
ar
X

iv
:1

01
2.

12
19

v1
 [

nl
in

.C
G

]
 3

 D
ec

 2
01

0

Journées Automates Cellulaires 2010 (Turku), pp. 65-75

A SIMULATION OF OBLIVIOUS MULTI-HEAD ONE-WAY

FINITE AUTOMATA BY REAL-TIME CELLULAR AUTOMATA

ALEX BORELLO

Laboratoire d’Informatique Fondamentale de Marseille, 39 rue Frédéric Joliot-Curie, 13453
Marseille, France
E-mail address : alex.borello@lif.univ-mrs.fr

Abstract. In this paper, we present the simulation of a simple, yet significantly
powerful, sequential model by cellular automata. The simulated model is called
oblivious multi-head one-way finite automata and is characterised by having its
heads moving only forward, on a trajectory that only depends on the length of the
input. While the original finite automaton works in linear time, its corresponding
cellular automaton performs the same task in real time, that is, exactly the length
of the input. Although not truly a speed-up, the simulation may be interesting
and reminds us of the open question about the equivalence of linear and real times
on cellular automata.

1. Introduction

Cellular automata (CA for short), first introduced by J. von Neumann [7] as
self-replicating systems, are recognised as a major model of massively parallel com-
putation since A. R. Smith, in 1969, used this Turing-complete model to compute
functions [8]. Their simple and homogeneous description as well as their ability to
distribute and synchronise the information in a very efficient way contribute to their
success. However, to determine to what extent CA can fasten sequential computa-
tion is not a simple task.

As regards specific sequential problems, the gain in speed by the use of CA is
manifest [1, 2, 3]. But when we try to get general simulations, we have to face the
delicate question of whether parallel algorithms are always faster than sequential
ones. An inherent difficulty arises from the fact that efficient parallel algorithms
make often use of techniques that are radically different from the sequential ones.
There might also exist a faster CA for each singular sequential solution whereas no
general simulation exists.

Hence, no surprise: the known simulations of Turing machines by CA provide
no parallel speed-up. The early construction of Smith [8] simulates one step of the
Turing machine by one step of the CA. Furthermore, no faster simulations have
been reported yet, even for almost all restricted variants. In particular, we do not

2000 ACM Subject Classification: F.1.1, F.1.2.
Key words and phrases: simulation, oblivious multi-head one-way finite automata, cellular au-

tomata, real time.

65

http://arxiv.org/abs/1012.1219v1
alex.borello@lif.univ-mrs.fr

66 A. BORELLO

know whether any finite automata with k heads can be simulated on CA in less than
O(nk) steps, which is the sequential time complexity.

We will not give answers to such issues here, but we shall examine in this context
a simple sequential model, called oblivious multi-head finite automata. This device
was introduced by M. Holzer in [4] as multi-head finite automata with an additional
constraint of obliviousness: the trajectory of the heads only depends on the length
of the input. As emphasised in [4], such finite automata lead to significant compu-
tational power: they characterise parallel complexity NC1. Their properties have
been further discussed in [5].

We will focus on the one-way version of this model, that is, for which the reading
heads can only move forward (that makes it strictly less powerful). While no true
speed-up can be hoped for, as these one-way finite automata already perform their
task in linear time, we will describe a simulation of them by real-time CA, that is, CA
working in linear time with a multiplicative constant equal to 1. Whereas specifying
this constant is usually irrelevant, CA represent a particular case amongst models
of computation, as we do not know whether linear and real times are equivalent for
it.

The article is organised as follows: section 2 introduces the two models consid-
ered, section 3 displays some of their features and abilities and section 4 presents
the simulation algorithm.

2. Definitions

2.1. Multi-head finite automata

Given an integer k ≥ 1, a one-way k-head finite automaton is a finite automaton
reading an input word using k heads that can move to the right or stand still.

Definition 2.1. A (deterministic) one-way multi-head finite automaton (1DFA(k)
for short) is a septuple (Σ, Q,⊳, q0, Qa, k, δ), where Σ is a finite set of input symbols
(or letters), Q is a finite set of states, ⊳ /∈ Σ is the (right) end-marker, q0 ∈ Q is
the initial state, Qa ⊆ Q is the set of the accepting states, k ≥ 1 is the number
of heads and δ : Q × (Σ ∪ {⊳})k → Q × {0, 1}k the transition function; 1 means
to move the head one letter to the right and 0 to keep it on its current letter.
For the heads to be unable to move beyond the end-marker, we require that if
δ(q, a1, . . . , ak) = (q′, m1, . . . , mk), then for any i ∈ J1, kK, ai = ⊳⇒ mi = 0.

A configuration of a 1DFA(k) on an input word w ∈ Σn at a certain time t ≥ 0
is a couple (p, q) where p ∈ J0, nKk is the position of the multi-head and q the current
state. The computation of such a device on this input word starts with all heads on
the first letter, and ends when all heads have reached the end-marker. If the current
state is then within Qa, the word is said to be accepted, otherwise it is rejected.
The language L(F) recognised by a 1DFA(k) F is the set of the words accepted by
F . One can notice a 1DFA(k) ends its computation in linear time.

We will focus now on data-independent 1DFA (1DIDFA), a particular class of
1DFA for which the path followed by the heads only depends on the length of the
input word, not on the letters thereof.

FROM 1DIDFA TO REAL-TIME CA 67

Definition 2.2. Given k ≥ 1, a 1DFA(k) F is said to be oblivious (or data-
independent) if there exists a function fF : N2 → Nk such that the position of
its multi-head at time t ∈ N on any input word w is fF (|w|, t).

2.2. Cellular automata

A cellular automaton is a parallel synchronous computing model consisting of
an infinite number of finite automata called cells which are distributed on Z and
share the same transition function, depending on the considered cell’s previous state
as well as its two neighbours’.

Definition 2.3. A cellular automaton is a quintuple (Σ, Q,#, Qa, δ), where Σ is
the finite set of input symbols (or letters), Q ⊃ Σ is the finite set of states and
δ : Q3 → Q the transition function1. # ∈ Q \ Σ is a particular quiescent state,
verifying δ(#,#,#) = #. Qa ⊆ Q is the set of the accepting states.

A configuration is a function C : Z → Q. A site is a cell at a certain time step
of the computation we consider; 〈c, t〉 will denote the state of the site (c, t) ∈ Z×N.
The computation of a CA C on an input word w of size n ≥ 1 starts at time 0
with all cells in state # except cells 0 to n − 1 where the letters of the word are
written. This is the initial configuration Cw associated to w. Then the cells update
in parallel their respective states according to δ: for all (c, t) ∈ Z × N, 〈c, t + 1〉 =
δ(〈c− 1, t〉, 〈c, t〉, 〈c+ 1, t〉).

This input word is accepted in time t ≥ n if and only if cell 0 (the origin) is
in an accepting state at time t. The language Lτ (C) recognised by the automaton
in time τ : N → N is the set of the words w it accepts in time τ(|w|). If τ is the
identity function Id, Lτ (C) is said to be recognised in real time.

Real time represents for CA the most simple time complexity that is nontrivial,
in the sense it is the minimal time required for the output to depend on all letters
of the input. Yet, it is significantly powerful, as we do not even know whether linear
time can achieve strictly more. Real time had already been evoked in [8].

3. Preliminaries

We would like to simulate a 1DIDFA on a CA as fast as possible. A computation
of a general 1DFA requires a number of time steps that is linear in the size of the
input word. Whereas it is rather easy for a CA to simulate such a device in linear
time, there is a priori no obvious way to reduce this time bound. But we can do it in
the case of DIDFA by taking the constraint of obliviousness into account. Though,
before performing such a simulation, we should detail some useful features of DIDFA
and CA.

1Notice CA are defined herein with the standard neighbourhood of radius 1, that is, such that
the state of a cell at time t+1 depends on the states at time t of this same cell and its two nearest
neighbours.

68 A. BORELLO

3.1. Some features of multi-head finite automata

Let F = (Σ, Q,⊳, q0, Qa, k, δ) be a 1DIDFA, n ≥ 1 be an integer and w ∈ Σn

be a word of size n. Let us look at the computation of F on input word w. For the
multi-head is composed of k heads, it can be regarded as a device moving one point
at a time in any direction within the set W = J0, nKk.

As F is data-independent, we can separate the path P taken by the multi-head
from the consecutive states of the automaton (depending on the letters of w). In
other words, we can take a look at the path of the multi-head on input word an, for
any a ∈ Σ; it will be the same for w. Hence, the trajectory will become periodic
after at most |Q| moves, until one head reaches an end-marker. Then, while the
latter head does not move any longer, after another |Q| moves the trajectory will
become periodic again, and so on until all heads have reached the end of the input
word. The key points ofW where a head reaches the end-marker will be useful to us
and denoted as finite sequence (pi)i∈J0,kK, with p0 = (0, . . . , 0) and pk = (n, . . . , n).

Some notations. For convenience, we number the heads such that for all i ∈ J0, k−
1K, head i is the one that reaches the end-marker as the multi-head arrives at key
point pi+1. For all i ∈ J0, kK and all j ∈ J0, k−1K, we denote the (j+1)-th coordinate
of pi by pi,j, and if i < k name Pi ⊆ P the portion of trajectory that lies between pi
and pi+1.

p0

p1 p2
p3

P0

P1 P2

Figure 1: A representation of W for k = 3. The periodic parts of the path of the
multi-head are drawn in black.

3.2. A few basic techniques on cellular automata

A given computation of a CA can be easily represented by drawing successive
configurations each one above its predecessor. We thus obtain a space-time diagram,
composed of sites, of which we only need to represent those in a non-quiescent state.

We will often have to perform several rather independent computations at the
same time; this can easily be done by a ‘product’ automaton which works with a
finite number of layers, each one of which supports a specific computation. Although
rather independent, the layers can communicate between one another to exchange
information, as any cell can see all of them.

FROM 1DIDFA TO REAL-TIME CA 69

Compression of the input word. In section 4, we will need to compress the input by
some rational factor ρ ≥ 2. This is easy to do with a CA. It consists in having the
input word written on the (discrete) straight line of equation t− 1 = (ρ− 1)(c+1),
where t represents the time and c a cell, as shown on fig. 2. As the concerned sites
‘know’ that they lie on this straight line, a computation using the compressed input
word can then occur within the triangle of real time (in light grey on fig. 2).

Acceleration by a constant. For any constant T ∈ N and any CA C, there exists a
CA C′ such that LId(C

′) = LId+T (C). In other words, to prove that a given language
is CA-recognisable in real time, it suffices to exhibit a CA recognising it in time
Id + T . For more details, one can refer to [6].

0 n− 1

t− 1 = (ρ− 1)(c+ 1)

ρ = 2
0 n− 1

t− 1 = (ρ− 1)(c+ 1)

ρ = 5/2

←
− t

Figure 2: Schematic space-time diagrams during which input word w is compressed
by rational factor ρ. Each sequence of linked dots represent a letter of
w. The sites containing the compressed version of w are encircled. Notice
that even though it seems the letters could be shifted one time step earlier,
this first step is in fact used to mark the last letter; it is necessary because
of rounding issues.

4. Simulation

Theorem 4.1. Given k ≥ 1, for any 1DIDFA(k) F recognising a language L, there
exists a CA C recognising L in real time.

The rest of this paper will be devoted to the proof of this theorem. We assume
now that we have a 1DIDFA(k) F = (Σ, Q,⊳, q0, Qa, k, δ). We will define a CA
C = (Σ, Q′,#, Q′

a, δ
′) such that LId(C) = L. Instead of giving the full description of

its state set and transition function, we will describe its behaviour on an arbitrary
input word w ∈ Σn, given an integer n ≥ 1. Within this coming description (and
similarly in the whole article) the terms ‘constant’ and ‘finite’ refer to quantities
that do not depend on n.

70 A. BORELLO

4.1. Principle

The general principle of the simulation is rather simple: instead of having k heads
moving along w, we will have (at least) k copies of w shifted over a segment S of
sites (of strictly increasing time steps) so that each site sees the correct letters of w.
Moreover, the letters for each head will be seen in reverse order compared to what
F does.

Each part Pi of the trajectory of the multi-head can be assimilated to a discrete
straight line, with no aperiodic part. Indeed, as illustrated in fig. 3, the distance
(in letters) between any point of Pi and the point of this line corresponding to same
time step is bounded by some value K = O(|Q|). Thus, during the execution of C
over w, before doing anything, all cells bearing the input will gather the letters of
their K nearest neighbours. This is done in time K.

pi

pi+1

Pi

O(|Q|)

O(|Q|)

O(|Q|)

Figure 3: Pi lies within a band of width O(|Q|), here drawn in white. It can hence
be assimilated to a (discrete) straight line, provided a counter (within the
shifting copies of w during the execution of C) indicates for each point
of this line the corresponding position within the period of Pi. Notice
that although the band can broaden as i increases, this index only rises
up to a constant value, so that the maximal width K remains bounded
independently of the size of the input.

4.2. Key sites

We will set S = {(c, n− 1 − c + T) : c ∈ J0, n− 1K}, where T , which is to be
defined (cf. subsection 4.3), is an integer greater than K that does not depend on n.
The result of the execution is to appear on site s0 = (0, n− 1 + T). To know which
speed the copies of w should be shifted at over each site of S, the latter segment
should be divided into parts Si, each one of which corresponds to part Pi of P . In
other words, we want to mark some key sites si = (ci, n − 1 − ci + T) ∈ S that
represent key points pi ∈ P . The main difficulty is that key cell ci has to represent
coordinate pi,j for any head j.

For this purpose, we observe first that for all (i, j) ∈ J0, kK×J0, k−1K, since each
part of P is as illustrated in fig. 3, there exists αi,j ∈ Q∩[0, 1] such that |pi,j−αi,jn| ≤
K, whatever the size n of the input. One can notice that we automatically have
α0,j = 0 and αi,j = 1 for all i > j, and that (αi,j)i is an increasing sequence for all j.

Then, we provisionally assume that αj,j = 0⇒ j = 0, and set key cell ci = ⌊αin⌋,

where αi =
1

2

∏k−1

j=i αj,j. The case wherein there exists some j that does not verify
this hypothesis will be treated in subsection 4.6.

FROM 1DIDFA TO REAL-TIME CA 71

Now, how to mark site si? No trouble if i = 0, as c0 is the origin. If i > 0, it
is also feasible: it suffices to send a signal from the origin at speed ςi =

αi

1−αi
≤ 1

(cf. fig. 4). Note that in the definition of αi, we have divided by 2 in case some key
cells would be too far from the origin to be marked in time (in CA configurations,
information cannot travel at speed of absolute value strictly greater than 1). All
our computation has hence to be performed within half as much space than what
S provides. In any case, the definition of αi is based on the assumption that the
copies of the input shifting over Si are compressed versions of w.

s0

s1

s2

s3

S

0 c1 c2 c3 n− 1
t = 0

t = K

t = T

t = n− 1 + T

{
{
{

S2

S1

S0

D3

D2

D1

Figure 4: Schematic space-time diagram of the marking of cells ci, for k = 3.
Notice that (ci)i = (⌊αin⌋)i is always an increasing sequence (since
αi = αi,iαi+1 ≤ αi+1), with c0 = 0 and ck = ⌊n

2
⌋.

4.3. Compression of the input

For each i ∈ J1, kK, we want to compress input word w (on a specific layer ℓi−1

corresponding to head i − 1) by factor 1

αi
as illustrated in fig. 2, that is, on some

straight line Di of direction vector (1, 1
ςi
) = (1, 1

αi
−1). One can notice we are able to

choose Di such that it crosses the origin at any time t > ⌊1
ςi
⌋. Thus, we will make all

such lines cross the origin at the same time T ∈ N. As (1
ςi
)i is a decreasing sequence

and as we have done some computations in time K beforehand, we set T = K+⌊ 1
ς1
⌋.

Hence, we have finally set Di to be the line of equation t− T = c
ςi
(cf. fig. 4).

4.4. Shift of the input

Consider some head j ∈ J0, k − 1K and an integer i ∈ J1, jK. On layer ℓj,
which corresponds to this head, we want to shift the compressed input at some
constant speed ςi,j ∈]−1, ςi] between Di+1 and Di, so that the correct letters pass
over Si. One can notice ςj,j = 0 by the definition of αj+1 and αj. But this not

necessarily the case when i < j. Indeed, ςi,j should be defined as equal to
βi,j

1−βi,j
,

with βi,j = αi − αi,j
αi+1−αi

αi+1,j−αi,j
if αi+1,j − αi,j > 0 and βi,j = αi otherwise. This way,

ςi,j is the speed of the signal we would use to mark cell ci,j = ⌊βi,jn⌋ (cf. fig. 5).

72 A. BORELLO

0 c n− 1
t = 0

t = K

t = T

t = n− 1 + T

(ℓ0)

−
→ ς0,0

0 c n− 1

−
→ ς1,1

−
→ ς0,1

(ℓ1)
0 cc1,2

=

⌊β1,2n⌋

n− 1

−
→ ς2,2

−
→ς1,2

−
→ ς0,2

(ℓ2)

p0

p1
p2 p3

Figure 5: Different compressed copies of the input shifted over S, with the trajectory
of the letter initially contained by some cell c displayed. Layer ℓj corre-
sponds to head j < k = 3. In this example, we have (α1,1, α1,2, α2,2) =
(5
8
, 1

4
, 3

4
). Hence, (α0, α1, α2, α3) = (0, 15

64
, 3

8
, 1

2
) and β1,2 =

21

128
.

4.5. Backtracking

Now that we have ensured the correct letters are seen in reverse order for each
head on each segment Si, how do we get site s0 to know the result of the execution
of F over w? All we need to know is whether the final state of F is accepting, that
is, belongs to Qa.

Let p be a point of P such that p 6= p0. One can observe that if we know q, the
state F is in when its multi-head is on p, as well as the letter lj ∈ Σ each head j
reads when the multi-head lies on the predecessor p′ of p, then we can compute

FROM 1DIDFA TO REAL-TIME CA 73

the possible states of F at point p′. That is, the subset Q′ of Q such that for all
q′ ∈ Q, δ(q′, l0, . . . , lk−1) = (q, p − p′) ⇔ q′ ∈ Q′. Likewise, if we know F is in a
state of Q′′ ⊆ Q at point p, we can determine the subset Q′ such that for all q′ ∈ Q,
δ(q′, l0, . . . , lk−1) ∈ Q′′ × {p− p′} ⇔ q′ ∈ Q′. We will refer to this process as reading
δ backward.

Let then s = (c + 1, t − 1) be a site of S. As the letters it sees come from
compressed versions of w, it can represent a (finite) range of points of P instead
of only one, depending on the part Si it belongs to. Now suppose it contains some
subset of Q for each of the successive points of P it represents. Suppose also these
subsets are consistent with one another (regarded as the possible states F is in at
each of these points). Then successor site s′ = (c, t) can read δ backward a finite
(but sufficient) number of times to get the possible subsets of its own points.

Site sk represents the last points of P , amongst which the very last point pk.
So, we initiate our ‘reverse’ computation by setting the state of sk (on some layer ℓ
on which this computation is to be held) to contain subset Qa for point pk and
consistent ones for the predecessors it represents. By induction, every element of
S will contain subsets that are consistent with Qa on layer ℓ. In particular, s0 will
have the corresponding subset Q0 for p0, so that it just has to check whether q0 ∈ Q0

to know if w is accepted by F .

4.6. Adjustments

In the preceding construction, we have put some details or particular cases aside.
First, we have to mention that the whole process obviously works only for input
words of size greater than some value depending on K (for all Pi to be assimilated
to straight lines as in fig. 3). Nevertheless, that leaves us a finite number of words
that are treated as special cases, so that the result is not affected.

Possibilities. As each Pi is not a real straight line, the next part Pi+1 of the path
depends on which point of the period of Pi the multi-head is at (that is, which state
it is in over word an) when head i reaches the end-marker. In particular, there
can be at most |Q| possible values αi, depending on n. Anyway, that makes a finite
number of possible (k−1)-tuples (α1, . . . , αk−1), and we can thus process all of them
in parallel.

Remains to elect the right tuple at site s0 or before. It can be done by looking at
the remainder of the Euclidean division of n−|Q| by some finite value f(|Q|). That
can be easily checked, for instance, on line Dk with a finite counter. The choice will
be known at site sk and spread toward s0.

Aperiodic parts. It may seem we know at any site along any Si, thanks to what
precedes, which points of the period of Pi we are simulating and so, which available
letters the cell has to use. This is in fact not true yet: when reaching site si, we
have to take the aperiodic part of Pi into account, and therefore we must be able to
modify the last |Q| moves (that is, to adjust the choice of letters) we have simulated
backward. That can be done by adding to the sites of S a finite memory of the
letters seen.

74 A. BORELLO

Immobile heads. Suppose that, contrary to the hypothesis made in subsection 4.2,
there exists some j > 0 such that αj,j = 0. That means that head j remains
motionless until pj and then covers the totality of the input during Pj. The trouble
is that it implies for all i ≤ j, αi = 0. Therefore, sj = sj−1 = · · · = s0, so that a
linear number of moves would have to be simulated on a single site.

A simple trick allows us to overcome this problem: for all j ∈ J1, k − 1K, we set
α′
j,j = αj,j if αj,j > 0 and α′

j,j =
1

2
otherwise2, and set α′

0,0 = α0,0 = 0. Then, in our
construction, we replace any αj,j by α′

j,j.
Finally, for each j > 0 verifying αj,j = 0, we still have to adjust shift speed ςj,j,

which is equal to 0. All we have to do is to replace it by ς ′j,j =
αj

1−αj
(only for this j),

which makes the totality of the copy of w on layer ℓj shift over Sj . As regards indices
i < j, we do not need to redefine the corresponding speed ςi,j, since head j makes
no more moves.

Conclusion

We have described a construction that simulates oblivious multi-head one-way
finite automata on real-time cellular automata. This is better (if linear and real
times are not equivalent) than what would achieve the näıve (though nontrivial)
simulation of general multi-head finite automata, which would result in a linear-
time CA.

In any case, this result fully exploits the obliviousness of the sequential compu-
tation. Now, it is another challenge to get a similar parallel algorithm without the
constraint of data-independence.

Acknowledgement

I would like to thank G. Richard and V. Terrier for introducing me to the matter
of DIDFA (which resulted in a common article about a speed-up of two-way DIDFA
by CA). I would also like to thank J. Ferté for useful brainstorming sessions before
the blackboard and V. Poupet for his help.

References

[1] A. J. Atrubin. A one-dimensional real-time iterative multiplier. IEEE Transactions on Elec-
tronic Computers, 14(1):394–399, 1965.

[2] Stephen N. Cole. Real-time computation by n-dimensional iterative arrays of finite-state ma-
chines. IEEE Trans. Comput., 18(4):349–365, 1969.

[3] Karel Čuĺık II. Variations of the firing squad problem and applications. Information Processing
Letters, 30(3):152–157, 1989.

[4] Markus Holzer. Multi-head finite automata: Data-independent versus data-dependent compu-
tations. Theoretical Computer Science, 286(1):97–116, 2002.

[5] Markus Holzer, Martin Kutrib, and Andreas Malcher. Multi-head finite automata: Charac-
terizations, concepts and open problems. In Turlough Neary, Damien Woods, Anthony Karel
Seda, and Niall Murphy, editors, The Complexity of Simple Programs (CSP’08), EPTCS, pages
93–107, 2008.

[6] Jacques Mazoyer and Nicolas Reimen. A linear speed-up theorem for cellular automata. Theo-
retical Computer Science, 101(1):59–98, 1992.

2Notice we could have chosen any rational value strictly between 0 and 1 instead of 1

2
.

FROM 1DIDFA TO REAL-TIME CA 75

[7] John von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Urbana,
IL, USA, 1966.

[8] Alvy R. Smith III. Simple computation-universal cellular spaces. Journal of the ACM,
18(3):339–353, 1971.

This work is licensed under the Creative Commons Attribution-
NoDerivs License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/3.0/ .

http://creativecommons.org/licenses/by-nd/3.0/

	1. Introduction
	2. Definitions
	2.1. Multi-head finite automata
	2.2. Cellular automata

	3. Preliminaries
	3.1. Some features of multi-head finite automata
	3.2. A few basic techniques on cellular automata

	4. Simulation
	4.1. Principle
	4.2. Key sites
	4.3. Compression of the input
	4.4. Shift of the input
	4.5. Backtracking
	4.6. Adjustments

	Conclusion
	Acknowledgement
	References

