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Abstract

We propose an alternative to the introduction of an extra gauge (custodial)
symmetry to suppress the contribution of KK modes to the T parameter
in warped theories of electroweak breaking. The mechanism is based on a
general class of warped 5D metrics and a Higgs propagating in the bulk.
The metrics are nearly AdS in the UV region but depart from AdS in
the IR region, towards where KK fluctuations are mainly localized, and
have a singularity outside the slice between the UV and IR branes. This
gravitational background is generated by a bulk stabilizing scalar field which
triggers a natural solution to the hierarchy problem. Depending on the
model parameters, gauge-boson KK modes can be consistent with present
bounds on EWPT for mKK & 1 TeV at 95% CL. The model contains a light
Higgs mode which unitarizes the four-dimensional theory. The reduction
in the precision observables can be traced back to a large wave function
renormalization for this mode.
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1. Introduction
Warped models in five dimensions were proposed by Randall and Sundrum

(RS) [1] as an elegant way of solving the Planck/weak hierarchy problem. In the
RS setup, we live in a slice of AdS5 with two flat branes in the ultraviolet (UV)
and infrared (IR) regions whose four-dimensional theory is Poincaré invariant.
If the Higgs field is localized on (or towards) the IR brane, in the 4D theory
its Planckian mass is warped down to the TeV scale, and this is how the large
hierarchy is generated.

When gauge bosons propagate in the 5D bulk their Kaluza-Klein (KK) exci-
tations can contribute to the Standard Model electroweak precision observables
–in particular the T parameter [2, 3]– and their masses and couplings have to be
contrasted with the Standard Model electroweak precision tests (EWPT). Since
KK modes decouple when they are heavy, EWPT translate into lower bounds on
their masses. If these bounds are much larger than LHC scales, they make the
theories phenomenologically unappealing and create a “little hierarchy” problem,
which translates into some amount of fine-tuning to stabilize weak masses. In
particular, in order to avoid large volume-enhanced contributions to the T pa-
rameter it was proposed to enlarge the gauge symmetry in the bulk by adding
the SU(2)R × U(1)B−L gauge group [4]. In this case one has to worry only for
large contributions to the S parameter, which yield bounds on KK masses of O(3)
TeV. Moreover, the presence of extra matter, in particular the SU(2)R-symmetric
partner of the RH top quark, generate large anomalous (volume enhanced) con-
tributions to the Zb̄b vertex which should be controled by introducing a discrete
left-right symmetry [5].

The presence of large IR brane kinetic terms was proposed in Ref. [6] as a
way of reducing the T parameter. Generically they include bare contributions,
which encode physics above the cutoff scale, as well as radiative contributions that
are calculable within the effective 5D theory. However on the IR brane radiative
effects are small since the local cutoff is around the TeV scale, there is no room for
a large logarithmic enhancement and a large IR brane kinetic term would have to
arise from the unknown UV physics. Let us remark though that such unknown UV
physics could just as well directly modify the T parameter, by contributing to an
IR brane localized operator of the type |H†DµH|2. In order to keep calculability
we will assume such degrees of freedom to be absent.

In this letter we will propose a simple alternative to the introduction of an
extra custodial symmetry (or large IR brane kinetic terms) based on generalized
metrics and a bulk Higgs field, to keep the T parameter under control, which
should allow us to construct a pure 5D Standard Model. Although there are
negative results in the literature based on general 5D metrics when the Higgs is
localized on the IR brane [7, 8], we will circumvent them by assuming a Higgs
propagating in the bulk of the fifth dimension in the background of a singular
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metric (asymptotically AdS near the UV brane) with a singularity outside the
slice between the branes, but close enough to the IR brane. In fact, as we will see,
the T parameter will be suppressed by the combined effect of the non-localized
bulk Higgs as well as the vicinity of the singularity to the IR brane. This effect can
be traced back to a large wave function renormalization for a light Higgs mode.
This alternative to the custodial symmetry is purely based on a modification of
the 5D gravitational background, which requires a bulk propagating scalar field
playing the role of the Goldberger-Wise field [9] in RS theories, and does not
interfere with the electroweak physics. This kind of metrics have been widely
studied in the literature in the past [10] and more recently they constitute the
background of the so-called soft-wall models [11–18].

2. General results
We will now consider the Standard Model (SM) propagating in a 5D space

with an arbitrary metric A(y) such that

ds2 = e−2A(y)ηµνdx
µdxν + dy2 , (1)

in proper coordinates and two branes localized at y = 0 and y = y1, at the
edges of a finite S1/Z2-interval. We define the 5D SU(2)L × U(1)Y gauge bosons
as W i

M(x, y), BM(x, y) [or in the weak basis AM(x, y), ZM(x, y) and W±
M(x, y)],

where i = 1, 2, 3 and M = µ, 5, and the SM Higgs as

H(x, y) =
1√
2
eiχ(x,y)

(

0
h(y) + ξ(x, y)

)

, (2)

where the matrix χ(x, y) contains the three 5D SM Goldstone bosons. The Higgs
background h(y) as well as the metric A(y) will be for the moment arbitrary
functions which will be specified later on.

We will consider the 5D action (in units of the 5D Planck scale M) for the
Higgs field H and other possible scalar fields of the theory, generically denoted as
φ:

S5 =

∫

d4xdy
√−g

(

−1

4
~W 2

MN − 1

4
B2

MN − |DMH|2 − 1

2
(DMφ)2 − V (H, φ)

)

−
∑

α

∫

d4xdy
√
−g (−1)α 2 λα(H, φ)δ(y − yα), (3)

where V is the 5D potential and λα (α = 0, 1) the 4D brane potentials which
depend on the scalar fields of the theory. One can then construct the 4D effective
theory out of (3) by making the KK-mode expansion [19] Aµ(x, y) = aµ(x) ·

3



fA(y)/
√
y1 where A = Aγ , Z,W± and the dot product denotes an expansion in

modes. The functions fA satisfy the equations of motion (EOM)

m2
fA
fA + (e−2Af ′

A)
′ −M2

AfA = 0 , (4)

where the functions fA(y) are normalized as
∫ y1
0

f 2
A(y)dy = y1 and satisfy the

boundary conditions e−2A f ′
A|y=0,y1

= 0. We have defined the 5D y-dependent
gauge boson masses

MW (y) =
g5
2
h(y)e−A(y) , MZ(y) =

1

cW
MW (y) , Mγ(y) ≡ 0 . (5)

where cW = g5/
√

g25 + g′25 , and g5 and g′5 are the 5D SU(2)L and U(1)Y couplings
respectively.

Equations (4) will in general not have analytic solutions. However we can
find an approximation for the light mode of (4) with mass mf0

A
≡ mA in the

limit where the breaking is small (mA ≪ mKK) and thus there is a zero mode
with almost constant profile. Expanding around this limit we can write fA(y) =
1− δA + δfA(y) , where

δfA(y) =

∫ y

0

dy′ e2A(y′)

∫ y′

0

dy′′
[

M2
A(y

′′)−m2
A,0

]

, (6)

δA =
1

y1

∫ y1

0

dy δfA(y) , (7)

m2
A,0 =

1

y1

∫ y1

0

M2
A(y)dy , (8)

and where mA,0 is a zeroth order approximation for the zero mode mass mA.
Including the first order deviations from a constant profile we obtain for the light
mode mass the expression

m2
A = m2

A,0 −
1

y1

∫ y1

0

dyM2
A(y) [δA − δfA(y)] . (9)

In the SM the three Lagrangian parameters (g, g′, v), or equivalently (e, sw, v)
are normally traded for the well measured parameters (α,GF , mZ) in such a way
that all other SM observables can be written as functions of them. In our 5D model
we have to fix the physical Z mass using Eq. (9)mZ = 91.1876±0.0021 GeV which
provides a relation between the model parameters. To compare with EWPT a
convenient parametrization is using the (S, T, U) variables in Ref. [20]. They can
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be given the general expressions [19]:

αT = s2W
m2

Z

ρ2
k2y1

∫ y1

0

(

y

y1
− Ω(y)

)2

e2A(y)−2A(y1) , (10)

αS = 8c2W s2W
m2

Z

ρ2
k2y1

∫ y1

0

(

1− y

y1

)(

y

y1
− Ω(y)

)

e2A(y)−2A(y1) , (11)

αU = O(δ2Z) ≃ 0 , (12)

where

ρ = ke−A(y1), Ω(y) =
U(y)

U(y1)
, U(y) =

∫ y

0

h2e−2A , (13)

and k is the AdS curvature. The parameter ρ is related to the gauge boson KK-
mode mass mKK by mKK = F (A)ρ where F is a function which depends on the
metric A and it is entirely determined from the solution to the EOM (4). The
function Ω is monotonically increasing from Ω(0) = 0 to Ω(y1) = 1. In the case
of an IR brane localized Higgs it is actually a step function and in particular it
vanishes identically in the bulk, Ω = 0. More generally, due to the presence of the
warp factor, the integral will be dominated near the IR and one could approximate

Ω(y) ≃ 1− k(y1 − y)

Z
, (14)

where

Z =
k

Ω′(y1)
= k

∫ y1

0

dy
h2(y)

h2(y1)
e−2A(y)+2A(y1) . (15)

The integrals in Eqs. (10)-(12) will be approximated well whenever Z is large
enough. One finds

αT = s2W
m2

Z

ρ2
ky1

(

1

Z
− 1

ky1

)2

I, (16)

αS = 8c2W s2W
m2

Z

ρ2

(

1

Z
− 1

ky1

)

I , (17)

with the dimensionless integral

I = k

∫ y1

0

[k(y1 − y)]2 e2A(y)−2A(y1)dy . (18)

Notice in particular the standard volume enhancement of the T parameter. This
approximation is valid whenever Z is a parametrically large number (but not
necessarily as large as the volume ky1). One can see that the T parameter is
suppressed with two powers of Z, while the S parameter is only suppressed with
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one power. As we will see below, in theories with a light Higgs mode the quantity√
Z can in fact be interpreted as a wave function renormalization in the effective

Lagrangian of that mode. Note that the operators contributing to T have four
powers of the Higgs field (e.g. |H†DµH|2), while the ones contributing to S have
only two powers (e.g. H†WµνHBµν), thus nicely explaining the observed suppres-
sion in models with large values of Z. In case of pure RS with a bulk Higgs profile
h(y) ∼ eaky one can easily evaluate Z−1 = 2(a− 1), and in the region of interest
that solves the hierarchy problem, a > 2, this is not a small number. Nevertheless,
we will see below that there are theories which can have sizable Z factors despite
the fact that a > 2, and hence display suppression of the precision observables.
In the remainder of this letter we will always use for numerical calculations the
exact expressions, Eq. (10) and (11).

The SM fit on the (S, T ) plane, assuming U = 0, for a reference Higgs mass
mref

H = 117 GeV, provides [21]

T = 0.07± 0.08, S = 0.03± 0.09, (19)

which should constrain any particular model.
For the Higgs fluctuations in (2) one can write from the action (3) an EOM

similar to that of gauge bosons (4). In fact making the KK-mode expansion
ξ(x, y) = H(x) · ξ(y)/√y1 the functions ξ(y) satisfy the bulk equation

ξ′′(y)− 4A′ξ′(y)− ∂2V

∂h2
ξ(y) +m2

He
2Aξ(y) = 0 , (20)

as well as the boundary conditions (BC)

ξ′(yα)

ξ(yα)
=

∂2λα(h)

∂h2

∣

∣

∣

∣

y=yα

. (21)

If we compare Eq. (20) with the bulk EOM for the Higgs background [19] for a
quadratic bulk Higgs potential

h′′(y)− 4A′h′(y)− ∂V

∂h
= 0 , (22)

with BC
h′(yα)

h(yα)
=

∂λα(h)

∂h

∣

∣

∣

∣

y=yα

, (23)

we see that the Higgs wave function for mH = 0 is proportional to h(y). For
small values of mH we can correct this to O(m2

H) which yields the corresponding
(properly normalized) wave function

ξH(y) =

√

ky1
Z

h(y)

h(y1)
eA(y1)

[

1−m2
H

(
∫ y

0

e2A
Ω

Ω′ +

∫ y1

0

e2A
Ω

Ω′ (Ω− 1)

)]

, (24)
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where the function Ω(y) was defined in Eq. (13). The true value of mH is of course
determined by the boundary conditions. With the usual choice of the boundary
potentials

λ0 = M0|H|2 , −λ1 = −M1|H|2 + γ|H|4 , (25)

and after using the BC (21) and (23), as well as the definition of Z 1, Eq. (15),
one obtains for the light Higgs mass

m2
H = (kZ)−12

(

M1 −
h′
1

h1

)

ρ2 . (26)

Using the definition of the WWξn coupling [19]

hWWξn =
g

y1

∫ y1

0

dy e−A(y)MA(y)f
2
0 (y)ξn(y) (27)

and the wave function (24), one can deduce that

hWWH = hSM
WWH

[

1−O(m2
H/m

2
KK , m

2
W/m2

KK)
]

, (28)

so the light Higgs unitarizes the theory in a similar way to the SM Higgs.

3. RS model
The previous formalism can be applied to any particular 5D model. The

simplest and best known case is the RS model where the space is a slice of AdS
space, with metric A(y) = ky. Assuming an exponential background for the Higgs
field as

h(y) = h(y1)e
ak(y−y1), (29)

the T and S parameters can be readily computed from Eqs. (10) and (11) yielding

α(mZ)TRS = s2W
m2

Z

ρ2
(ky1)

(a− 1)2

a(2a− 1)
+ . . . , (30)

α(mZ)SRS = 2s2W c2W
m2

Z

ρ2
a2 − 1

a2
+ . . . , (31)

where the ellipses indicate subleading corrections in the large volume ky1 and
ρ = k exp(−ky1). In the holographic dual, the quantity a corresponds to the
dimension of the Higgs condensate and we demand a ≥ 2 in order to solve the
hierarchy problem. In the RS model the function F relating mKK to ρ is given
by F (ARS) ≃ 2.4. These expressions agree precisely with the recent result in

1As already mentioned above, the quantity
√
Z can be viewed as a wave function renor-

malization in the effective theory, obtained by integrating over the true zero mode ξ(x, y) =
H(x)h(y)/h1 to obtain −Leff = e−2A1k−1Z|DµH|2 + e−4A1 [(h′

1/h1 −M1)|H|2 + γ|H|4].
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Ref. [22]. One can see from (30) that the contribution to the T parameter is
volume enhanced while that to the S parameter is not. This translates into a very
strong bound on ρ when we compare these expressions with the experimental data
(19). In particular for a Higgs localized on the IR brane (which corresponds to
the a → ∞ limit) the expression (30) and the experimental fit (19) leads to the
bound ρ > 4.3 TeV (and to the bound on the gauge boson KK-massesmKK > 10.4
TeV) at the 95% CL. A quick glance at Eq. (30) shows that for a bulk Higgs the
previous bounds are alleviated. In particular for the case a = 2 they are lowered
by a factor

√
3 which leads to the bounds ρ > 2.5 TeV or mKK > 6.0 TeV. In

order to decrease the actual bounds on KK-masses, it has been proposed in the
literature [4] to gauge an extra SU(2)R×U(1)B−L symmetry in the bulk such that
there is a residual custodial symmetry which protects the T parameter. In that
case the experimental bound on the S parameter (19) translates into the bound
ρ > 1.4 TeV (mKK > 3.3 TeV) for the case of a localized Higgs and ρ > 1.2 TeV
(mKK > 2.8 TeV) for the case of a delocalized Higgs with a = 2.

3. The model
In the rest of this letter we will explore an alternative solution to the problem

of the T parameter based on singular metrics. We will see that the combined
effect of the Higgs delocalization and the strength and vicinity of the IR brane to
the singularity makes the T parameter comparable to the S parameter. We will
then consider the metric singular at y = ys [16]

A(y) = ky − 1

ν2
log

(

1− y

ys

)

, (32)

where ν > 0 is a real parameter. In the ν → ∞ limit it coincides with the RS
metric. Moreover, it is AdS near the UV brane and has a singularity at ys = y1+∆,
outside the slice between the UV and IR branes and at a distance ∆ from the IR
brane. We will also assume that the Higgs background is exponential and given
by Eq. (29). The gravitational setup which can provide such background will
be considered later on. For the moment we will just analyze the impact of the
departure from AdS in the IR region in the EWPT parameters T and S. This
departure is controlled by the parameters ν and ∆. The smaller ν and/or ∆ the
more the IR brane feels the nearby singularity.

As we can see in Fig. 1, the singularity affects both the T and the S parame-
ter 2. In the left [right] panel we plot the ratio T/TRS [S/SRS ] where T [S] is the
parameter obtained from Eq. (10) [Eq. (11)], as a function of ν and for different

2In this letter we will consider the independent bounds on S and T . Notice that for T/S ∼ +1,
by reducing mKK from infinity to finite values, we move in the T − S plane from the origin
along the major (long) axis of the ellipse, taking advantage of that particular correlation in the
fit.
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Figure 1: Plots of the T (left panel) and S (right panel) parameters as a function
of ν for different values of a, k∆ = 1 and keeping the masses of the first heavy
KK-mode of gauge bosons constant. The parameters are normalized to 1 when
ν = ∞ (i.e. the RS case).

values of a, and TRS [SRS] is the corresponding parameter in the RS-model as
given by Eq. (30) [Eq. (31)]. In the plots we consider the same value of mKK in
both theories. For the metric (32) the relation between mKK and ρ is given by
the function F (ν) which is a monotonically decreasing function and reproduces
the RS-result in the limit ν → ∞. An approximate fit for the function F (ν) and
values ν & 0.8 with k∆ = 1 is provided by

F (ν) ≃ 2.44 +
1.71

ν2
. (33)

Since the observables are quadratically dependent on mKK this means that one
can read the corresponding reduction on the value of mKK , with respect to the
RS-bound, by taking the square root of the vertical axis in the respective plot of
Fig. 1.

We can see from the left panel of Fig. 1 that there is no reduction on the T
parameter for a localized Higgs in agreement with the general results of Refs. [7,8].
On the other hand for a bulk Higgs the corresponding reduction in the T and S
parameters can be qualitatively understood in the limit of large wave-function
renormalization Z from the approximate expressions in Eqs. (16) and (17) in the
limit of large volume suppression. It is noteworthy that the IR dimension of the
Higgs condensate in the holograhic 4D dual is reduced with respect to its UV
conformal value [dim(OUV

H ) = a] leading to the enhanced Z factors responsible
for the suppression of the S and T parameters. Moreover, the number of colors
Nc of the effective theory is also reduced in the IR region since the curvature
increases along the extra dimension due to the presence of the singularity 3. It is

3This phenomenon has been extensively studied in warped throat geometries with a singular-
ity which appear e.g. in the Klebanov-Tseytlin solution of type IIB string constructions [23,24].
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interesting that both effects, small Nc and dim(OIR
H ) < 2, also play a major role

in reducing S and T in the conformal technicolor model proposed in Ref. [25],
the main difference being that our proposal implies a strong deformation of the
conformal theory in the IR. More details will be presented elsewhere [19].

A 5D setup leading to the background (32) and (29) can be easily obtained
by using the formalism of Ref. [26], where first-order gravitational EOM and the
bulk potential can be obtained from a superpotential. We will introduce on top of
the SM Higgs field H a scalar field φ which will generate a singularity at y = ys,
with the superpotential W (φ,H) related to the scalar potential by

V (φ, h) ≡ 1

2

[

(

∂W

∂φ

)2

+

(

∂W

∂h

)2
]

− 1

3
W (φ, h)2 . (34)

Using this ansatz the bulk EOMs can be written as simple first-order differential
equations

A′(y) =
1

6
W (φ(y), h(y)), φ′(y) = ∂φW (φ, h), h′(y) = ∂hW (φ, h) . (35)

In terms of the boundary potentials λα(φ, h), the boundary conditions are

A′(yα) =
2

3
λα(φ, h)

∣

∣

∣

∣

y=yα

, φ′(yα) =
∂λα

∂φ

∣

∣

∣

∣

y=yα

, h′(yα) =
∂λα

∂h

∣

∣

∣

∣

y=yα

. (36)

We postulate the superpotential W (φ,H) = Wφ(φ) +WH(h) where

Wφ(φ) = 6k(1 + beνφ/
√
6), WH(h) =

1

2
akh2, (37)

and a and b are real arbitrary parameters. This leads to the background configu-
ration (29) and [10]

φ(y) = −
√
6

ν
log[ν2bk(ys − y)] , (38)

A(y) = ky − 1

ν2
log

(

1− y

ys

)

+
1

24
(h2(y)− h2(0)) , (39)

where we are using the normalization A(0) = 0. Notice that the Higgs contri-
butions to the metric near the UV brane and near the singularity at y = ys are
overwhelmed by that of the φ background. Thus, the metric (39) agrees to all
practical purposes with (32).

Using the superpotential formalism amounts to some fine-tuning among the
different coefficients of the bulk potential, unless they are protected by some
underlying 5D supergravity [26]. The quadratic Higgs term which is generated by
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(34) can be written as k2
[

a(a− 4)− 4abeνφ/
√
6
]

|H|2 and the coefficients of the

two operators |H|2 and eνφ/
√
6|H|2 can be considered as independent parameters 4.

However, since the parameter b can be traded by a global shift in the value of the
φ field, or in particular by a shift in its value at the UV brane φ0, for simplicity
we will fix its value to b = 1 hereafter.

We assume that the brane dynamics λα
φ fixes the values of the field φ at

φ = φ0, φ1 on the UV and IR branes respectively. The inter-brane distance y1, as
well as the location of the singularity at ys and the warp factor A(y1), are related
to the values of the field φα at the branes by the following expressions:

ky1 =
1

ν2

[

e−νφ0/
√
6 − e−νφ1/

√
6
]

, k∆ =
1

ν2
e−νφ1/

√
6 ,

A(y1) ≃ ky1 +
1

ν
(φ1 − φ0)/

√
6 , (40)

which shows that the required large hierarchy can be naturally fixed with values
of the fields φ1 & φ0, φ0 < 0 and of order one. Moreover, the strict soft-wall
configuration [16] corresponds to the limit φ1 ≫ 1, y1 → ys. As for the brane
potentials λα

H , they are given by Eq. (25). The BC (36) at the UV brane imply 5

M0 − ak = 0, while the BC at y1 fixes the value of the Higgs background at the
IR brane h1 as γh2

1 = M1 − ak and thus triggers electroweak symmetry breaking.
Also note that due to its exponential dependence on φ1, ∆ can be small or, in
other words, the IR brane naturally occurs very close to the singularity.

We will now explore numerically the predictions of the model defined by the
background (29), (38) and (39). In particular, the KK-modes of the gauge bosons
satisfy Eq. (4). This equation can be solved numerically and the free parameters
are (y1,∆, a, ν). We will fix the Planck/weak hierarchy by imposing A(y1) ≃ 35.
This establishes a functional relation y1 = y1(∆, ν) by which y1 increases 6 with
∆ and ν. The rest of parameters are free and they have a clear physical meaning.
The parameter a indicates the departure from a localized Higgs, which is the limit
a → ∞. The parameter ν indicates the departure from the RS case, which is the
limit ν → ∞. The parameter ∆ indicates the distance between the IR brane and
the singularity. All the effects that we consider are enhanced when a, ν and ∆
decrease. We plot in Fig. 2 the lower bounds obtained on the massmKK of the first
KK-mode for the electroweak gauge bosons W,Z and γ from the 95% CL bounds

4Of course the coefficients of the operators not involving the Higgs field remain fine-tuned.
5This apparent fine tuning is an artifact of the first order formulation and has no observable

physical consequences for a > 2. Indeed for a > 2 the parameter M0 has no physical impact
neither on the background nor in the spectrum.

6The fact that y1 is an increasing function of ∆ and ν helps lowering the bounds on ρ from
the T parameter for small ν and ∆, since the T parameter is volume enhanced [see Eq. (16)].
However this effect is small in the parameter region shown in the figures.
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Figure 2: Plots of the 95% CL lower bounds on the first KK-mode mass of elec-
troweak gauge bosons from experimental bounds on the T and S parameters for
A(y1) = 35 and a = 2 as a function of ν (left panel, with k∆ = 1) and as a
function of k∆ (right panel, with ν = 1).

on the T and S parameters of Eq. (19). On the left plot we see the dependence
on the ν parameter for a = 2 and k∆ = 1. We see that for ν ≫ 1 the bounds go
to the RS bounds for a bulk Higgs which are around mKK > 6.0 TeV and 2.8 TeV
from the T and S parameters respectively. On the right plot we see the influence
on the bounds of the vicinity to the singularity. In summary, for ν . 1 and/or
k∆ . 1 there are regions where the bounds are mKK = O(1 − 3) TeV. These
regions are small, but they are not fine-tuned.

Higgs fluctuations satisfy the EOM (20) and the BC (21). Plots based on
numerical solutions are shown in Fig. 3, where the 95% CL bounds on the first
KK-mode Higgs masses are shown. From Fig. 3 we see that Higgs KK-modes are
heavier than gauge boson ones, disfavoring its experimental detection at LHC.
Moreover, as we have seen earlier in this letter, there is a light Higgs eigenstate
with wave function given by (24) and mass eigenvalue given by (26). After using
the background metric A(y) in Eq. (39) and the background Higgs h(y) in Eq. (29),
the Higgs mass eigenvalue is given by

m2
H

ρ2
=

2µ

Z
, (41)

Z = e2(a−1)∆∆1−η[2(a− 1)]−ηΓ(η, 2(a− 1)∆) , (42)

where µ ≡ M1/k−a, η = 1+ 2
ν2

and Γ stands for the incomplete gamma function.
Equation (42) provides a measure of the required fine-tuning to get a light Higgs.
In fact for µ = 0 (which amounts to an infinite fine-tuning and no EWSB) the
Higgs is massless. In general the smallness of µ is a measure of the degree of fine-
tuning required to achieve a light Higgs. In fact, the fine-tuning is smaller than in
the RS-model because the prefactor of µ in (42) is smaller than one. For instance,
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Figure 3: Plots of the 95% CL lower bounds on the first KK-mode mass of the
Higgs boson from experimental bounds on the T parameter for A(y1) = 35 and
a = 2 as a function of ν (left panel, with k∆ = 1) and as a function of k∆ (right
panel, with ν = 1). For comparison the corresponding bounds on the KK-gauge
boson masses are shown.

for a = 2, ν = 0.9 and k∆ = 0.8 the lower bound on ρ from the T parameter is
ρ ≃ 0.49 TeV and mH ≃ 470

√
µ GeV, providing a light Higgs for µ = O(10−1).

5. Conclusions
In this letter we have presented an alternative mechanism to the introduction

of an extra gauge symmetry to suppress the T parameter in warped extra di-
mensional models. The mechanism is based on the introduction of a metric that
is nearly AdS in the UV region but departs from AdS in the IR region, towards
where KK-fluctuations are mainly localized, and that has a singularity outside the
slice between the UV and IR branes. The two main parameters which control this
effect are then the departure of the metric with respect to the AdS metric and the
vicinity of the IR brane to the singularity. Depending on these parameters, the
lower bounds on the gauge boson KK-mode masses can be as low as around the
TeV scale. This low bound should alleviate the little hierarchy problem that arises
in warped electroweak breaking models and facilitate experimental detection of
these heavy gauge bosons at LHC. The model requires a scalar field φ propagat-
ing in the bulk, which plays the role of a radion stabilizing field, similar to the
Goldberger-Wise scalar in the RS theory. We have considered the back-reactions
of the φ and Higgs fields on the metric by means of the superpotential formalism,
which requires some fine-tuning in the gravitational part of the bulk potential.
The model also contains a naturally light Higgs that unitarizes the 4D theory in
much a similar way as the SM Higgs.
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