartolo et al. 2004; Enqvist
& Nurmi 2005) or modulated reheating (Enqvist et al.
2005; Ichikawa et al. 2008), and our aim is to analyze
how the non-commutativity alters the predictions.
Assuming standard slow roll dynamics with canonical

kinetic terms during inflation, the Fourier transform of
(1) can expressed in the form

ζθ(t, k̄) = ζ̃θ(t, k̄)+f(k)

∫

dq̄

(2π)3
ζ̃θ(t, q̄)ζ̃θ(t, k̄− q̄)+ . . . ,

(59)
where we have defined

ζ̃θ(t, k̄)=N
′

(

1− η ln k

kp

)

δφθ(tk, k̄) , (60)

f(k)=
N ′′

2N ′2

(

1 + nfNL,0
ln

k

kp

)

, (61)

nfNL,0
=
N ′

N ′′

(

−3η + V ′′′

3H2

)

. (62)

Here we have neglected slow roll corrections to constant
terms and derived the k-dependent terms to leading or-
der precision in slow roll. The same precision is used
in the results derived below. N = N(t, ti) and all other
quantities in (60), (61) and (62) without explicit time in-
dices are evaluated at the time ti appearing in (1). The
slow roll parameter η is defined by η =M2

PV
′′/3H2 and

V denotes the potential of φ.
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In the commutative case, the field ζ̃ is Gaussian to
leading order in slow roll. The magnitude of primordial
non-Gaussianities is then controlled by the function f(k)
which is related to the non-linearity parameter fNL for
equilateral configurations. The scale-dependence of fNL

is measured by nfNL
.

In non-commutative theories, ζ̃θ becomes non-
Gaussian due to the inherent non-Gaussianities of the
fluctuations δφθ. This affects both the magnitude of
fNL and its scale-dependence. Quite generally, the non-
Gaussianities also deviate from the (quasi-)local form
since the non-Gaussianity in (60) is not of the simple
(Gaussian)2 type. Below we analyze non-Gaussianities
arising in non-commutative theories discussed in section
3. (The non-Gaussianity in the approach of section 4
can be considered starting from (38), but for clarity we
do not consider that separately here).
Using the relations between n-point functions of δφθ

and δφ0 given in section 3, we can express the three-
point function of ζθ in the form

〈ζθ(t, k̄1)ζθ(t, k̄2)ζθ(t, k̄3)〉 = (2π)3δ(
∑

k̄i)

×e−ik̄1∧k̄2
(

2P0(k1)P0(k2)f(k3)e
2H~θ·k̄3 +2p.

)

,(63)

where P0 = N ′2H2/2k3 denotes the power spectrum
in the commuting case. In this section we denote the
wavevectors by an overbar, k̄ = k.
To obtain real-valued results in coordinate space, we

apply the prescription introduced in (23) to (63) and
identify the observable three-point correlator with

〈ζθζθζθ〉≡α〈ζθζθζθ〉M + i(1− α)〈ζθζθζθ〉A
≡ (2π)3δ(

∑

k̄i)Bθ(k̄1, k̄2, k̄3) , (64)

where the self-adjoint part is

〈ζθ(k̄1)ζθ(k̄2)ζθ(k̄3)〉M= (65)

1

2

(

〈ζθ(k̄1)ζθ(k̄2)ζθ(k̄3)〉+ 〈ζθ(−k̄1)ζθ(−k̄2)ζθ(−k̄3)〉∗
)

,

and the antiself-adjoint part is

〈ζθ(k̄1)ζθ(k̄2)ζθ(k̄3)〉A= (66)

1

2

(

〈ζθ(k̄1)ζθ(k̄2)ζθ(k̄3)〉− 〈ζθ(−k̄1)ζθ(−k̄2)ζθ(−k̄3)〉∗
)

,

and all perturbations are evaluated at the same time t.
It becomes then straightforward to derive the result

Bθ(k̄1, k̄2, k̄3)= (67)

2e−ik̄1∧k̄2α

(

cosh(2H~θ · k̄3)P0(k̄1)P0(k̄2)f3(k̄3) + 2 p.
)

+2ieik̄1∧k̄21−α

(

sinh(2H~θ · k̄3)P0(k̄1)P0(k̄2)f3(k̄3) + 2 p.
)

.

We used a shorthand notation +2 p. to denote the per-
mutations of the three indices. Using the above result
and the spectrum of the two-point function computed in
section 3, we find the non-linearity parameter fNL,θ given
by the expression

fNL,θ≡
5

6

Bθ(k̄1, k̄2, k̄3)

Pθ(k1)Pθ(k2) + 2 p.
(68)

=
5

3
expα(−ik̄1 ∧ k̄2)

× P0(k1)P0(k2)f(k3)cosh(2H~θ · k̄3) + 2 p.

P0(k1)P0(k2)eα(H~θ · k̄1)eα(H~θ · k̄2) + 2 p.

+ i
5

3
exp1−α(ik̄1 ∧ k̄2)

× P0(k1)P0(k2)f(k3)sinh(2H~θ · k̄3) + 2 p.

P0(k1)P0(k2)eα(H~θ · k̄1)eα(H~θ · k̄2) + 2 p.
.

We have separated the real and imaginary terms in (67)
and (68). The imaginary contributions violate parity and

they vanish if all the components of ~θ are set to zero.
Otherwise they are present for arbitrary α: in particu-
lar we observe that restriction to the self-adjoint piece of
the correlation (α = 1) does not eliminate the odd corre-
lations. One also expects that higher order correlations
would exhibit parity violations even in the case of purely
spatial noncommutativity. The spatial components of
the non-commutativity matrix θij enter the through re-

sults the phase exp(ik̄1 ∧ k̄2) = exp(ki1k
j
2 θij). They do

not appear in the results for the spectrum and there-
fore affect only the non-Gaussian statistics of primordial
perturbations.
For simplicity, we analyze in the following only the

modifications due to θij setting all components of ~θ equal
to zero. This gives

fNL,θ=
5

3
e−ik̄1∧k̄2α

P0(k1)P0(k2)f(k3) + 2 p.

P0(k1)P0(k2) + 2 p.
, (69)

where the only contribution from the non-commutativity
is the prefactor involving the wedge product. This af-
fects the scale dependence of fNL,θ and can hence be
constrained observationally. For example, computing the
scale-dependence for shape preserving variations of the
momentum space triangle, k̄i → λk̄i, defined as

nfNL,θ
=
∂ln |fNL,θ(λk̄1, λk̄2, λk̄3)|

∂lnλ

∣

∣

∣

λ=1
, (70)

we find, in the two specific cases,

nfNL,θ
=

{

2ki1k
j
2θij cot(k

i
1k
j
2θij) + nfNL,0

if α = 0 ,

−2ki1kj2θij tan(ki1kj2θij) + nfNL,0
if α = 1 .

(71)
where nfNL,0

given by (62) is the result in the commut-
ing case. The part dependent on θij arises purely from
non-commutative features. The observational prospects
of scale dependent fNL were considered in Ref.(Sefusatti
et al. 2009), which suggests that Planck data could be
sensitive to a scale dependence of the order of slow roll
parameters. The scale dependence therefore could place
interesting bounds on θij . Moreover, it is worth noting
that the result (71) depends on the wavevectors k̄1 and
k̄2 and hence on the shape of the momentum space tri-
angle. This is in contrast with the commutative case,
where the shape dependence is given by the same result
nfNL,0

for all shape preserving variations, k̄i → λk̄i, re-
gardless of triangle shape. This allows, in principle, to
distinguish between the contributions arising from the
non-commutative properties of the theory and from the
standard classical inflationary physics.



9

6. CONCLUSIONS

We considered the effects of noncommutative geometry
to the statistics of the CMB anisotropy field. The results
are encoded in two formulas:

• The statistically anisotropic modulation of the two-
point function: Eq.(25).

• The function fNL characterizing the non-Gaussian
property of the three-point function: Eq.(68).

Both of these describe effects that in general violate
parity. The presence of spacetime noncommutativity
was found to induce the leading contributions to the
anisotropic couplings, which occur in principle between
all pairs of multipoles. The non-Gaussianity is scale-
dependent in a way which depends upon the shape of
the momentum triangles considered. These features can
provide stringent bounds on the scale of noncommuta-
tivity.
The first tests of these predictions are underway

(Groeneboom et al. 2010). A quite promising result is
that already the leading contribution, a dipole modu-
lation, is found to have an anomalous signature which

exhibits a hemispherical asymmetry and is modestly pre-
ferred by the data. We hope to make progress also on
the theoretical problem of the physical part of the corre-
lations in a future publication. In particular, the correct
value of α, introduced in (23), should be deduced from
first principles, whereas it was left here as an additional
parameter to be determined empirically.
By looking closely at the odd features in the sky, one

may see evidence that an accurate description of the uni-
verse must be deformed and twisted, since it is fundamen-
tally pointless.
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