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Finite Casimir Energies of Intersecting Objects

Martin Schaden
Department of Physics, Rutgers University, 101 Warren Street, Newark NJ 07102

Finite Casimir energies for bosonic fields interacting locally with N objects that do not all have a
common intersection are defined by geometrical subtractions. The perturbative expansion for β ∼ 0
of the corresponding subtracted spectral function φ̃(N)(β) vanishes to all orders. These subtracted
spectral functions and their associated Casimir energies can be efficiently computed numerically
without regularization or implicit knowledge of the spectrum. They are analytic in the parameters
describing the shape and position of the individual objects and remain finite when some, but not
all, objects overlap. In the case of (d+ 1), (d− 1)-dimensional intersecting hyper-planes embedded
in Rd, the (d + 1)-body Casimir energy gives the work required to move the last hyperplane into
position from infinity. With Dirichlet boundary conditions on objects embedded in Euclidean space,
the subtracted spectral function is the probability that a standard Brownian process touches all N
objects before returning to the starting point after time β. The many-body Casimir energy in this
scalar case is positive for an odd, and negative for an even, number of objects. An explicitly finite
multiple scattering representation of the general 3-body Casimir energy is given.
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The Casimir interaction energy between two disjoint
bodies is finite and may be estimated[1–5]. In principle, it
can be numerically computed to arbitrary precision[6–8].
For disjoint bodies, the multiple scattering representa-
tion of the interaction energy[9–12] solves most problems
encountered in technological applications[6, 13]. We here
develop an extension of this formalism that defines finite
Casimir energies of more than two bodies that are not
necessarily all disjoint. The analysis improves our un-
derstanding of the physical origin and interpretation of
(finite) parts of zero-point energies. It may also provide a
conceptual foundation for exploring gravitational effects
arising from vacuum energies[14] and give a systematic
approach to Casimir self-stresses for arbitrarily shaped
bodies.
Generalizing the case of two disjoint bodies, we here

extract a finite part of the vacuum energy for a system
consisting of N objects whose common intersection van-
ishes. For N > 2 some of the objects may overlap with
others. Divergences that might arise due to intersections
of fewer objects are geometrically subtracted and this N -
body part of the vacuum energy is explicitly finite. For
clarity of presentation we assume that the objects are
all embedded in a, large but finite, connected Euclidean
space D∅ of Euclidean dimension d. The thermodynamic
limit D∅ → Rd may be taken at the end. Following the
geometrical subtraction procedure of ref.[15], we relate

the finite N -body Casimir energy Ẽ(N) to a subtracted
N -body spectral function φ̃(N)(β),

Ẽ(N) = − ~c√
8π

∫ ∞

0

φ̃(N)(β)
dβ

β3/2
. (1)

This subtracted N -body spectral function φ̃(N)(β) is
constructed as follows. Let Ds represent the domain D∅

with objects {Oj ; j ∈ s} embedded, D1...N being the fi-
nite domain D∅ with all N objects included and denote
with P(s) the power set of the elements of a set s of fi-

nite cardinality |s| ≤ N . To simplify some formulae we
write PN for P({1 . . .N}). Let φs(β) further denote the
spectral function, or trace of the heat kernel KDs

, for the
domain Ds,

φs(β) = TrKDs
(β) =

∑

n∈N

e−βλn(Ds)/2. (2)

Here {λn(Ds) > 0, n ∈ IN is the spectrum of a bosonic
field that vanishes on the boundary of D∅ and whose in-
teractions with the objects in Ds are local. We assume
the action of the field with the objects may be described
by positive local potentials or take the form of (compat-
ible) local boundary conditions.

The subtracted spectral function φ̃(N)(β) of Eq.(1) is
the alternating sum of spectral functions φs(β) for the
individual domains Ds,

φ̃(N)(β) :=
∑

s∈PN

(−1)N−|s|φs(β) . (3)

Fig. 1 gives a pictorial description of Eq.(3) for four
line segments as objects in a bounded 2-dimensional Eu-
clidean space.
To facilitate proving that the β-integral in Eq.(1) is

finite, we demand that the individual heat kernels are
uniformly bounded by the free heat kernel of Rd,

0 < KDs
(x,y;β) ≤ K(2πβ)−d/2e−(x−y)2/(2β) , (4)

for some finite K > 0. For physical local interactions
with positive potentials this is the case. The bound also
appears to hold when objects are represented by local
boundary conditions. It in fact is sufficient to demand
that for any finite separation (x − y)2 > δ2 > 0 the
correlation functions vanish faster than any power of β
as β → 0. One therefore may be able to relax the uniform
bound of Eq.(4) considerably.
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FIG. 1: (color online) The subtracted spectral function

φ̃(N)(β) defined in Eq.(3) for a bounded two-dimensional
domain D∅ with four intersecting line segments as objects.
Each pictograph represents the spectral function of the corre-
sponding domain with the indicated sign. Various local fea-
tures that contribute to the asymptotic expansion of each
spectral function at high temperatures (small β) have been
highlighted: lines of different color correspond to possibly
different, but compatible, boundary conditions or local po-
tentials. Since the intersections of line segments generally
differ, each vertex is shown in a different color. Note that the
contribution to the asymptotic expansion from any particu-
lar local feature vanishes: the total signed number of times
any particular line segment contributes is zero, as is the total
signed number of times any particular vertex occurs.

We assume that the spectrum is discrete and positive
semi-definite. φs(β) may be interpreted as a bosonic sin-
gle particle partition function at inverse temperature β
and a positive spectrum is equivalent to the absence of
tachyons in a causal local theory. The spectral functions
φs(β > 0) of Eq.(3) in this case are positive and mono-
tonically decreasing, approaching at most a finite positive
constant for β ∼ ∞. Although we are mainly concerned
with a scalar bosonic system, the following also holds for
electro-magnetic fields in the absence of free charges.
In local field theories, the asymptotic expansion of

φs(β) for small β has the general form[16–19],

φs(β ∼ 0) ∼
∞
∑

ν=−D

(2πβ)ν/2A(ν)
s +O(e−ℓ2

min
/(2β)) , (5)

where the Hadamard-Minakshisundaram-DeWitt-Seeley

coefficients A
(ν)
s for the domain Ds have length-

dimension (−ν). Note that if Eq.(4) holds, exponentially
suppressed terms are associated with the presence of clas-
sical periodic paths of finite length ℓmin. We decompose

the heat kernel coefficients A
(ν)
s further into parts aris-

ing from local features of the individual objects and their
overlaps,

A(ν)
s =

∑

τ∈P(s)

a(ν)τ , (6)

where the sum extends over all (|s|!) sets in the power
set P(s) of the set s. Eq.(6) recursively defines local

heat kernel coefficients a
(ν)
τ : the a

(ν)
∅ are the heat kernel

coefficients associated with the Euclidean domainD∅; the

a
(ν)
{j} give their change when object j is inserted; a

(ν)
{jk}

accounting for further changes in the asymptotic heat
kernel coefficients due to local overlaps of objects j and

k. Note that a
(ν)
{jk} = 0 for disjoint objects j and k, if

we assume that asymptotic correlations over any finite
distance δ > 0 vanish faster than any power in β as
implied by Eq.(4). In this case, the power series in the
asymptotic high temperature behavior of Eq.(5) arises
from correlations over arbitrary short distances only and
these do not change if objects are disjoint.
The argument may be extended to show that for local

interactions the correction,

a
(ν)
{1...N} = 0, if O1 ∩ · · · ∩ON = ∅ . (7)

It then is a combinatoric problem to show that the contri-

bution of any non-zero a
(ν)
τ to the asymptotic expansion

of φ̃(N)(β) in Eq.(3) vanishes. Because the other |s|−|τ |
objects may be picked from the remaining N − |τ | in
any order, the number of times the set τ occurs as a
subset of the sets in PN with cardinality |s| ≥ |τ | is

(N−|τ |)!
(N−|s|)!(|s|−|τ |)! =

(N−|τ |
N−|s|

)

. For N > |τ | the contribution

to the asymptotic expansion of φ̃(N)(β) in Eq.(3) propor-

tional to a
(ν)
τ therefore is,

(2πβ)ν/2a(ν)τ

N
∑

|s|=|τ |

(−1)N−|s|

(

N − |τ |
N − |s|

)

= 0. (8)

When N objects have no common intersection, the
asymptotic expansion of φ̃(N)(β) thus is of the form,

φ̃(N)(β ∼ 0) ∼ O(e−ℓ2/(2β)) , (9)

and vanishes faster than any power of β. Together with
the fact that the spectral functions φs(β) decay mono-
tonically and remain bounded for large β, the asymptotic
behavior of Eq.(9) implies that the Casimir energy given
by the integral in Eq.(1) is finite.
The geometric subtraction procedure allows one to for-

mally interpret Ẽ(N) as the alternating sum of vacuum
energies Es associated with the domains Ds,

Ẽ(N) =
∑

s∈PN

(−1)N−|s|Es . (10)

The sum on the right-hand side of Eq.(10) requires some
kind of regularization to be meaningful, but as long as
this procedure is generic and does not depend on the
specific domain Ds (for instance a lower bound for the
proper time β), the previous considerations show that

Ẽ(N) remains well defined when the regularization is re-
moved. The absence of a power series in the asymp-
totic expansion of φ̃(N)(β ∼ 0) also explains why a semi-
classical approach based on classical periodic orbits tends
to approximate Casimir energies fairly well[1–3, 23–25],
because this approximation reproduces the leading expo-
nentially suppressed terms of the asymptotic expansion.
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The subtraction procedure we have outlined becomes
particularly transparent for a massless scalar field in a
bounded Euclidean space D∅ with objects represented
by Dirichlet boundary conditions on their surfaces. The
Feynman-Kac theorem[20, 21] in this case is the state-
ment that,

φs(β) =

∫

D∅

dx

(2πβ)d/2
PDs

[ℓβ(x)] , (11)

where PDs
[ℓβ(x)] denotes the probability for a standard

Brownian bridge[29], ℓβ(x), that starts at x and returns
to x after time β, to not encounter any Dirichlet bound-
ary in Ds and not exit D∅.

A particular loop ℓ
(τ)
β (x) that remains within D∅ and

encounters all objects of τ ⊂ {1 . . .N} but no others,
contributes equally to all φs(β) with s ∩ τ = ∅. For

N > |τ | the contribution of such a loop to φ̃(N)(β) is
proportional to,

∑

s∈PN

s∩τ=∅

(−1)N−|s| =

N−|τ |
∑

s=0

(−1)N−s

(

N − |τ |
s

)

= 0 . (12)

Only loops that touch all N objects contribute to the
alternating sum in Eq.(3) and we have that,

φ̃(N)(β) = (−1)N
∫

D∅

dx

(2πβ)d/2
P̃(N)[x;β] , (13)

where P̃(N)[x;β] is the probability that a standard Brow-
nian bridge that starts at x and returns to x after time
β encounters all N objects and does not exit D∅. The

(−1)N factor determining the sign of φ̃(N)(β) arises be-
cause such loops contribute to φ∅(β) only. For a scalar
field satisfying Dirichlet boundary conditions on N ob-
jects without common intersection we thus have that,

(−1)N Ẽ(N) < 0. (14)

For a Dirichlet scalar the sign of Ẽ(N) depends only on
the number of objects and not on their shape or posi-
tion. The construction by geometric subtraction clearly
exhibits the finite part of the vacuum energy that is be-
ing computed (see Eq.(10)). It is important to correctly
interpret this energy. The finite N -body Casimir energy
defined here is the N -body correction to the vacuum en-
ergy that remains when all the M -body vacuum energies
for 0 ≤ M < N have been accounted for. The latter may
themselves be finite, but very often are not and the sign
of Ẽ(N) given by Eq.(14) is that of the N -body correc-
tion only. It in general does not coincide with the sign of
the overall work required for assembly of all N objects.

Eq.(13) implies that for a Dirichlet scalar φ̃(N)(β) is
the probability of a random walk to fulfill certain geo-
metric conditions. Since they have to touch N objects
without common intersection, the Brownian bridges that
contribute in Eq.(13) all have finite length. The proba-

bility P̃(N)[x;β] thus is bounded below by the shortest

closed classical path of length ℓmin that achieves this,

0 ≤ P̃(N)[x;β] ≤ e−ℓ2
min

/(2β) . (15)

For a domain D∅ of finite volume, the bound of Eq.(15)

implies that the asymptotic power series in β of φ̃(β ∼ 0)
vanishes to all orders, as we have already argued in a
more general setting.
Consider the example of a scalar field in Rd satisfy-

ing Dirichlet boundary conditions on d + 1, intersect-
ing d − 1-dimensional hyper-planes. In this case Ẽ(d+1)

indeed is the work required to adiabatically move the
last hyperplane into position: Ẽ(d+1) vanishes as the vol-
ume enclosed by the hyper-planes becomes infinite (if
none of them are parallel) and depends continuously on
their position. These are consequences of the proba-
bility of Brownian bridges to cross all of them. The
d + 1 d − 1-dimensional hyper-planes forming a sim-
plex, such as a triangle(d = 2) or a tetrahedron(d =
3), thus tend to repel (triangle) for even d and to at-
tract for odd d (tetrahedron). The subtracted Casimir
energies of domains with group symmetries have been
computed analytically[22, 26, 27], but the world-line
method[7, 15, 23] outlined above could provide fairly ac-
curate numerical estimates for N -body Casimir energies
of a scalar field satisfying Dirichlet boundary conditions
on any set of N intersecting hyper-planes.
An analytically tractable example is provided by 2d

pairwise parallel (d − 1)-dimensional hyper-planes form-
ing a multi-dimensional tic-tac-toe-like pattern in Rd

that encloses an inner hyper-rectangle with dimensions
ℓ1× · · ·× ℓd. The corresponding 2d-body Casimir energy

Ẽ2d

rect. for a scalar field satisfying Dirichlet conditions on
all the hyper-planes and vanishing at spatial infinity is
found to be[28],

Ẽ2d

rect. = −~cΓ[(d+ 1)/2]

4π(d+1)/2

∞
∑

n1=1

· · ·
∞
∑

nd=1

Vrect.

Ld+1(n)
, (16)

where Vrect. =
∏d

j=1 ℓj is the volume of the hyper-

rectangle and L(n) =
√

∑d
j=1 n

2
jℓ

2
j is half the length

of a classical periodic orbit in its interior that reflects
nj times off the jth parallel pair of hyper-planes. Only
classical periodic orbits that touch all hyper-planes con-

tribute to Ẽ2d

rect. and there is no sign of any exterior diffrac-
tive orbits (whose lengths are multiples of a cycle). Note

that Ẽ2d

rect. remains finite in the limit in which one of the
dimensions of the rectangle vanishes and a pair of hyper-
planes coincides. As mentioned previously this analytic-
ity in the shape and dimensions of the objects is expected
in the world-line description and is one of the more fun-
damental characteristics of the N -body Casimir energies
defined by Eq.(1) and Eq.(3).
For electromagnetic applications one seeks to repre-

sent N -body Casimir energies in terms of one-body scat-
tering matrices[12]. A representation of the 3-body en-
ergy in terms of one-body T -matrices may be obtained
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as follows. In the notation of [13], the subtracted 3-body

Casimir energy Ẽ(3) of the geometric subtraction scheme
expressed in terms of the free-, one-, two- and 3-body
Greens functions is,

Ẽ(3) = i
2τTr(lnG123 − lnG12 − lnG23 − lnG13

+ lnG1 + lnG2 + lnG3 − lnG∅) (17)

= −i
2τ Tr(ln G̃1G̃

−1
123G̃23 − ln G̃1G̃

−1
12 G̃2 − ln G̃1G̃

−1
13 G̃3) ,

where Gα = G∅G̃α is the Greens function for the domain
Dα. The trace is over space and time, with τ here being
the temporal extent. Using G̃−1

ij = G̃−1
i + G̃−1

j − 11 and

G̃−1
123 = G̃−1

1 + G̃−1
23 − 11 with G̃i = 11− T̃i, the subtracted

3-body Casimir energy of Eq.(17) in terms of one-body
scattering matrices Ti becomes,

Ẽ(3) = −i
2τ Tr(ln[11− T̃1(11− G̃23)]− ln[1− T̃1T̃2]

− ln[11− T̃1T̃3]) (18)

= −i
2τ Tr ln

[

11− T̃1
11

11−T̃2T̃1

(

T̃2T̃1T̃3+

+(T̃2 − 11) T̃3T̃2

11−T̃3T̃2

+ (T̃3 − 11) T̃2T̃3

11−T̃2T̃3

)

11
11−T̃1T̃3

]

.

Here T̃i = TiG∅ = (11− G̃i), with G∅ the Green-function

for the domain D∅ with no objects inserted. The expres-
sion in Eq.(18) differs from that given in [12] only in that
all (three) two-body interactions have been subtracted.
Our previous considerations show that the 3-body vac-
uum interaction energy given by Eq.(18) is continuous in
the position of the three objects and remains finite when
some of them overlap. Every term in Eq.(18) requires
scattering off all three objects and is individually finite.
Explicit calculation[28] shows that this 3-body correction
of Eq.(18) to the Casimir energy of three parallel plates
is as expected symmetric under the exchange symmetry
and remains finite when any two of the three plates co-
incide. The advantage of writing finite N -body Casimir
energies in terms of scattering matrices is that this repre-
sentation unambiguously defines them for any local field
theory and in particular for the physically interesting
electromagnetic case. Some previously unresolved con-
ceptual issues, such as whether exterior modes contribute
to the Casimir energy of various polytopes[26, 27], have
been reduced to purely computational[28] ones.
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