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Abstract

New Broer-Kaup type systems of hydrodynamic equations are derived
from the derivative reaction-diffusion systems arising in SL(2,R) Kaup-
Newell hierarchy, represented in the non-Madelung hydrodynamic form.
A relation with the problem of chiral solitons in quantum potential as a di-
mensional reduction of 2+1 dimensional Chern-Simons theory for anyons
is shown. By the Hirota bilinear method, soliton solutions are constructed
and the resonant character of soliton interaction is found.

1 Introduction

Recently, a modification of the nonlinear Schrödinger (NLS) equation by a quan-
tum potential has been studied in several problems arising in low dimensional
gravity, [1], plasma physics, [3], the capillary wave, and information theory, [8].
Subsequently, the influence of this potential on anyons in 2+1 dimensions has
been studied [4], and the Abelian Chern-Simons gauge field interacting with NLS
has been represented as a planar Madelung fluid [6] , where the Chern-Simons
Gauss law has the simple physical meaning of creation of the local vorticity for
the flow. For the static flow when the velocity of the center-of-mass motion is
equal to the quantum velocity, the fluid admits an N-vortex solution. It turns
out that in this theory the Chern-Simons coupling constant and the quantum
potential strength are quantized.

Reduction of problem to 1+1 dimensions leads to JNLS and some versions
of Derivative NLS in quantum potential. Hence the chiral solitons appear as
solutions of the derivative NLS with quantum potential [5] . The last one
by the Madelung transform is represented as the derivative Reaction-Diffusion
(DRD) system, arising in SL(2,R) Kaup-Newell hierarchy, and giving rise to the
resonant soliton phenomena [7]..
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In the present paper by using new, the non-Madelung representation, we
formulate the problem in terms of novel hydrodynamic systems of the Broer-
Kaup type. Then by Hirota’s bilinear method we construct chiral solitons for
the system and show the resonance character of their interaction.

2 Dimensional reduction of Chern-Simons the-

ory

We consider the Chern-Simons gauged Nonlinear Schrödinger model (the Jackiw-
Pi model) with nonlinear quantum potential term of strength s [4]:

L =
κ

2
ǫµνλAµ∂νAλ +

i

2
(ψ̄D0ψ − ψD̄0ψ̄)− D̄ψ̄Dψ + s∇|ψ|∇|ψ|+ V (ψ̄ψ), (1)

where Dµ = ∂µ + ieAµ, (µ = 0, 1, 2). Classical equations of motion are

iD0ψ +D
2ψ + V ′ψ = s

∆|ψ|
|ψ| ψ, (2)

∂1A2 − ∂2A1 =
e

κ
ψ̄ψ, (3)

∂0Aj − ∂jA0 = − e

κ
iǫjk(ψ̄Dkψ − ψD̄kψ̄), (j, k = 1, 2). (4)

We consider dimensional reduction of this model when all field are indepen-
dent of x2 space variable, so that ∂2 = 0. Then in terms of Ã0 ≡ A0 + eA2

2, and
B ≡ A2, we obtain

i(∂0 + ieA0)ψ + (∂1 + ieA1)
2ψ + V ′ψ = s

∂21 |ψ|
|ψ| ψ, (5)

∂0A1 − ∂1A0 = 0 (6)

∂1B =
e

κ
ψ̄ψ (7)

∂0B = i
e

κ

[

ψ̄(∂1 + ieA1)ψ − ψ(∂1 − ieA1)ψ̄
]

(8)

Here and below we skip the tilde sign for A0. The last two equations are
compatible due to (5) and the corresponding continuity equation

∂0(ψ̄ψ) = i∂1
[

ψ̄(∂1 + ieA1)ψ − ψ(∂1 − ieA1)ψ̄
]

(9)

implies compatibility of equations (7),(8). Integrating these equations we
find B in terms of density ψ̄ψ

B =
e

κ

∫ x

ψ̄ψ dx′. (10)
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From another side, flatness of connection (6) implies A0 = ∂0φ, A1 = ∂1φ,
and these potentials can be removed by the gauge transformation, ψ = e−eφΨ.
As a result we obtain the Schrödinger equation with self-interacting nonlinear
potential V (ψ̄ψ), and the quantum potential

i∂0Ψ+ ∂21Ψ+ V ′Ψ = s
∂21 |Ψ|
|Ψ| Ψ (11)

2.1 Madelung representation and RNLS

If we substitute the Madelung Ansatz Ψ =
√
ρ e−iS to wave function in (11)

then we get the coupled system

∂0S − (∂1S)
2 + V ′(ρ) + (1− s)

∂21
√
ρ

√
ρ

= 0 (12)

∂0ρ− ∂1(2ρ ∂1S) = 0 (13)

For velocity field v = −2∂1S it implies the hydrodynamical system

∂0v + v∂1v = 2∂1

(

V ′(ρ) + (1− s)
∂21

√
ρ

√
ρ

)

(14)

∂0ρ+ ∂1(ρ v) = 0 (15)

which is the Madelung fluid representation of (11).
First we consider the under-critical case, when the strength of the quantum

potential s < 1. Then introducing rescaled the time and the phase t̃ = t
√
1− s,

S̃ = S√
1−s

, for new wave function Ψ̃ =
√
ρ e−iS̃ we get

i∂0̃Ψ̃ + ∂21Ψ̃ +
V ′

1− s
Ψ̃ = 0 (16)

In the over-critical case when s > 1, we can’t reduce (11) to (16). However,
if we introduce pair of real functions

e(+)(x, t) =
√
ρeS̃, e(−)(x, t) =

√
ρe−S̃ (17)

instead of one complex wave function, then we get the time reversal pair of
reaction-diffusion equations

∂0̃e
(+) + ∂21e

(+) − V ′

s− 1
e(+) = 0 (18)

− ∂0̃e
(−) + ∂21e

(−) − V ′

s− 1
e(−) = 0 (19)

where t̃ = t
√
s− 1, S̃ = S√

s−1
, ρ = e(+)e(−), V = V (e(+)e(−)).

If interaction between material particles is the delta function pair form then
potential V (ρ) = gρ2/2 and equation (11) becomes
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i∂0Ψ+ ∂21Ψ+ g|Ψ|2Ψ = s
∂21 |Ψ|
|Ψ| Ψ (20)

We called this equation the Resonant Nonlinear Schrodinger equation (RNLS).
It appears in the study of low-dimensional gravity model on a line, the Jackiw-
Teitelboim model [1], and in description of cold plasma [3]. For under-critical
case s < 1 it reduces to the standard NLS equation (16), and is integrable model.
For the over-critical case s > 1 it reduces to the couple of cubic reaction-diffusion
equations (18), (19), which is also integrable as SL(2,R) NLS from the AKNS
hierarchy. In the last case new resonance phenomena for envelope solitons take
place [1]. In the next section we will discuss another reduction of Chern-Simons
theory with dynamical field B, and show that in this case resonant versions of
the JNLS and DNLS equations appear.

3 Dynamical BF theory

To do the gauge field component B in Section 2 to be dynamical, following [11]
we introduce the corresponding kinetic term so that

L = κB(∂0A1 − ∂1A0) + θ ∂0B∂1B + i
2 (ψ̄(∂0 + ieA0)ψ

−ψ(∂0 − ieA0)ψ̄)− (∂1 − ieA1)ψ̄(∂1 + ieA1)ψ + s∂1|ψ|∂1|ψ|+ V (ψ̄ψ),
(21)

Then equations of motion are

i(∂0 + ieA0)ψ + (∂1 + ieA1)
2ψ + V ′ψ = s

∂21 |ψ|
|ψ| ψ, (22)

∂0A1 − ∂1A0 =
2θ

κ
∂0∂1B (23)

∂1B =
e

κ
ρ (24)

∂0B = − e

κ
J (25)

where the particle and the momentum density are

ρ = ψ̄ψ, J =
1

i
[ψ̄(∂1 + ieA1)ψ − ψ(∂1 − ieA1)ψ̄] = j + 2eA1ρ (26)

and j = −i[ψ̄∂1ψ − ψ∂1ψ̄]. Equation (22) implies the conservation law

∂0ρ+ ∂1J = 0 (27)

This conservation law is the compatibility condition for the system (24),(25).
and allows us to write
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∂0∂1B =
e

κ
[α∂0ρ− (1 − α)∂1J ] (28)

where α is an arbitrary real constant. Substituting (28) to (23) and combining
terms under the same derivatives we have

∂0

(

A1 −
2θe

κ2
αρ

)

− ∂1

(

A0 −
2θe

κ2
(1− α)J

)

= 0 (29)

The system (22)-(25) is invariant under the local U(1) gauge transformations

ψ → ψ′ = e−ieφ(x,t)ψ, Aµ → A′
µ = Aµ + ∂µφ (30)

Then solving (29) we have

A1 =
2θe

κ2
αρ+ ∂1φ, A0 =

2θe

κ2
(1 − α)J + ∂0φ (31)

and for the gauge invariant field Ψ = eieφψ it gives

i

(

∂0 + i
2θe2

κ2
(1− α)J

)

Ψ+

(

∂1 + i
2θe2

κ2
αρ

)2

Ψ+ V ′Ψ = s
∂21 |ψ|
|Ψ| Ψ, (32)

where J = j + 4θe2

κ2 αρ
2, j = −i[Ψ̄Ψx −ΨΨ̄x], ρ = Ψ̄Ψ. Finally we have

iΨt +Ψxx + i 2θe
2

κ2

[

(2α+ 1)|Ψ|2Ψx + (2α− 1)Ψ2Ψ̄x

]

+4 θ2e4

κ4 α(α − 2)|Ψ|4Ψ+ V ′Ψ = s |Ψ|xx

|Ψ| Ψ

(33)

where partial differentiation notations are evident. The remaining gauge trans-
formation for this equation is just the global U(1) transformation: Ψ → eiλΨ,
λ = const.

3.1 Reductions of general RDNLS

The behavior of equation (33) depends on value of parameter s. If we replace
Ψ = eR−iS then we have couple of equations

Rt − (Sxx + 2RxSx) +
2θe2

κ2
4αRxe

2R = 0,

St − S2
x + (1− s)(Rxx +R2

x) +
2θe2

κ2
2Sxe

2R +
4θ2e4

κ4
α(α − 2)e4R + V ′ = 0,

determining the Madelung fluid representation

ρt + (ρv +
2θe2

κ2
2αρ2)x = 0, (34)

vt + vvx = 2

[

(1− s)

√
ρ
xx√
ρ

− 2θe2

κ2
ρv +

(

2θe2

κ2

)2

α(α− 2)ρ2 + V ′
]

x

(35)
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For s < 1 for redefined variables t
√
1− s ≡ t̃, S/

√
1− s ≡ S̃, Ψ̃ ≡ eR−iS̃ , we

have

iΨ̃t̃ + Ψ̃xx + i 2θe2

κ2
√
1−s

[

(2α+ 1)|Ψ̃|2Ψ̃x + (2α− 1)Ψ̃2 ¯̃Ψx

]

+4 θ2e4

κ4(1−s)α(α− 2)|Ψ̃|4Ψ̃ + V ′

1−s
Ψ̃ = 0

(36)

Similar to the Chern-Simons 2+1 dimensional case [4] we have effective
result of the quantum potential in the rescaling of the statistical parametr
κ2 → κ2

√
1− s, but in contrast no quantization of this parameter now appears.

Transformation between wave functions has nonlinear form

Ψ(x, t) = |Ψ̃|
(

Ψ̃

|Ψ̃|

)

√
1−s

(x, t
√
1− s) (37)

For s > 1 it is impossible to reduce the system to the Schrodinger type
form. However for redefined parameters t

√
s− 1 ≡ t̃, S/

√
s− 1 ≡ S̃ and two

real functions E+ = eR+S̃ , E− = eR−S̃ we get

∓E±
t̃
+ E±

xx ∓ 2θe2

κ2
√
s−1

[

(2α+ 1)E+E−E±
x + (2α− 1)E±2

E∓
x

]

−4 θ2e4

κ4(s−1)α(α − 2)(E+E−)2E± − V ′

s−1 Ẽ
± = 0

(38)

3.2 Gauge transformation

We notice that in the gauge potential representation (31) , the gauge function
φ = φ(α) depends on α:

A1 =
2θe

κ2
αρ+ ∂1φ

(α), A0 =
2θe

κ2
(1 − α)J + ∂0φ

(α) (39)

Comparison with the case α = 0

A1 = ∂1φ
(0), A0 =

2θe

κ2
J + ∂0φ

(0) (40)

gives relations

∂1(φ
(0) − φ(α)) =

2θe

κ2
αρ, ∂0(φ

(0) − φ(α)) = −2θe

κ2
αJ (41)

Compatibility of this system is ensured by the continuity equation (27).
Then corresponding gauge transformed wave functions Ψ(α) and Ψ(0)

ψ = e−ieφ(α)

Ψ(α) = e−ieφ(0)

Ψ(0) (42)

are related by
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Ψ(α) = e−ie(φ(0)−φ(α))Ψ(0) (43)

Integrating (41) and substituting to (43) we have gauge transformation be-
tween equations (33) and the same equation with α = 0:

Ψ(α) = exp

(

−i2θe
2

κ2
α

∫ x

ρdx′
)

Ψ(0) (44)

From this relation we can connect two samples of equation (33) with different
constants α and β

Ψ(α) = exp

(

−i2θe
2

κ2
(α− β)

∫ x

ρdx′
)

Ψ(β) (45)

Indeed one can check easily from

Ψ̄(α)Ψ(α) = Ψ̄(β)Ψ(β), Ψ̄(α)(∂1 + iναρ)Ψ(α) = Ψ̄(β)(∂1 + iναρ)Ψ(β) (46)

that ρ(α) = ρ(β), J (α) = J (β), and

(∂1 + iναρ)Ψ(α) = e−iν(α−β)
∫

x
ρdx′

(∂1 + iνβρ)Ψ(β) (47)

(∂0 + iν(1− α)J)Ψ(α) = e−iν(α−β)
∫

x
ρdx′

(∂0 + iν(1− β)J)Ψ(β) (48)

where ν ≡ 2θe2

κ2

The gauge transformation (45) for the Madelung representation implies

S(α) − S(β) = ν(α− β)

∫ x

ρdx′ + 2πn, R(α) = R(β) (49)

For s < 1 it gives U(1) gauge transformation for (36) in the form

Ψ̃(α) = Ψ̃(β)e
−i ν√

1−s
(α−β)

∫

x
ρdx′

e
−i 2πn√

1−s (50)

The last multiplier can be absorbed by the global phase transformation on Ψ.
For s > 1 the above U(1) gauge transformation give rise to the local SO(1, 1)

scale transformation (the Weyl transformation) for equation (38)

E±(α) = E±(β)e
± ν√

s−1
(α−β)

∫

x
ρdx′

e
± 2πn√

s−1 (51)

4 Integrable DRD Systems

It was shown above that the one dimensional problem of anyons in quantum
potential with a specific form of the three-body interaction, can be reduced to
the general resonant DNLS equation.
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4.1 General Resonant DNLS

This equation

iΨt̃ +Ψxx + iν̃
[

(2α+ 1)|Ψ|2Ψx + (2α− 1)Ψ2Ψ̄x

]

+4ν̃2(α− 1

2
)(α− 3

2
)|Ψ|4Ψ = s

|Ψ|xx
|Ψ| Ψ (52)

is integrable for any values of parameter α.

4.2 The Resonant Case

For special case s > 1, by the Madelung transformation Ψ = eR−iS and intro-
duction of two new real functions E+ = eR+S , E− = eR−S we get the general
DRD system

∓E±
t + E±

xx

∓ 2θe2

κ2
√
s−1

[

(2α+ 1)E+E−E±
x + (2α− 1)E±2

E∓
x

]

−4 θ2e4

κ4(s−1) (α− 1
2 )(α − 3

2 )(E
+E−)2E± = 0,

(53)

where θ is the statistical parameter.
This system has particular reductions
1. DRD-I, (α = 3/2)

− E+
t + E+

xx − 2ν(E+E−E+)x = 0, (54)

+E−
t + E−

xx + 2ν(E+E−E−)x = 0 (55)

2. DRD-II, (α = 1/2)

− E+
t + E+

xx − 2νE+E−E+
x = 0, (56)

+E−
t + E−

xx + 2νE+E−E−
x = 0 (57)

3. DRD-III, (α = −1/2)

− E+
t + E+

xx + 2νE+2
E−

x − 2ν2(E+E−)2E+ = 0, (58)

+E−
t + E−

xx − 2νE−2
E+

x − 2ν2(E+E−)2E− = 0 (59)

4. JRD, (α = 0)

∓ E±
t + E±

xx − ν
[

E+
x E

− − E+E−
x

]

E±

−3ν2

4
(E+E−)2E± = 0 (60)
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5 Resonant Hydrodynamic Systems

To find hydrodynamic form of the above equations we introduce velocity vari-
ables according to the Cole-Hopf transformation

v+ = (lnE+)x, v
− = (lnE−)x (61)

and density
ρ = E+E−. (62)

Then by identity
ρx = ρv+ + ρv−, (63)

we can rewrite the DRD system in a closed form for only one of the couples of
hydrodynamic variables (ρ, v+) or (ρ, v−).

5.1 Hydrodynamic Form for DRD-I

For DRD-I case it gives the new hydrodynamic system

v+t = [v+x + (v+)2 − 2ν(ρx + ρv+)]x,

ρt + ρxx = [2ρv+ − 3νρ2]x. (64)

5.2 Hydrodynamic Form for DRD-II

For DRD-II case first we get the coupled heat equation with transport

− E+
t + E+

xx − 2νρE+
x = 0,

ρt + ρxx = (2ρ(lnE+)x − νρ2)x. (65)

Then the hydrodynamic form for this system is

v+t = [v+x + (v+)2 − 2νρv+]x,

ρt + ρxx = [2ρv+ − νρ2]x. (66)

5.3 Hydrodynamic Form for DRD-III

For DRD-III case it gives the new hydrodynamic system

v+t = [v+x + (v+)2 + 2ν(ρ− ρv+)− 2ν2ρ2]x,

ρt + ρxx = [2ρv+ + νρ2]x. (67)

5.4 Hydrodynamic Form for JRD

For JRD case it gives the new hydrodynamic system

v+t = [v+x + (v+)2 − ν(2ρv+ − ρx)−
3

4
ν2ρ2]x,

ρt + ρxx = [2ρv+]x. (68)

In all above cases for v− we have the system with replaced t→ −t, ν → −ν.
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5.5 Generic Case

For the generic case of arbitrary α firstly we have the system

− E+
t + E+

xx − ν[2ρE+
x + (2α− 1)ρxE

+]

−ν2(α− 1

2
)(α − 3

2
)ρ2E+ = 0,

ρt = [2ρ(lnE+)x − ρx − 2ναρ2]x. (69)

It gives the new hydrodynamic system

v+t = [v+x + (v+)2 − ν(2ρv+ + (2α− 1)ρx)

−ν2(α− 1

2
)(α− 3

2
)ρ2]x,

ρt + ρxx = [2ρv+ − 2ναρ2]x. (70)

6 RNLS and Broer-Kaup system

The RNLS for s > 1 can be transformed to the reaction-diffusion system

R+
t = R+

xx + 2νR+R−R+, (71)

−R−
t = R−

xx + 2νR+R−R−. (72)

By substitution v+ = (lnE+)x, ρ = E+E−, it can be transformed to the the
hydrodynamic form as the Broer-Kaup system, [9], [10],

v+t = (v+x + (v+)2)x + 2νρx,

ρt + ρxx = (2ρv+)x. (73)

If v− = (lnE−)x, ρ = E+E−, then we have

− v−t = (v−x + (v−)2)x + 2νρx,

−ρt + ρxx = (2ρv−)x. (74)

7 Relation with Broer-Kaup System

Given E+(x, t), E−(x, t) satisfying general DRD system (53), then real functions

R+ = E+e−(α+ 1
2 )ν
∫

x
E+E−

,

R− =

[

E−
x + (α− 1

2
)νE+E−E+

]

e(α+
1
2 )ν
∫

x
E+E−

(75)

or
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R+ =

[

−E+
x + (α− 1

2
)νE+E−E+

]

e−(α+ 1
2 )ν
∫

x
E+E−

,

R− = E−e(α+
1
2 )ν
∫

x
E+E−

(76)

satisfy the reaction-diffusion (RD) system

R+
t = R+

xx + 2νR+R−R+, (77)

−R−
t = R−

xx + 2νR+R−R−. (78)

From this fact we can get next result.
If v+E and ρE satisfy (70) then v+R and ρR determined by

v+R = v+E − (α+
1

2
)νρE , (79)

ρR = (ρE)x − ρEv
+
E + (α− 1

2
)νρ2E , (80)

is solution of the Broer-Kaup system (73). For v−E and ρE satisfying the analog
of system (70),

v−R = v−E + (α+
1

2
)νρE + [ln(v−E + (α− 1

2
))νρE ]x, (81)

ρR = ρEv
−
E + (α− 1

2
)νρ2E (82)

is solution of (74).
Similar way we can get result.
If v+E and ρE satisfy (70) then v+R and ρR determined by

v+R = v+E − (α+
1

2
)νρE + [ln(−v+E + (α − 1

2
))νρE ]x, (83)

ρR = −ρEv+E + (α − 1

2
)νρ2E (84)

is solution of the Broer-Kaup system (73). For v−E and ρE satisfying the analog
of system (70),

v−R = v−E + (α+
1

2
)νρE , (85)

ρR = −(ρE)x + ρEv
−
E + (α− 1

2
)νρ2E (86)

is solution of (74).
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8 Bäcklund Transformation

When ρ ≡ 0, both systems (70) and (73) reduce to the Burgers equation. Then
the above Miura type transformations reduce to the auto-Bäcklund transforma-
tions

v+R = v+E + (ln v+E)x, v
−
R = v−E + (ln v−E )x (87)

for the Burgers and anti-Burgers equations correspondingly.

9 Classical Bousinesque Systems

If in (73) we change variables

p+ = v+x + 2νρ, (88)

then we get the classical Bousinesque system

v+t = ((v+)2 + p+)x, (89)

p+t = (v+xx + 2p+v+)x. (90)

Similar way in (74) by variable change

p− = v−x + 2νρ (91)

we get

− v−t = ((v−)2 + p−)x, (92)

−p−t = (v−xx + 2p−v−)x. (93)

10 Bilinear Form and Solitons

By substitution E± = g±/f± to (69) we have bilinear representation

(∓Dt̃ +D2
x)(g

± · f±) = 0, (94)

D2
x(f

+ · f−) +
1

2
Dx(g

+ · g−) = 0, (95)

Dx(f
+ · f−) + αg+g− = 0, (96)

where α = 1
2 ( DRD-II case), or α = − 1

2 (DRD-III case). We note that only
in these two cases the Hirota substitution has simple bilinear form. Then for
solution of the hydrodynamics systems (66) and (67) we have

v+ = (lnE+)x =
g+x
g+

− f+
x

f+
, (97)

ρ = E+E− = (ln
f+

f− )x. (98)
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Bilinearization for arbitrary α can be derived by the gauge transformation, so
that

E+ =
g+

(f+)
1
2+α(f−)

1
2−α

, E− =
g−

(f+)
1
2−α(f−)

1
2+α

(99)

It implies next substitution for equation (70)

v+ = (lnE+)x =
g+x
g+

− (
1

2
+ α)

f+
x

f+
− (

1

2
− α)

f−
x

f− , (100)

ρ = E+E− = (ln
f+

f− )x. (101)

10.1 One Soliton Solution

For one soliton solution we have

g± = eη
±

1 , f± = 1 + eφ
±

11eη
+
1 +η

−

1 , (102)

where eφ
±

11 = ∓ k
±

1

(k+
1 +k

−

1 )2
, η±1 = k±1 x ± (k±1 )

2t + η
±(0)
1 . For regularity of this

solution we choose conditions k−1 > 0 and k+1 < 0, then −ṽ < k < ṽ, where

k = k+1 + k−1 , ṽ = k−1 − k+1 , −kx±0 = η
+(0)
1 + η

−(0)
1 + φ±11. Then velocity is

positive ṽ > 0, so that our dissipaton is chiral. For the density we have soliton
solution

ρ = E+E− =
k2√

ṽ2 − k2 cosh k(x− ṽt− x0) + ṽ
(103)

where 2x0 = x+0 + x−0 , and for velocity field

v+ =
k+1 − k−1 e

φ
+
11eη

+
1 +η

−

1

1 + eφ
+
11eη

+
1 +η

−

1

, (104)

the kink solution

v+ = − ṽ
2
− k

2
tanh

k

2
(x− ṽt− x0). (105)

10.2 Integrals of Motion

The particle number, momentum and energy integrals are given respectively

N =

∫ ∞

−∞
ρdx = − 1

ν
ln
f+

f− |∞−∞ (106)

P = −
∫ ∞

−∞
ρv+dx =

1

2ν
ln(f+f−)x|∞−∞ (107)

E = −
∫ ∞

−∞
[ρ(v+)2 − ρxv

+ − νρ2v+]dx. (108)
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Then substituting for one soliton solution we find

N =
1

ν
ln
ṽ + |k|
ṽ − |k| , P =

|k|
ν
, E =

ṽ|k|
2ν

. (109)

The mass of soliton M = |k|/(νṽ) in terms of particle number becomes M =
1
ν
tanh Nν

2 , and for the momentum and the energy we have non-relativistic free

particle form P =Mṽ, E = Mṽ2

2 .
For the process of fusion or fission of two solitons then the next conditions

should be valid

N = N1 +N2, P = P1 + P2, E = E1 + E2 (110)

Using (109) after some algebraic manipulations we get the resonance condition

|ṽ1 − ṽ2| = |k1|+ |k2| (111)

where ṽa = k−a − k+a , ka = k−a + k+a , a = 1, 2.

10.3 Two Soliton Solution

For two soliton solution we have

g± = eη
±

1 + eη
±

2 + α±
1 e

η
+
2 +η

−

2 +η
±

1 + α±
2 e

η
+
1 +η

−

1 +η
±

2 , (112)

f± = 1 +
2
∑

i,j=1

eφ
±

ijeη
+
i
+η−

j + β±eη
+
1 +η

−

1 +η
+
2 +η

−

2 , (113)

where η±i = k±i x± (k±i )
2t+ η±i0, k

nm
ij ≡ (kni + kmj ) and

α±
1 = ±1

2

k∓2 (k
±
1 − k±2 )

2

(k+−
22 )2(k±∓

12 )2
, α±

2 = ±1

2

k∓1 (k
±
1 − k±2 )

2

(k+−
11 )2(k±∓

21 )2
, (114)

β± =
(k+1 − k+2 )

2(k−1 − k−2 )
2

4(k+−
11 k+−

12 k+−
21 k+−

22 )2
k±1 k

±
2 , (115)

eφ
±

ii = ∓ k±i
2(k+−

ii )2
, eφ

+
ij =

−k+i
2(k+−

ij )2
, eφ

−

ij =
k−j

2(k+−
ij )2

. (116)

By regularity we have k+i ≤ 0, k−i ≥ 0 in the Case 1, and k+i ≥ 0, k−i ≤ 0 in
the Case 2. Then solving the resonance condition (111) we find that for every
solution of this algebraic equation, the coefficient β vanishes or becomes infinite.
In both cases two soliton solution reduces to the one soliton solution. Hence the
solution describes a collision of two solitons propagating in the same direction
and at some value of parameters creating the resonance states (see Fig.1 and
Fig.2).
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Figure 1: 3D plot of typical soliton resonant state with one soliton resonance

11 Conclusions

The problem of chiral solitons in quantum potential, as a reduction of 2+1
dimensional Chern-Simons theory, was formulated in terms of family of inte-
grable derivative NLS equations by the Madelung fluid representation. By us-
ing new, non-Madelung fluid representation we constructed integrable family of
hydrodynamical systems of the Kaup-Broer type. By bilinear method we found
resonance character of corresponding chiral soliton mutual interaction.
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