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Abstract

The quantum H4 integrable system is a 4D system with rational potential related to the non-

crystallographic root system H4 with 600-cell symmetry. It is shown that the gauge-rotated H4

Hamiltonian as well as one of the integrals, when written in terms of the invariants of the Coxeter

group H4, is in algebraic form: it has polynomial coefficients in front of derivatives. Any eigen-

functions is a polynomial multiplied by ground-state function (factorization property). Spectra

corresponds to one of the anisotropic harmonic oscillator. The Hamiltonian has infinitely-many

finite-dimensional invariant subspaces in polynomials, they form the infinite flag with the charac-

teristic vector ~α = (1, 5, 8, 12).
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I. THE HAMILTONIAN

The quantum H4 system is a four-dimensional system related to the non-crystallographic

root system H4 [1]. The Hamiltonian of this model is invariant with respect to the H4

Coxeter group, which is the full symmetry group of the 600-cell polytope. The H4 Coxeter

group is discrete subgroup of O(4) and its dimension is 14400. In Cartesian coordinates the

H4 rational Hamiltonian has the form (see [1])

HH4
=

1

2

4
∑

k=1

[

− ∂2

∂x2k
+ ω2x2k +

g

x2k

]

+
∑

µ2,3,4=0,1

2g

[x1 + (−1)µ2x2 + (−1)µ3x3 + (−1)µ4x4]2

+
∑

{i,j,k,l}

∑

µ1,2=0,1

2g

[xi + (−1)µ1ϕ+xj + (−1)µ2ϕ−xk + 0 · xl]2
,

(1)

where {i, j, k, l} = {1, 2, 3, 4} and its even permutations. Here g = ν(ν − 1) > −1/4 is

the coupling constant, ϕ± = (1 ±
√
5)/2 the golden ratio and its algebraic conjugate. The

configuration space is the subspace ofR4 where the condition (α·x) > 0 holds for any positive

root α of H4. It is an analogue of the principal Weyl chamber in the case of crystallographic

root systems.

The ground state eigenfunction and its eigenvalue are

Ψ0(x) = ∆ν
1∆

ν
2∆

ν
3 exp

(

− ω

2

4
∑

k=1

x2k

)

, E0 = 2ω(1 + 30ν) , (2)

where

∆1 =
4
∏

k=1

xk, (3)

∆2 =
∏

µ2,3,4=0,1

[x1 + (−1)µ2x2 + (−1)µ3x3 + (−1)µ4x4], (4)

∆3 =
∏

{i,j,k,l}

∏

µ1,2=0,1

[xi + (−1)µ1ϕ+xj + (−1)µ2ϕ−xk + 0 · xl] . (5)

The ground state eigenfunction (2) does not vanish in the configuration space.

The main object of our study is the gauge-rotated Hamiltonian (1) with the ground state

eigenfunction (2) taken as a factor,

hH4
= −2(Ψ0)

−1(HH4
−E0)(Ψ0) , (6)

where E0 is the ground state energy given by (2). The gauge rotated operator (6) is the

second-order differential operator without free term. By construction its lowest eigenfunction

is a constant and the lowest eigenvalue is equal to zero.
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Now let us define new variables in (6). The H4 root space is characterized by four

fundamental weights wc, c = 1, 2, 3, 4 (see e.g. [2]). Taking action of all group elements on

fundamental weight ωc we generate orbit Ω(wc) of a certain length (length ≡ #elements of

the orbit). The results are summarized as

weight orbit length

w1 = (0, 0, 0, 2ϕ+) 120

w2 = (1, ϕ2
+, 0, ϕ

4
+) 600

w3 = (0, ϕ+, 1, ϕ
4
+ − 1) 720

w4 = (0, 2ϕ+, 0, 2ϕ
3
+) 1200

Now let us find H4-invariants. In order to do it we choose for simplicity the shortest orbit

Ω(w1) and make averaging,

t(Ω)
a (x) =

∑

w∈ Ω(w1)

(w · x)a , (7)

where a = 2, 12, 20, 30 are the degrees of the H4 group. It is worth noting that these

invariants are defined ambiguously, up to a non-linear combination of the invariants of the

lower degrees

t
(Ω)
2 7→ t

(Ω)
2 ,

t
(Ω)
12 7→ t

(Ω)
12 + A1 (t

(Ω)
2 )6 ,

t
(Ω)
20 7→ t

(Ω)
20 + A2 (t

(Ω)
2 )4t

(Ω)
12 + A3 (t

(Ω)
2 )10 ,

t
(Ω)
30 7→ t

(Ω)
30 + A4 (t

(Ω)
2 )5t

(Ω)
20 + A5 (t

(Ω)
2 )3(t

(Ω)
12 )2 + A6 (t

(Ω)
2 )9(t

(Ω)
12 ) + A7 (t

(Ω)
2 )15 ,

(8)

where {A} are parameters. Canonical invariant basis for the H4 was found only recently by

Mehta [4] (see also [5]). Now we use H4 invariants as new coordinates in (6).

Now we can make a change of variables in the gauge-rotated Hamiltonian (6):

(x1, x2, x3, x4) → (t
(Ω)
2 , t

(Ω)
12 , t

(Ω)
20 , t

(Ω)
30 ) .

The first observation is that the transformed Hamiltonian hH4
(t) (6) takes on an algebraic

form for any value of the parameters {A} in variables t’s (8). The second observation is

that for any value of the parameters {A} the operator hH4
(t) has infinitely-many finite-

dimensional invariant subspaces in polynomials which form infinite flag. Our goal is to find
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the parameters for which hH4
(t) preserves a minimal flag (for a discussion see e.g. [3]). After

some analysis such a set of parameters is found

A1 = −1 , A2 = −43510

1809
, A3 =

41701

1809
, A4 = −17583778485

146142376
,

A5 = −313009515

15383408
, A6 =

22081114965

7691704
, A7 = −798259915667

292284752
.

(9)

Hereafter we call the t-variables for such values of parameters as τ -variables.

In order to write down explicit expressions for variables τ it is useful to exploit the

notation for multivariate polynomials introduced by Iwasaki et al [5]. For given partition

λ = (λ1, λ2, λ3, λ4) with λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0, let denote as Mλ the associated monomial

symmetric polynomial of the variables (x21, x
2
2, x

2
3, x

2
4),

Mλ =
∑

x2µ11 x2µ22 x2µ33 x2µ44 ,

where the sum is taken over all permutations (µ1, µ2, µ3, µ4) of (λ1, λ2, λ3, λ4). If λ consists

of mutually distinct numbers p1 > · · · > pm with pj appearing kj times in λ, then we denote

the polynomial as

Mλ = [pk11 | · · · |pkmm ] .

Let introduce also ∆4 as the fundamental alternating polynomial of (x21, x
2
2, x

2
3, x

2
4),

∆4 =
∏

1≤i<j≤4

(x2i − x2j) .

Then, the τ -variables (7)-(9)are written in these notations as

τ1 = [1|03] ≡ x21 + x22 + x23 + x24 ,

τ2 = 14[32|02]− 6[4|2|02] + 2[5|1|02]− 270[22|12] + 30[23|0]

−12[4|12|0] + 348[3|13] + 9[3|2|1|0] + 33
√
5∆4 ,

τ3 = 2[8|2|02] + 4[8|12|0]− 10[7|3|02]− 45[7|2|1|0] + 60[7|13]

+22[6|4|02] + 157[6|3|1|0] + 270[6|22|0]− 150[6|2|12]

−22[52|02]− 131[5|4|1|0]− 733[5|3|2|0]− 2156[5|3|12]

+4050[5|22|1] + 1320[42|2|0] + 4650[42|12] + 6[4|32|0]

−2175[4|3|2|1]− 19050[4|23] + 10800[32|22] + 3336[33|1]

+3
√
5∆4{ 5[4|03]− 18[3|1|02] + 49[22|02] + 3[2|12|0]

+1146[14] } ,
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τ4 = 65742[15|03]− 504[13|2|02] + 830[13|12|0] + 61690[12|3|02]

−5130[12|2|1|0]− 9495[12|13] + 18795[11|4|02]

+28560[11|3|1|0]− 43500[11|22|0]− 53070[11|2|12]

−156330[10|5|02] + 59130[10|4|1|0] + 26415[10|3|2|0]

+405255[10|3|12] + 1350[10|22|1] + 19710[9|6|02]

−20[9|4|2|0]− 8663355[9|4|12]− 120[9|32|0] + 450[9|3|2|1]

−962715[9|23] + 13860[8|7|02]− 94530[8|6|1|0]

−353160[8|5|2|0]− 1452060[8|5|12] + 5557050[8|4|3|0]

+590580[8|4|2|1]− 198270[8|32|1] + 389250[72|1|0]

+2897820[7|6|2|0]− 5227920[7|6|12] + 1134540[7|5|3|0] (10)

−4041270[7|5|2|1]− 591330[7|42|0] + 23417850[7|4|3|1]

−22770[7|4|22]− 23528790[7|32|2] + 29647380[62|3|0]

+36597510[62|2|1]− 1649925[6|5|4|0] + 150[6|5|3|1]

+40935[6|5|22]− 510[6|42|1]− 60[6|4|3|2] + 242505[6|33]

+270060[53|0]− 528270[52|4|1]− 36255[5|42|2] + 825[5|4|32]

+707085[43|3] + 45
√
5∆4{ −27040[9|03]− 5[8|1|02]

−1914[7|12|0] + 23[6|3|02] + 91[6|2|1|0]− 44[6|13]

−352[5|4|02] + 8[5|3|1|0] + 1085[5|22|0] + 6875[5|2|12]

−5168[42|1|0]− 934[4|3|2|0]− 568[4|3|12] + 1773[4|22|1]

+20911[33|0] + 15915[32|2|1] + 573[3|23] } .

Thus, the variables τ1,2,3,4 are homogeneous polynomials in x2’s of the degrees 1,3,10,15 ,

respectively.

Finally, the gauge-rotated Hamiltonian (6) in the τ -coordinates (10) written as

hH4
=

4
∑

i,j=1

Aij(τ)
∂2

∂τi∂τj
+

4
∑

i=1

Bi(τ)
∂

∂τi
, Aij = Aji , (11)

takes amazingly simple form with the coefficient functions

A11 = 4 τ1 , A12 = 24 τ2 ,

A13 = 40 τ3 , A14 = 60 τ4 ,
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A22 = 88 τ1τ3 + 8 τ 51 τ2 ,

A23 = −4 τ 31 τ
2
2 + 24 τ 51 τ3 − 8 τ4 ,

A24 = 10 τ 21 τ
3
2 + 60 τ 41 τ2τ3 + 40 τ 51 τ4 − 600 τ 23 ,

A33 = −38

3
τ1τ

3
2 + 28 τ 31 τ2τ3 −

8

3
τ 41 τ4 ,

A34 = 210 τ 21 τ
2
2 τ3 + 60 τ 31 τ2τ4 − 180 τ 41 τ

2
3 + 30 τ 42 ,

A44 = −2175 τ1τ
3
2 τ3 − 450τ 21 τ

2
2 τ4 − 1350 τ 31 τ2τ

2
3 − 600 τ 41 τ3τ4 , (12)

B1 = 8(1 + 30ν) − 4ωτ1 ,

B2 = 12(1 + 10ν) τ 51 − 24ωτ2 ,

B3 = 20(1 + 6ν) τ 31 τ2 − 40ωτ3 ,

B4 = 15(1− 30ν) τ 21 τ
2
2 − 450(1 + 2ν) τ 41 τ3 − 60ωτ4 .

It can be easily checked that the operator (11) is triangular with respect to action on

monomials τ p11 τ
p2
2 τ

p3
3 τ

p4
4 . One can find the spectrum of (11) hH4

ϕ = −2ǫϕ explicitly

ǫn1,n2,n3,n4
= 2ω(n1 + 6n2 + 10n3 + 15n4) , (13)

where ni = 0, 1, 2, . . .. Degeneracy of the spectrum is related to the number of solutions of

the equation n1 + 6n2 + 10n3 + 15n4 = n for n = 0, 1, 2 . . . in non-negative numbers n1,2,3,4.

The spectrum ǫ does not depend on the coupling constant g and it is equidistant. It coincides

to the spectrum of 4D anisotropic harmonic oscillator with frequencies (2ω, 12ω, 20ω, 30ω).

The energies of the original rational H4 Hamiltonian (1) are E = E0 + ǫ. It is worth noting

that the Hamiltonian (11) has infinite family of eigenfunctions φn1,0,0,0 depending on single

variable τ1. They are given by the Laguerre polynomials and the eigenvalues are linear in

quantum number (cf.(13))

φn1,0,0,0(τ1) = L(1+60ν)
n1

(ωτ1) , ǫn1,0,0,0 = 2ωn1 , n1 = 0, 1, 2, . . . . (14)

The boundary of the configuration space of the rational H4 model (1) in the τ variables is

determined by the zeros of the ground state eigenfunction, hence, by pre-exponential factor

in (2). It is the algebraic surface of degree 120 in Cartesian coordinates being a product of

monomials. In τ -coordinates (10) it can be written as
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64 τ 151 τ
3
4 + 1440 τ 141 τ2τ3τ

2
4 + 10800 τ 131 τ

2
2 τ

2
3 τ4 + 27000 τ 121 τ

3
2 τ

3
3 − 240 τ 121 τ

3
2 τ

2
4

− 3600 τ 111 τ
4
2 τ3τ4 − 13500 τ 101 τ

5
2 τ

2
3 + 34992 τ 101 τ

5
3 − 1440 τ 101 τ

2
3 τ

2
4 + 300 τ 91 τ

6
2 τ4

− 2160 τ 91 τ2τ
3
3 τ4 − 1440τ 91 τ2τ

3
4 + 2250 τ 81 τ

7
2 τ3 − 22680 τ 81 τ

2
2 τ

4
3 − 28080 τ 81 τ

2
2 τ3τ

2
4

− 203760 τ 71 τ
3
2 τ

2
3 τ4 − 125 τ 61 τ

9
2 − 493020 τ 61 τ

4
2 τ

3
3 + 3600 τ 61 τ

4
2 τ

2
4 + 57780 τ 51 τ

5
2 τ3τ4

− 8640 τ 51 τ
4
3 τ4 + 4320 τ 51 τ3τ

3
4 + 221310 τ 41 τ

6
2 τ

2
3 − 648000 τ 41 τ2τ

5
3 + 116640 τ 41 τ2τ

2
3 τ

2
4

− 4680 τ 31 τ
7
2 τ4 + 712800 τ 31 τ

2
2 τ

3
3 τ4 + 6480 τ 31 τ

2
2 τ

3
4 − 35640 τ 21 τ

8
2 τ3 + 2052000 τ 21 τ

3
2 τ

4
3

+ 62640 τ 21 τ
3
2 τ3τ

2
4 + 259200 τ1τ

4
2 τ

2
3 τ4 + 1944 τ 102 + 129600 τ 52 τ

3
3 + 2592 τ 52 τ

2
4

+ 2160000 τ 63 − 86400 τ 33 τ
2
4 + 864 τ 44 = 0 ,

(15)

which is the algebraic surface of degree 18 being given by a polynomial of degree 15 in τ1,

of the degree 10 in τ2, of the degree 6 in τ3 and of the degree 4 in τ4. It is worth mentioning

that l.h.s. of (15) is proportional to the square of Jacobian, J2(∂τ
∂x
).

The Hamiltonian hH4
(τ) has infinitely-many finite-dimensional invariant subspaces

P(1,5,8,12)
n = 〈τ p11 τ p22 τ p33 τ p44 | 0 ≤ p1 + 5p2 + 8p3 + 12p4 ≤ n〉 , n = 0, 1, 2, . . . , (16)

which form the (minimal) infinite flag. Its characteristic vector is

~αmin = (1, 5, 8, 12) . (17)

It is worth noting that each particular space P(1,5,8,12)
n (16) as well as the whole flag are

invariant with respect to a weighted projective transformation

τ1 → τ1 + a ,

τ2 → τ2 + b1 τ
5
1 + b2 τ

4
1 + b3 τ

3
1 + b4 τ

2
1 + b5 τ1 + b6 ,

τ3 → τ3 + c1 τ
3
1 τ2 + c2 τ

2
1 τ2 + c3 τ1τ2 + c4 τ2 + c5 τ

8
1 + c6 τ

7
1

+c7 τ
6
1 + c8 τ

5
1 + c9 τ

4
1 + c10 τ

3
1 + c11 τ

2
1 + c12 τ1 + c13 , (18)

τ4 → τ4 + d1 τ
4
1 τ3 + d2 τ

3
1 τ3 + d3 τ

2
1 τ3 + d4 τ1τ3 + d5 τ3

+d6 τ
7
1 τ2 + d7 τ

6
1 τ2 + d8 τ

5
1 τ2 + d9 τ

4
1 τ2 + d10 τ

3
1 τ2

+d11 τ
2
1 τ2 + d12 τ1τ2 + d13 τ2 + d14 τ

12
1 + d15 τ

11
1

+d16 τ
10
1 + d17 τ

9
1 + d18 τ

8
1 + d19 τ

7
1 + d20 τ

6
1 + d21 τ

5
1

+d22 τ
4
1 + d23 τ

3
1 + d24 τ

2
1 + d25 τ1 + d26 ,

7



where {a, b, c, d} are parameters. It manifests a hidden invariance of the Hamiltonian (1)

preserving its algebraic form. A meaning of this invariance is unclear.

II. INTEGRAL

The Hamiltonian (1) can be written in hyperspherical coordinates

x1 = r sinψ sin θ cos φ ,

x2 = r sinψ sin θ sin φ ,

x3 = r sinψ cos θ ,

x4 = r cosψ ,

(19)

where it takes the form

HH4
= −1

2
∆(4) +

1

2
ω2r2 +

W (ψ, θ, φ)

r2
. (20)

Here ∆(4) is the 4D Laplacian and the angular function

W (ψ, θ, φ) =
2ν(ν − 1)

(sψsθcφ + ϕ+sψsθsφ + ϕ−sψcθ)2
+

2ν(ν − 1)

(sψsθcφ − ϕ+sψsθsφ + ϕ−sψcθ)2

+
2ν(ν − 1)

(sψsθcφ + ϕ+sψsθsφ − ϕ−sψcθ)2
+

2ν(ν − 1)

(sψsθcφ − ϕ+sψsθsφ − ϕ−sψcθ)2

+
2ν(ν − 1)

(sψsθcφ + ϕ+sψcθ + ϕ−cψ)2
+

2ν(ν − 1)

(sψsθcφ − ϕ+sψcθ + ϕ−cψ)2

+
2ν(ν − 1)

(sψsθcφ + ϕ+sψcθ − ϕ−cψ)2
+

2ν(ν − 1)

(sψsθcφ − ϕ+sψcθ − ϕ−cψ)2

+
2ν(ν − 1)

(sψsθcφ + ϕ+cψ + ϕ−sψsθsφ)2
+

2ν(ν − 1)

(sψsθcφ − ϕ−cψ + ϕ−sψsθsφ)2

+
2ν(ν − 1)

(sψsθcφ + ϕ+cψ − ϕ−sψsθsφ)2
+

2ν(ν − 1)

(sψsθcφ − ϕ+cψ − ϕ−sψsθsφ)2

+
2ν(ν − 1)

(sψsθsφ + ϕ+sψsθcφ + ϕ−cψ)2
+

2ν(ν − 1)

(sψsθsφ − ϕ+sψsθcφ + ϕ−cψ)2

+
2ν(ν − 1)

(sψsθsφ + ϕ+sψsθcφ − ϕ−cψ)2
+

2ν(ν − 1)

(sψsθsφ − ϕ+sψsθcφ − ϕ−cψ)2

+
2ν(ν − 1)

(sψsθsφ + ϕ+sψcθ + ϕ−sψsθcφ)2
+

2ν(ν − 1)

(sψsθsφ − ϕ+sψcθ + ϕ−sψsθcφ)2

+
2ν(ν − 1)

(sψsθsφ + ϕ+sψcθ − ϕ−sψsθcφ)2
+

2ν(ν − 1)

(sψsθsφ − ϕ−sψcθ − ϕ−sψsθcφ)2

8



+
2ν(ν − 1)

(sψsθsφ + ϕ+cψ + ϕ−sψcθ)2
+

2ν(ν − 1)

(sψsθsφ − ϕ+cψ + ϕ−sψcθ)2

+
2ν(ν − 1)

(sψsθsφ + ϕ+cψ − ϕ−sψcθ)2
+

2ν(ν − 1)

(sψsθsφ − ϕ+cψ − ϕ−sψcθ)2

+
2ν(ν − 1)

(sψcθ + ϕ+sψsθcφ + ϕ−sψsθsφ)2
+

2ν(ν − 1)

(sψcθ + ϕ−sψsθcφ + ϕ−sψsθsφ)2

+
2ν(ν − 1)

(sψcθ + ϕ+sψsθcφ − ϕ−sψsθsφ)2
+

2ν(ν − 1)

(sψcθ + ϕ−sψsθcφ − ϕ−sψsθsφ)2

+
2ν(ν − 1)

(sψcθ + ϕ+cψ + ϕ−sψsθcφ)2
+

2ν(ν − 1)

(sψcθ − ϕ+cψ + ϕ−sψsθcφ)2

+
2ν(ν − 1)

(sψcθ + ϕ+cψ − ϕ−sψsθcφ)2
+

2ν(ν − 1)

(sψcθ − ϕ+cψ − ϕ−sψsθcφ)2

+
2ν(ν − 1)

(sψcθ + ϕ+sψsθsφ + ϕ−cψ)2
+

2ν(ν − 1)

(sψcθ + ϕ−sψsθsφ + ϕ−cψ)2

+
2ν(ν − 1)

(sψcθ + ϕ+sψsθsφ − ϕ−cψ)2
+

2ν(ν − 1)

(sψcθ + ϕ−sψsθsφ − ϕ−cψ)2

+
2ν(ν − 1)

(cψ + ϕ+sψsθcφ + ϕ−sψcθ)2
+

2ν(ν − 1)

(cψ + ϕ−sψsθcφ + ϕ−sψcθ)2

+
2ν(ν − 1)

(cψ + ϕ+sψsθcφ − ϕ−sψcθ)2
+

2ν(ν − 1)

(cψ + ϕ−sψsθcφ − ϕ−sψcθ)2

+
2ν(ν − 1)

(cψ + ϕ+sψsθsφ + ϕ−sψsθcφ)2
+

2ν(ν − 1)

(cψ − ϕ+sψsθsφ + ϕ−sψsθcφ)2

+
2ν(ν − 1)

(cψ + ϕ+sψsθsφ − ϕ−sψsθcφ)2
+

2ν(ν − 1)

(cψ − ϕ+sψsθsφ − ϕ−sψsθcφ)2

+
2ν(ν − 1)

(cψ + ϕ+sψcθ + ϕ−sψsθsφ)2
+

2ν(ν − 1)

(cψ − ϕ+sψcθ + ϕ−sψsθsφ)2

+
2ν(ν − 1)

(cψ + ϕ+sψcθ − ϕ−sψsθsφ)2
+

2ν(ν − 1)

(cψ − ϕ+sψcθ − ϕ−sψsθsφ)2

+
2ν(ν − 1)

(sψsθcφ + sψsθsφ + sψcθ + cψ)2
+

2ν(ν − 1)

(sψsθcφ − sψsθsφ + sψcθ + cψ)2

+
2ν(ν − 1)

(sψsθcφ + sψsθsφ − sψcθ + cψ)2
+

2ν(ν − 1)

(sψsθcφ + sψsθsφ + sψcθ − cψ)2

+
2ν(ν − 1)

(sψsθcφ − sψsθsφ − sψcθ + cψ)2
+

2ν(ν − 1)

(sψsθcφ − sψsθsφ + sψcθ − cψ)2

+
2ν(ν − 1)

(sψsθcφ + sψsθsφ − sψcθ − cψ)2
+

2ν(ν − 1)

(sψsθcφ − sψsθsφ − sψcθ − cψ)2

+
ν(ν + 1)

2s2ψs
2
θc

2
φ

+
ν(ν + 1)

2s2ψs
2
θs

2
φ

+
ν(ν + 1)

2s2ψc
2
θ

+
ν(ν + 1)

2c2ψ
.

(21)

Here, for the sake of simplicity we denoted cψ ≡ cosψ, sψ ≡ sinψ, cθ ≡ cos θ, sθ ≡ sin θ and

cφ ≡ cosφ, sφ ≡ sin φ. It is seen immediately, that the Schroedinger equation (20) admits a
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separation of radial variable r: any solution can be written in factorized form

Ψ(r, ψ, θ, φ) = R(r)Q(ψ, θ, φ) . (22)

Functions R and Q are the solutions of the equations

[

− 1

2r3
∂

∂r

(

r3
∂

∂r

)

+
1

2
ω2r2 +

γ

r2

]

R(r) = ER(r) , (23)

F Q(ψ, θ, φ) = γ Q(ψ, θ, φ) , (24)

respectively, while γ is the constant of separation. The operator F has the form

F = − 1

2 sin2 ψ

[

∂

∂ψ

(

sin2 ψ
∂

∂ψ

)

+
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

+W (ψ, θ, φ) , (25)

It can be immediately checked that the Hamiltonian HH4
and F commute,

[HH4
,F ] = 0 . (26)

Hence, F is an integral of motion. Thus, it has common eigenfunctions with the Hamiltonian

HH4
.

Let us make a gauge rotation of the operator F (25) with the ground state function Ψ0

as a gauge factor,

f = (Ψ0)
−1(F − γ0)Ψ0 , γ0 = 60ν(1 + 30ν) , (27)

where γ0 is the lowest eigenvalue of F . Then make a change of variables to the τ -variables

(10). The operator f gets an algebraic form,

f =

4
∑

i,j=1

Fij
∂2

∂τi∂τj
+

4
∑

j=1

Gj

∂

∂τj
, Fij = Fji (28)

where

F11 = 0 , F12 = 0 ,

F13 = 0 , F14 = 0 ,

F22 = −4τ 61 τ2 − 44τ 21 τ3 + 72τ 22 ,

F23 = −12τ 61 τ3 + 2τ 41 τ
2
2 + 4τ1τ4 + 120τ2τ3 ,

F24 = −20τ 61 τ4 − 30τ 51 τ2τ3 − 5τ 31 τ
3
2 + 300τ1τ

2
3 + 180τ2τ4 ,

10



F33 =
4

3
τ 51 τ4 − 14τ 41 τ2τ3 +

19

3
τ 21 τ

3
2 + 200τ 23 ,

F34 = 90τ 51 τ
2
3 − 30τ 41 τ2τ4 − 105τ 31 τ

2
2 τ3 − 15τ1τ

4
2 + 300τ3τ4 ,

F44 = 300τ 51 τ3τ4 + 675τ 41 τ2τ
2
3 + 225τ 31 τ

2
2 τ4 +

2175

2
τ 21 τ

3
2 τ3 + 450τ 24 ,

G1 = 0 ,

G2 = −6(1 + 10ν)τ 61 + 12(7 + 60ν)τ2 ,

G3 = −10(1 + 6ν)τ 41 τ2 + 20(11 + 60ν)τ3 ,

G4 = 225(1 + 2ν)τ 51 τ3 −
15

2
(1− 30ν)τ 31 τ

2
2 + 40(12 + 45ν)τ4 . (29)

It is worth noting that in the operator f the variable τ1 appears as a parameter. It implies

that any eigenfunction of the Hamiltonian hH4
, which depends on τ1 only, is an eigenfunction

of the integral f with zero eigenvalue.

It can be also shown that the operator f has infinitely many finite-dimensional invariant

subspaces in polynomials

P(1,6,10,15)
n = 〈τ p11 τ p22 τ p33 τ p44 | 0 ≤ p1 + 6p2 + 10p3 + 15p4 ≤ n〉 , n = 0, 1, 2, . . . , (30)

which form a flag with characteristic vector (1, 6, 10, 15). The spectrum of the integral

FΨ = ΓΨ can be found in a closed form,

Γ0,k2,k3,k4 ≡ γ0,k2,k3,k4 + γ0 =

72k22+200k23+450k24+120k2k3+180k2k4+300k3k4+2(1+60ν)(6k2+10k3+15k4)+γ0 , (31)

where k2, k3, k4 = 0, 1, 2, . . . and γ0 is given by (27).

It can be shown that the Hamiltonian hH4
has a certain degeneracy – it preserves two

different flags: one with (minimal) characteristic vector (1,5,8,12) and another one with

characteristic vector (1,6,10,15). The fact that the operator hH4
with coefficients (12) com-

mutes with f given by (28) implies that common eigenfunctions of the operators hH4
and f

are elements of the flag of spaces P(1,6,10,15).

Let us denote φn,i the eigenfunctions of hH4
which are elements of the invariant space

P
(1,5,8,12)
n and their respectful eigenvalues ǫn,i. The index i numerates these eigenfunctions

for given n starting from 0. It is evident that an eigenfunction with n < 5 depends on τ1 only

and its γ is equal to zero. The eigenfunctions with 4 < n < 8 depend on τ1,2 only while the

dependence on the τ1,2,3 occurs for the eigenfunctions with 7 < n < 12. The eigenfunctions

with n ≥ 12 depend on all four variables τ1,2,3,4.
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The function φn,i is related to the eigenfunction of the Hamiltonian HH4
(1) (and the inte-

gral F) through Ψn,i = Ψ0φn,i. Thus, the eigenfunctions {φ} are orthogonal with the weight

factor |Ψ0|2. As an illustration let us give explicit expressions for several eigenfunctions φn,i

and their respectful eigenvalues,

• n = 0

φ0,0 = 1 , ǫ0,0 = 0 ,

• n = 1

φ1,0 = ωτ1 − 2(1 + 30ν) , ǫ1,0 = 2ω ,

• n = 2

φ2,0 = ω2τ 21 − 6ω(1 + 20ν)τ1 + 6(1 + 20ν)(1 + 30ν) , ǫ2,0 = 4ω ,

• n = 3

φ3,0 = ω3τ 31−12ω2(1+15ν)τ 21+36ω(1+15ν)(1+20ν)τ1−24(1+15ν)(1+20ν)(1+30ν) ,

ǫ3,0 = 6ω ,

• n = 4

φ4,0 = L
(1+60ν)
4 (ωτ1) , ǫ4,0 = 8ω ,

• n = 5

φ5,0 = L
(1+60ν)
5 (ωτ1) , ǫ5,0 = 10ω ,

φ5,1 = ω6τ2 − 3(1 + 10ν)ω5τ 51 + 45ω4(1 + 10ν)2τ 41 − 300ω3(1 + 12ν)(1 + 10ν)2τ 41+

900ω2(1+15ν)(1+12ν)(1+10ν)2τ 21 − 1080ω(1+20ν)(1+15ν)(1+12ν)(1+10ν)2τ1+

360(1 + 30ν)(1 + 20ν)(1 + 15ν)(1 + 12ν)(1 + 10ν)2 ,

ǫ5,1 = 12ω .

Let us denote φ̃n,i the common eigenfunctions of hH4
and f which are elements of the

invariant space P
(1,6,10,15)
n and their respectful eigenvalues ǫ̃n,i, γn,i. The index i numerates

these eigenfunctions for given n starting from 0. It is evident that an eigenfunction with

n < 6 depends on τ1 only and its γ is equal to zero. The eigenfunctions with 6 ≤ n < 10

can depend on τ1,2 and the dependence on the τ1,2,3 occurs for the eigenfunctions with

10 ≤ n < 15. It is evident that all eigenstates (n, i) at fixed n and different i are degenerate:

their eigenvalues are equal to 2ωn. We give some eigenstates from P
(1,6,10,15)
n explicitly,
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• n = 0

φ̃0,0 = 1 , ǫ̃0,0 = 0 , γ0,0 = 0 .

• n = 1

φ̃1,0 = ωτ1 − 2(1 + 30ν) , ǫ̃1,0 = 2ω , γ1,0 = 0

• n = 2

φ̃2,0 = ω2τ 21 − 6ω(1 + 20ν)τ1 + 6(1 + 20ν)(1 + 30ν) , ǫ̃2,0 = 4ω , γ2,0 = 0

• n = 3

φ̃3,0 = ω3τ 31−12ω2(1+15ν)τ 21+36ω(1+15ν)(1+20ν)τ1−24(1+15ν)(1+20ν)(1+30ν) ,

ǫ̃3,0 = 6ω , γ3,0 = 0

• n = 4

φ̃4,0 = L
(1+60ν)
4 (ωτ1) , ǫ̃4,0 = 8ω , γ4,0 = 0

• n = 5

φ̃5,0 = L
(1+60ν)
5 (ωτ1) , ǫ̃5,0 = 10ω , γ5,0 = 0

• n = 6

φ̃6,0 = L
(1+60ν)
6 (ωτ1) , ǫ̃6,0 = 12ω , γ6,0 = 0

φ̃6,1 = τ2 −
1 + 10ν

4(7 + 60ν)
τ 61 , ǫ̃6,1 = 12ω , γ6,1 = 12(7 + 60ν) .

It is worth noting that φ5,1 = ω6φ̃6,1 + Aφ̃6,0 where A is a parameter. Eigenfunctions

φn,0 = φ̃n,0 at n ≤ 6.

III. CONCLUSIONS

We have shown that the H4 rational system related to the non-crystallographic root sys-

tem H4 is exactly solvable with the characteristic vector (1, 5, 8, 12). This work complements

the previous studies of the rational (and trigonometric) models, related with crystallographic

root systems (e.g. [6] - [9], [3]) and non-crystallographic root systems I2(k) [10] and H3 [11].

A certain significance of exploration of the H4 rational system is due to a fact that this model
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is defined in four-dimensional Euclidian space. There are very few known exactly-solvable

systems in this space – five-body Calogero-Sutherland (A4) and BC4 rational-trigonometric

models among them. All of them are completely-integrable.

Taking Coxeter invariants ofH4 as coordinates provided us a way to reduce the rationalH4

Hamiltonian to algebraic form. It gave us a chance to find the eigenfunctions of the rational

H4 Hamiltonian which are proportional to polynomials in these invariant coordinates. It

seems correct that these eigenfunctions exhaust all eigenfunctions in the Hilbert space. It is

worth noting that the matrix Aij(τ) which appears in front of the second derivatives after

changing variables in Laplacian from Cartesian to the H4 Coxeter invariant coordinates (see

Eqs. (12)) has polynomial entries corresponding to flat space metric, hence the Riemann

tensor vanishes.

It should be stressed that it was stated in Lax pair formalism that the Hamiltonian

of the H4 rational system (1) is completely integrable [12]. This implies the existence of

three mutually-commuted operators (the ‘higher Hamiltonians’) which commute with the

Hamiltonian forming a commutative algebra. It is known (see [1]) for the crystallographic

systems that these higher Hamiltonians are the differential operators of the degrees which

coincide to the minimal degrees of the root space (the Lie algebra) or their doubles for the

AN case. It may suggest that for the H4 rational system the commuting integrals might

be differential operators of the orders 12, 20 and 30. Their explicit forms are not known

so far. It seems evident that these commuting operators should take on an algebraic form

after a gauge rotation (with the ground state function as a gauge factor), and a change of

variables from Cartesian coordinates to the Coxeter invariant variables τ ’s. Interesting open

question is about a flag of invariant subspaces: would it be one of these two flags preserved

by hH4
? Following the experience with different integrable systems, it seems the integral(s)

related with separation of variables do not enter to the commutative algebra. Therefore, the

integral F lays out of the commutative algebra of integrals. It might serve as an indication

to a superintegrability of the H4 rational system.

It should be pointed out that unlike the rational models of the crystallographic root

spaces it is not possible to construct integrable (and exactly-solvable) trigonometric systems

related to the non-crystallographic root spaces as a natural generalization of the Hamiltonian

Reduction Method [1].

The existence of algebraic form of the H4 rational Olshanetsky-Perelomov Hamiltonian
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makes possible the study of their polynomial perturbations which are invariant wrt the H4

Coxeter group by purely algebraic means: one can develop a perturbation theory in which

all corrections are found by linear algebra methods [13]. In particular, it gives a chance to

calculate the H4 Coxeter-invariant, polynomial correlation functions by algebraic means.

Another important property of the existence of algebraic form of the H4 rational Hamil-

tonian is a chance to perform a canonical, Lie-algebraic discretization to uniform ([14])

and exponential [15] lattices, or mixed uniform-exponential lattices. In the case of all three

lattices such a discretization preserves a property of integrability, polynomiality of the eigen-

functions remains and it is isospectral. Making the weighted projective transformation (18)

of the H4 algebraic form (11) we arrive at different algebraic form of the H4 Hamiltonian.

Making then the Lie-algebraic discretization we arrive at a discrete model related to an

original discrete model via change of variables. It can be considered as a definition of a

polynomial change of variables for discrete operators.

One can find the sl(2)-quasi-exactly-solvable generalization [16] of the H4 model which

remains integrable. This is one of the first examples of quasi-exact-solvability related to

non-crystallographic root systems. It complements the results obtained previously for all

rational models related to crystallographic systems (see [17]), for the I2(k) rational model

[10] and for H3 [11] – each of these models admit a certain sl(2)-QES generalization in a

form of sixth degree polynomial potential.

Owing to the explicit knowledge of the ground state function (2) supersymmetric H4

model can be constructed following a procedure realized in [18] for AN rational model, in

[19] for the BCN rational model and in [20] for the I2(k) rational model. It can be done

elsewhere.
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