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Extreme mass ratio inspirals, in which a stellar-mass object merges with a supermassive black
hole, are prime sources for space-based gravitational wave detectors because they will facilitate tests
of strong gravity and probe the spacetime around rotating compact objects. In the last few years of
such inspirals, the total phase is in the millions of radians and details of the waveforms are sensitive
to small perturbations. We show that one potentially detectable perturbation is the presence of
a second supermassive black hole within a few tenths of a parsec. The acceleration produced by
the perturber on the extreme mass-ratio system produces a steady drift that causes the waveform
to deviate systematically from that of an isolated system. If the perturber is a few tenths of a
parsec from the extreme-mass ratio system (plausible in as many as a few percent of cases) higher
derivatives of motion might also be detectable. In that case, the mass and distance of the perturber
can be derived independently, which would allow a new probe of merger dynamics.

I. INTRODUCTION

Space-based gravitational wave detectors such as the
Laser Interferometer Space Antenna (LISA) are expected
to see a wide variety of sources in their ∼ 10−4−10−1 Hz
sensitivity band. Of these, extreme mass-ratio inspirals
(EMRIs), a stellar-mass compact object (SCO) spiraling
into a supermassive black hole (SMBH), are considered
particularly promising because they can probe strong
gravity over millions of radians of phase evolution in the
last few years of evolution. As a result, EMRI waveforms
serve as highly precise probes of strong gravity and of the
spacetime around rotating SMBHs. Considerable study
has been devoted to astrophysical scenarios for EMRIs
[1–3] as well as to the analysis of their waveforms [4–10].

There has been less exploration of the possibility of
deviations from isolated EMRI waveforms that might oc-
cur due to environmental effects (see e.g. [2, 11–14] for a
study of differences caused by an accretion disk around
the SMBH). Here we point out an effect that has not been
considered in this context: the acceleration of the EMRI
system by a nearby (distance of roughly a few tenths of a
parsec or less) external SMBH. As we demonstrate, this
acceleration leads to phase drifts of fractions of a radian
over a year of inspiral, which is potentially detectable
from EMRIs of plausible signal strength. Depending on
the fraction of galaxies that merge, and on the fraction
of time in such mergers that the second SMBH is within
a few tenths of a parsec of the first, this could affect as
much as a few percent of EMRIs.

The detection of such an effect could yield a new probe
of galactic merger dynamics, providing a measure of the
ratio of the external SMBH’s mass and its distance to
the EMRI. If such effects are not present in a detected
gravitational wave (GW), then one can place an upper
limit on the density of SMBHs inside some radius of a
few tenths of a parsec. If this is the case, then one would

confirm that, as far as LISA is concerned, EMRIs occur
in vacuum.
This paper is organized as follows: In Sec. 2 we do

a simple analysis of the acceleration effect as it would
apply to a signal of constant frequency and amplitude,
which we expand on in the Appendix. In Sec. 3 we ex-
plain how to model real EMRI waveforms, for the partic-
ular case of quasi-circular, equatorial orbits, and explain
how to implement modifications to model an accelera-
tion effect. In Sec. 4 we extend the simple analysis of
Sec. 2 to real waveforms and perform a dephasing and
an overlap study. In Sec. 5 we explore whether some
of these deviations can be masked by adjustments of
EMRI system parameters. We present our conclusions
in Sec. 6. In most of this paper, we use geometric units
with G = c = 1. For reference, in this system of units,
one solar mass M⊙ = 1.476 km = 4.92 × 10−6 s, while
1 pc = 1.03× 108 s = 2.09× 1013M⊙.

II. SIMPLE MODEL

Here we present the basic effects of acceleration in a
simplified model. We assume that there is an EMRI of a
SCO into an SMBH with massM• on the x̂-ŷ plane, with
orbital and spin angular momentum in the ẑ direction.
We further simplify the scenario by assuming GWs of
constant frequency and amplitude. Let us also assume
there is a second SMBH in a circular orbit about the
EMRI’s center of mass (COM). Suppose that the second
SMBH has a mass MSec and the total mass of the system
MTot = M• +MSec. Suppose also that the semi-major
axis of the circular orbit of the perturber-SMBH system
is rSec, and that it is inclined to the line of sight at an
angle ι (here ι is zero for a face-on binary and 90◦ for an
edge-on binary). We depict this scenario in Fig. 1.
If these systems are well-separated, then the EMRI’s
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FIG. 1. Sketch of the physical scenario under consideration.
The angle ι denotes the inclination between the perturber-
EMRI orbital plane and the line of sight. The angle ωt + δ

denotes the orbital phase of the perturber-EMRI system.

COM will move essentially at a constant velocity relative
to us, with a projection into our line of sight of

vlos(t) =

(

MSec

MTot

)

vNewt cos (ωNewtt+ δ) sin (ι) . (1)

where vNewt = (GMTot/rSec)
1/2 is the Newtonian virial

velocity, ωNewt = (GMTot/r
3
Sec

)1/2 is the Newtonian an-
gular velocity for an object in a circular orbit, and δ is
an initial phase, with (ωNewtt + δ) the angle subtended
by r̂Sec and the EMRI orbital plane. A constant relative
speed is entirely absorbed in a redefinition of the masses.
As such, constant relative velocities cannot enter any of
our results.
If the EMRI’s COM is sufficiently close to the SMBH,

then the former will experience an acceleration, which
will produce a net Doppler phase drift relative to the
best-fit waveform. Note that the orbital period for
MTot = 106−7 M⊙ and rSec = 0.1 − 1 pc is at least
∼ 103−5 years, so for the duration of a LISA observa-
tion the binary will not change phase significantly. Tidal
effects on the EMRI system due to the perturber can be
neglected, as this acceleration scales as the inverse cube
of rSec (see Sec. III B for more details).
If the EMRI system is accelerated by an amount v̇

relative to its original line of sight speed over a time
t, then the GW phase difference compared to the ini-
tial frequency is ∆ΦGW = 1

2 v̇tN/c, where N is the
number of radians in the waveform (see Appendix A
for a more detailed explanation of this effect). Let
us designate by ǫ the detectable fractional phase shift:
ǫ ≡ ∆ΦGW,detect/N . As a fiducial value we will use
ǫ = 10−7, or 0.1 radians over ∼ 106 radians for a typical
one-year inspiral. To leading-order in a Taylor-expansion
aboutωNewtt = 0, we then have

1

2

v̇t

c
=

1

2
(sin ι) (sin δ)

MSec

rSec

t

rSec
= ǫ , (2)

where we have here neglected a constant term that is
non-observable. Solving for the distance at which this is
satisfied gives

rSec ≈ 0.26 pc (sin ι)
1/2

(sin δ)
1/2

(

MSec

106 M⊙

)1/2

×

(

t

1 yr

)1/2
( ǫ

10−7

)−1/2

. (3)

The next order term in the phase shift scales as

1

6

v̈t2

c
=

1

6
(sin ι) (cos δ)

MSec

rSec

√

MTot

rSec

t2

r2
Sec

. (4)

Setting this equal to ǫ and solving for r, we find

rSec ≈ 0.025 pc (sin ι)
2/7

(cos δ)
2/7

(

MSec

106 M⊙

)2/7

×

(

MTot

2× 106 M⊙

)1/7 (
t

1 yr

)4/7
( ǫ

10−7

)−2/7

.(5)

Additional corrections can be computed similarly.
Therefore, for BH masses >∼ 106 M⊙ and separations

of a few tenths of a parsec or less, acceleration can cause
a detectable shift in the simplified waveform. As we find
in Sec. IV, this shift is proportional to the combination
A ≡ MSec/r

2
Sec

. For separations of a few hundredths of
a parsec or less, higher order derivatives are measurable.
In this case, the detectable shift in the waveform is cap-
tured by the linear combination of A and other higher-

order derivative terms, such as B ≡M
3/2
Sec r

−7/2
Sec . Given a

sufficiently small rSec one could then measure both A and
B and thus disentangle MSec from rSec. We now discuss
the detectability of these changes for a realistic EMRI,
then in §4 we return to the question of how common it
will be to have a second SMBH this close.

III. REALISTIC EMRI WAVEFORMS

A. Standard EOB Modeling

We employ the effective-one-body (EOB) formalism to
model waveforms with and without the acceleration cor-
rection. This formalism was initially developed in [15, 16]
to model comparable-mass BH binary coalescences. Im-
provements and extensions to other binaries were de-
veloped in [17–28] and compared to a set of numerical
relativity results in [29–31] and to self-force calculations
in [32, 33]. Recently, [8–10] combined the EOB approach
with BH perturbation theory results to model EMRI
waveforms for LISA data-analysis. We here concentrate
on the formulation of [10], as it is applicable to EMRIs,
the systems of interest in this paper.
We focus on quasi-circular EMRI inspirals in the equa-

torial plane of a spinning BH because they are simpler to
model. We define the following orbital parameters: the
SCO’s mass m⋆; the SMBH’s mass M•; the total mass
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M = m⋆+M•; the reduced mass µ = m⋆m•/M ; and the
symmetric mass-ratio ν = µ/M . We also assume that the
EMRI’s orbital angular momentum is aligned with the
MBH’s spin angular momentum S• = a•M• = q•M

2
• ,

where a• = S•/M• is the MBH’s spin parameter and
q• = a•/M• is its dimensionless spin parameter. We em-
ploy the adiabatic approximation, were we assume that
the radiation-reaction time-scale is much longer than the
orbital one.
With this at hand, let us now describe the EOB ap-

proach we employ. In the adiabatic approximation, the
GW phase can be obtained by solving

ω̇ = −

(

dE

dω

)−1

F(ω) , (6)

φ̇ = ω , (7)

where ω ≡ φ̇ is the orbital angular frequency, with φ the
orbital phase, overhead dots stand for time derivatives,
E is the system’s total energy and F is the GW energy
flux. The energy of the system is [34]

E =M• +m⋆
1− 2M•/r ± q•M

3/2
• /r3/2

√

1− 3M•/r ± 2q•M
3/2
• /r3/2

. (8)

where the ± stands for prograde or retrograde orbits. In
this equation and all throughout the rest of this paper,
we ignore sub-leading corrections that are proportional
to the EMRI’s mass-ratio. In practice, this means we ig-
nore conservative and second-order dissipative self-force
effects, i.e. the effect of the SCO on its own geometry, as
well as the SCO’s spin.
The GW flux can be written in the factorized form

of [10, 23, 26, 27], which in the adiabatic regime is

F(ω) =
1

8π

8
∑

ℓ=2

ℓ
∑

m=0

(mω)2 |hℓm|
2
, (9)

where the multipole-decomposed waveforms are

hℓm(v) = h
Newt,ǫp
ℓm S

ǫp
ℓm Tℓm eiδℓm (ρℓm)ℓ , (10)

and where ǫp is the parity of the waveform (i.e., ǫp = 0
if ℓ +m is even, ǫp = 1 if ℓ +m is odd). The quantities
(S

ǫp
ℓm(v), Tℓm(v), δℓm(v) and ρℓm(v)) in Eq. (10) can be

found in [23, 26, 27]. The Newtonian waveform is

h
Newt,ǫp
ℓm ≡

M•

R
n
(ǫp)
ℓm cℓ+ǫp v

ℓ+ǫp Yℓ−ǫp,−m(π/2, φ). (11)

where Yℓ,m(θ, φ) are spherical harmonic functions, while

n
(ǫp)
ℓm and cℓ+ǫp are numerical coefficients [26].
We enhance the flux of Eq. (9) by linearly adding BH

absorption terms and calibration coefficients that are fit-
ted to a more accurate, numerical flux [10]. The first
modification is necessary as BHs lose energy due to GWs
that both escape to infinity and fall into BHs. The second
modification accounts for the fact that the bare fluxes

written above are built from low-velocity (PN) expan-
sions, and as such, are not sufficiently accurate by them-
selves for long evolutions, even after the resummations
introduced.
The above differential system is solved with the post-

circular initial conditions of [16], enhanced with a mock-
evolution at 100M• (see e. g. [10]). The orbital phase can
then be used in the waveforms of Eq. (10), together with
the fact that for quasi-circular orbits

r =
[1− q1 (M•ω)]

2/3

(M•ω)2/3
. (12)

where r is the EMRI’s separation and v = (M•ω)
1/3 by

Kepler’s third law. With the waves at hand, we then
compute the GW phase and its amplitude via

Φℓm
GW

= ℑ

[

ln

(

hℓm
|hℓm|

)]

, Aℓm
GW

= |hℓm| . (13)

The GW phase as defined above needs to be unwrapped
every 2π, so in practice it is simpler to define the time
derivative of this quantity and then obtain Φℓm

GW
via inte-

gration.

B. Modifications to EOB Modeling

How do we incorporate the effects of an external accel-
eration into GW modeling within the EOB framework?
Let us first distinguish between wave generation and wave
propagation effects. By the former, we mean effects that
arise in the near-zone (less than a gravitational wave-
length away from the EMRI’s COM) and that generate
GWs due to the inspiral of the EMRI. By the latter, we
mean effects that arise after the system has generated a
GW and it propagates out to the wave-zone, where the
observer is located, many gravitational wavelength away
from the source.
As is expected, all propagation effects, such as the

backscattering (or tails) of GWs off the metric of the
secondary SMBH, occur beyond Newtonian (leading) or-
der in post-Newtonian theory [35], and can be safely ne-
glected here. The presence of an external source, how-
ever, does introduce non-negligible modifications to the
generation of GWs. One could incorporate such effects
by introducing an external, vectorial force to Hamilton’s
equations in the direction of the perturber. This force
would simply be the product of the the total mass of the
system and the time derivative of the velocity of Eq. (1).
The modeling of this effect would require a non-adiabatic
evolution, i.e. the evolution of the full set of Hamilton’s
equations, without assuming circular orbits or using Ke-
pler’s third law. One expects that such type of force
would induce eccentricity and inclination in the inspiral,
driving the SCO out of the equatorial plane of the SMBH.
One can estimate the magnitude of this effect by con-

sidering the tidal force effect of the perturber on the
COM relative to the tidal force of the SMBH on the
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SCO. The tidal force scales as Ftidal = M/D3, where
M is the mass of the object exerting the force and D is
its separation to the object that is being perturbed. In
this case, the ratio of the tidal forces is

R ≡
F Sec

tidal

F EMRI

tidal

=
MSec

M•

r3

r3sec
. (14)

For a quasi-circular EMRI in the LISA band, r ≤ 25M•,
while M• ≥ 105M⊙, which implies

R ≤ 10−13

(

105M⊙

M•

)(

MSec

107M⊙

)(

0.01 pc

rsec

)3 (
r

25M•

)3

.

(15)
The ratio is this small because the perturber is assumed
to be at parsec scales away from the COM, and one parsec
translates to ∼ 1013M⊙ in geometric units. Since the
tidal force scales as the inverse of the separation cubed,
any tidal effects are insignificant.
Given that this type of generation effects are sup-

pressed, are there any others that should be included?
The dominant generation effect is simply a Doppler shift
in the frequencies, which then leads to an integrated mod-
ification in the GW phase (see the Appendix for a de-
tailed explanation of this Doppler effect). In this sense,
such a correction is similar to the integrated Sachs-Wolfe
effect for GWs [36], where here the perturbation to the
potential is given by a third body, instead of some cos-
mological background. The implementation of this cor-
rection to an EOB evolution is simple: divide the right-
hand-side of Eq. (7) by the appropriate Doppler factor

φ̇ = ω → φ̇ = ω [1 + vlos(t, δ = π/2)] . (16)

In this equation, we have not included the appropriate
Lorentz factor Γ, since vNewt/c≪ 1, and we can linearize
in this quantity. Moreover, we have removed the constant
velocity drift component of vlos by choosing δ = π/2, as
the former is not measurable.

IV. PERTURBING ACCELERATION EFFECT

ON RELATIVISTIC EMRI WAVEFORMS

A. Preliminary Considerations

With the machinery described in Sec. III, we can con-
struct modified EMRI waveforms as a function of time,
for a given value of the second MBH mass and separa-
tion to the EMRI’s COM. We consider the following two
EMRI systems, integrated for one year each:

• System I: The EMRI SMBH has mass m• =
105M⊙ and spin parameter q• = 0.9, while the
SCO has mass and spin parameter m⋆ = 10M⊙

and q⋆ = 0. This system inspirals for ∼ 6 × 105

rads of orbital phase between orbital separations
r/M ∈ (16, 26). In this range the orbital veloci-
ties are v ∈ (0.2, 0.25) and the GW frequencies are
fGW ∈ (0.005, 0.01) Hz.

• System II: The EMRI SMBH has mass m• =
106M⊙ and spin parameter q• = 0.9, while the
SCO has mass and spin parameter m⋆ = 10M⊙

and q⋆ = 0. This system inspirals for ∼ 3 × 105

rads of orbital phase between orbital separations
r/M ∈ (11, rISCO). In this range the orbital veloc-
ities are v ∈ (0.3, vISCO) and the GW frequencies
are fGW ∈ (0.001, f ISCO

GW ) Hz.

System I one exits the most sensitive part of the LISA
band at around 16M , which is why we stop the evo-
lution there. In contrast, Sys. II is stopped when the
SCO reaches the innermost stable circular orbit (ISCO).
For each of these systems, we explore a variety of sec-
ondary SMBH masses MSec = (105, 106)M⊙ as well as
a variety of separations rSec = (0.01, 0.1, 1) pc. Larger
secondary masses are also possible; these would have
equivalent effects on the EMRI at correspondingly larger
distances r ∼ M1/2. (For example, MSec = 109M⊙ at
r = 30 pc would have equivalent effects toMSec = 106M⊙

at r = 1 pc.) In all cases we set sin ι = 1 and δ = π/2,
as this leads to the largest possible effect. The reasoning
behind this is that if this effect is not observable with
this choice of parameters, it will not be observable with
any other choice.

B. Dephasing Study

Let us define the dephasing between waveforms as fol-
lows:

∆ΦGW ≡ ΦAcc
GW

− ΦnoAcc
GW

(17)

where ΦAcc
GW

is the GW phase of an EMRI waveform with
an accelerated COM, while ΦnoAcc

GW
is that of an iner-

tial COM. We have here aligned the waveforms in time
and phase before computing this dephasing. This align-
ment is equivalent to minimizing the statistic in Eq. (23)
of [30], which in turn is the same as maximizing the fitting
factor over time and phase of coalescence in a matched
filtering calculation with white noise [30]. The alignment
is done here in the same way as in [8–10].
Figure 2 plots the dephasing of the dominant (ℓ,m) =

(2, 2) GW mode as a function of time in months for Sys. I
and II. The different line colors/shades correspond to dif-
ferent separations to the perturber [rSec = (0.01, 0.1, 1)
pc], while different line styles correspond to different per-
turber masses [MSec = (105, 106)M⊙]. Observe that for
both Systems a dephasing of order 0.1 rads is achieved
for separations rSec . 0.1 pc over less than one year.
This is consistent with the estimates of Sec. II. Sim-
ilarly, more massive perturbers enhance the dephasing
roughly by one order of magnitude. The amplitudes of
the waveforms are not shown in this figure; they disagree
at the level of 10−3 for Sys. I and 10−4 for Sys. II.
The magnitude and shape of the dephasing depends

on how far away and massive the perturber is. One can
show that the dephasing scales as ∆ΦGW ∝ NMSecT/r

2
Sec

,
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FIG. 2. Dephasing for Sys. I and II as a function of time in
units of months, for a variety of separations and masses of the
perturber.

where T is the observation time and N is the number of
cycles. Since there is a factor of two less GW cycles
in Sys. II relative to Sys. I, then the dephasing for the
former is also smaller by a factor of two. One can also
show that the period of the oscillations in Fig. 2 scales
as ω−1

Newt
and it is induced by the oscillatory nature of

vlos. For certain masses and separations of the perturber,
these oscillations are not visible in Fig. 2 because their
amplitude is smaller than the overall dephasing.

C. Overlap Study

The dephasing study of the previous subsection is
suggestive, but not sufficiently quantitative to assess
whether such types of corrections are large enough to
be measurable. Let us then perform a slightly more so-
phisticated data analysis study here.
Given any time series A(t) and B(t), one can construct

the inner-product

(A| B) = 4Re

∫ ∞

0

Ã(f) B̃⋆(f)

Sn(f)
df (18)

where the overhead tildes stand for the Fourier transform,
the star stands for complex conjugation and Sn(f) is the
spectral noise density curve. We choose here the sky-
averaged version of the noise curve presented in [37, 38].
With this inner-product, we can now construct some

data analysis measures. The signal to noise ratio (SNR)
of signal A is

ρ(A) =
√

(A| A) , (19)

while the overlap between signals a and b is

M = max
(A| B)

√

(A| A) (B| B)
. (20)

with the mismatch MM = 1 − M. The max label in
Eq. (20) is to remind us that this statistic must be max-
imized over a time and a phase shift [25]. If the overlap
is larger than 97% (or equivalently, if the mismatch is
lower than 3%), then the difference between waveforms
A and B is sufficiently small to not matter for detection
purposes (see e. g. [39]). The minimum overlap quoted
above (97%) is mostly conventional, motivated by the
fact that the event rate scales as the cube of the overlap
for a reasonable source distribution. For an overlap larger
than 97%, no more than 10% of events are expected to
be lost.
Whether the difference between waveforms A and B

can be detected in parameter estimation can be assessed
by computing the SNR of the difference in the waveforms
δh ≡ A−B:

ρ(δh) =
√

(δh| δh) = 4Re

∫ ∞

0

δ̃h(f) δ̃h
⋆
(f)

Sn(f)
df . (21)

Notice that here we compute the Fourier transforms first
and then take their difference. When this SNR equals
unity, then one can claim that A and B are sufficiently
dissimilar that they can be differentiated via matched
filtering (see e. g. [40]).
We applied these measures to EOB waveforms with

and without acceleration of the COM. The results are
plotted in Fig. 3 as a function of observation time in
months. The vertical dotted lines correspond to obser-
vation times of (0.5, 2, 4, 6, 9, 11.5) months, and the num-
bers next to them, in parenthesis, stand for the SNR of
Sys. I and II for that observation time. The solid lines
correspond to the mismatch between accelerating and in-
ertial COM waveforms, while the dashed lines correspond
to the SNR of the error. Observe that the mismatch is
always smaller than 0.03 (the solid black horizontal line),
suggesting that this effect will not affect detection. Ob-
serve also that the SNR of the difference can reach almost
100 in a one year observation, while it reaches unity (the
dashed black horizontal line) in 4 or 6 months of ob-
servation. This suggests that given a sufficiently strong
EMRI with SNR ∼ 50−100, the magnitude of this effect
is in principle detectable within 4-6 months of coherent
integration.

V. DEGENERACIES

Now that we have determined that there exists a set
of plausible perturber parameters for which the magni-
tude of the correction could be measurable, let us con-
sider the possibility of degeneracies. That is, let us in-
vestigate whether we can mimic an acceleration of the
COM by changing the intrinsic parameters (the com-
ponent masses, the spin parameter, etc.) in the non-
accelerating waveform. The simplest way to see whether
this is possible is to study the frequency dependence of
the GW modification introduced by the COM’s acceler-
ation.
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FIG. 3. Mismatch as a function of time in units of months
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aration of rSec = 0.1 pc. SNRs for Sys. I and II are given in
parentheses for a source at 1 Gpc.

Let us then remind ourselves of how the frequency-
domain representation is constructed. For this, we em-
ploy the stationary-phase approximation (see e. g. [41]),
under which, the frequency-domain waveform is simply

h̃(f) = Af−7/6eiψ(f) , (22)

where the Newtonian (leading-order) amplitude is A =

π−2/330−1/2 M5/6D−1
L , with M = η3/5M , while the

phase is constructed from

ψ(f) = −
π

4
+ 2πft(f)− 2φ(f) , (23)

where the second term arises due to the Fourier transform
and the third term due to the oscillatory nature of the
time-domain waveform.
The phase of the frequency-domain waveform in the

stationary phase approximation is then controlled by
these last two terms in Eq. (23). The first term can be
computed via

2πft(f) = 2πf

∫ f/2 τ(F ′)

F ′
dF ′ , (24)

where f is the GW frequency, while the second term can
be calculated from

φ(f) = 2π

∫ f/2

τ(F ′)dF ′ , (25)

where τ(F ) ≡ F/Ḟ and F is the orbital frequency.
The Doppler correction to the waveform comes in the

calculation of φ(f), as this is simply the integral of the
frequency. For simplicity, we can reparameterize the
vlos(t) → vlos(F ), by noting that, to Newtonian order,

2πF (t) =
4−3/2

M

[ η

5M
(tc − t)

]−3/8

, (26)

which we can invert to obtain

t(F ) = tc −
5M

256η
(2πMF )−8/3 , (27)

where tc is the time of coalescence of the EMRI system.
Taylor-expanding Eq. (1) about ωNewtt = 0, we find

vlos ∼ v0 + v1 (2πMF )
−8/3

+ v2 (2πMF )
−16/3

+ v3 (2πMF )−8 , (28)

where the vi coefficient are the following frequency-
independent functions:

v0 =

(

MSec

MTot

)1/2 (
MSec

rSec

)1/2
[

cos δ −

(

MTot

rSec

)1/2
tc
rSec

sin δ

−
1

2

MTott
2
c

r3
Sec

cos δ +
1

2

(

MTot

rSec

)3/2
t3c
r3
Sec

sin δ

]

sin ι

v1 =
10

512

MMSec

r2
Sec

η−1(sin ι)

[

sin δ +

(

MTot

rSec

)1/2
tc
rSec

cos δ

− −
1

2

MTott
2
c

r3
Sec

sin δ

]

v2 =
25

131072

M2MSec

r3
Sec

[

−

(

MTot

rSec

)1/2

cos δ +
MTottc
r2
Sec

sin δ

]

× η−2 sin ι ,

v3 = −
125

100663296

M3MSecMTot

r5
Sec

η−3 sin δ sin ι . (29)

Notice that v0 is of O(M1/2/r
1/2
Sec ), v1 is of O(M2/r2

Sec
),

v2 is of O(M7/2/r
7/2
Sec ) and v3 is of O(M5/r5

Sec
).

With these relations at hand, we can now compute the
correction to the frequency-domain waveform phase in
the stationary phase approximation. Denoting by ∆ψ =
ψAcc−ψnoAcc, we find that

∆ψ = −4π

∫ f/2

τ(F ′) vlos(F
′) dF ′ ,

∼ −
5π

24

M

η

∫ f/2

(2πMF ′)
−8/3

[

v0 + v1 (2πMF ′)
−8/3

+ v2 (2πMF ′)
−16

+ v3 (2πMF ′)
−8

]

dF ′ (30)

where in the second line we have used that to Newtonian
order

Ḟ =
48

5πM2
(2πMF )

11/3
. (31)

Normalizing this phase correction by the Newtonian form
of the frequency-domain waveform phase, we find

∆ψ =
3

128
(πMf)

−5/3

[

8

3
v0 +

40

39
v1η

8/5 (πMf)
−8/3

+
40

63
v2η

16/5 (πMf)−16/3 +
40

39
v3η

24/5 (πMf)−8

]

.(32)
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Setting δ = π/2 = ι, the above expression simplifies to

∆ψ =
3

128
(πMf)

−5/3

[

−
8

3

MSectc
r2
Sec

+
4

9

MSecMTott
2
c

r5
Sec

+

(

25

1248

MMSec

r2
Sec

−
25

2496

MMSecMTott
2
c

r5
Sec

)

(πMf)−8/3

+
125

1032192

M2MSecMTottc
r5
Sec

(πMf)−16/3

−
625

1094713344

M3MSecMTot

r5
Sec

(πMf)
−8

]

. (33)

Let us now discuss this result in more detail. The
first two terms inside the square bracket in Eq. (33) arise
due to a constant misalignment between the time of co-
alescence of the EMRI system and the SMBH-perturber
system (we have implicitly set the latter to zero). This
effect can be absorbed via a redefinition of the chirp
mass, and thus, it is not observable. All other lines
in Eq. (33), on the other hand, contain a non-trivial
frequency-dependence and they cannot be reabsorbed via
a redefinition of intrinsic parameters. The many terms
that arise in the second, third and fourth lines of Eq. (33)
are due to the Taylor expansion in ωNewtt, which in fre-
quency space has become and expansion in inverse pow-
ers of (M f) and (rSec/MSec). Clearly, the second line
Eq. (33) is dominant over all others as it scales with r−2

Sec

to leading order, while the third and fourth lines scale as
r−5
Sec

. If MSec/rSec is large enough, however, one might be
able to measure the coefficients in front of both the domi-
nant f−8/3 term and the f−16/3 or f−8 term. This would
then imply that one could break the degeneracy between
MSec and rSec in the leading order term and measure both
quantities.
Notice also that in Eq. (33) we have kept only the New-

tonian contribution to an infinite post-Newtonian expan-
sion. This is essentially because in Eqs. (26) and (31) we
have dropped all but the leading order, Newtonian term.
Interestingly, the correction terms that arise at leading
order are dominant over the Newtonian piece, as they
depend on high inverse powers of frequency (in partic-
ular, higher than 5/3). This implies that if a detailed
parameter estimation study were to be carried out, these
post-Newtonian terms should be taken into account, as
they contribute at the same order as the Newtonian term
in an inertial frame.
The dependence of the correction in Eq. (33) on dif-

ferent powers of the frequency suggests that these terms
are non-degenerate with the standard ones that appear
in the non-accelerating GW phase. More precisely, the
GW phase in an inertial frame is given by (see eg. [41]).

ψ(f)noAcc = 2πftc − φc +
3

128
(πMf)

−5/3
(34)

×

[

1 +

(

3715

756
+

55

9
η

)

η−2/5 (πMf)2/3 + . . .

]

,

where φc is the phase of coalescence and the ellipses stand
for higher order terms in the post-Newtonian series. No-
tice that there are no powers of f−8/3, f−16/3 or f−8 in

the above equation. Thus, the correction computed in
Eq. (33) is weakly correlated to the GW phase in an in-
ertial frame, i. e. the off-diagonal elements of the Fisher
matrix are small for the MSec/r

2
Sec

coordinate sector rel-
ative to the diagonal term. Although these results are
suggestive, a more detailed analysis should be carried
out to determine the level of correlation between all pa-
rameters and the accuracy to which MSec and rSec could
be extracted.
Although the correction due to the acceleration of the

COM seems to be weakly correlated to other intrinsic
parameters, one might wonder whether it is degenerate
with other effects not included in vacuum GR waveforms.
Takahashi and Nakamura [42] have studied the effect of
the acceleration of the Universe in the frequency-domain
form of the waveform. They find that

∆ψ =
3

128
(πMf)

−5/3

[

25

768
Mż (πMf)

−8/3

]

. (35)

One can clearly see that this cosmological effect is de-
generate with the one computed here [the second line
in Eq. (33)]. However, the magnitude of Eq. (35) is
much smaller than that of Eq. (33), simply because
H0 ≪ MSec/r

2
Sec

for all relevant perturbers considered
here. For example, at small redshift, H0 ∼ 10−23 km−1

in geometric units, while at rSec = 0.1 pc and for a 106M⊙

perturber, MSec/r
2
Sec

∼ 10−19 km−1. The perturber sep-
aration at which these effects become comparable is ap-
proximately rSec ∼ 11 pc [Msec/(10

6M⊙)]
1/2.

Another possible source of degeneracy could be if
there are corrections to general relativity that induce
phase modifications with the specific frequency depen-
dence found in Eq. (33). In fact, we see that the result
obtained here can be mapped to the parameterized post-
Einsteinian framework [43] with the choice

α = 0, β =
25

1248

MSecM

rSec
, b = −

8

3
, (36)

to leading order in MSec/rSec (see e.g. Eq. 1 in [43]). As
found in that paper, however, there are no known alter-
native theories to date that could potentially lead to the
frequency dependence found in Eq. (33).

VI. DISCUSSION AND CONCLUSIONS

We have shown that ∼ 106M⊙ SMBH within a few
tenths of a parsec of the EMRI system can produce de-
tectable modifications in the waveform. A more massive
SMBH at a correspondingly larger distance would pro-
duce equivalent effects. It is not possible to say with
certainty how common this will be. A rough upper limit
can be obtained from the following observation. Since a
redshift of z = 1 (corresponding roughly to 1010 years),
tens of percent of Milky Way-like galaxies have had a
major merger [44, 45]. If the typical merger takes hun-
dreds of millions of years, then at most a few percent
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will be involved in a merger at any stage. The fraction
of time spent at separations <∼ 1 pc remains uncertain;
although there are well-understood dynamical processes
that can reduce the SMBH separation to ∼ 1 pc and grav-
itational radiation will bring the binary to merger from
∼ 10−3 pc, the transition between the regimes is uncer-
tain (this is commonly called the “final parsec problem”;
see, e.g., [46] for a discussion). It is therefore possible
that the system spends considerable time at roughly the
detectable separations.

We also note that when a second SMBH comes within
a few tenths of a parsec of the first, various dynamical
effects temporarily increase the rate of close encounters of
stellar-mass objects with both SMBHs [47]. As a result, it
may be that a disproportionate number of EMRIs occur
with a second SMBH nearby.

In these cases, measurement of an EMRI phase shift af-
fords a new way to detect the presence of a binary SMBH.
If the separation is close enough to measure an additional
derivative of the motion, then the degeneracy between
the secondary mass and its distance is broken. Alterna-
tively, if no phase shift is detected, then this implies that
there are no SMBH perturbers in a radius of a few tenths
of a parsec, thus implying an upper limit on the density
of BHs close to the detected EMRIs. In principle, there-
fore, EMRIs have another astrophysical link in addition
to their utility in testing general relativity.

The importance of the astrophysical environment in
EMRI GW modeling is a two-sided sword. Although on
the one hand, one could potentially extract some astro-
physical information, on the other, these effects could
make it difficult to test general relativity [43]. For such
tests to be possible, one must have complete control of
the waveforms within general relativity. If the astrophys-
ical environment needs to be included, then the modeling
might be dramatically more difficult. We note here, how-
ever, that only a fraction of EMRIs would experience the
astrophysical environment effect discussed here. If devi-
ations from general relativity are present, on the other
hand, these should be present for all EMRIs. Thus, in
principle, a statistical analysis would allow us to disen-
tangle deviations in our waveforms to discern whether
they have an astrophysical or theoretical origin.
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Appendix A: Acceleration Effect

Here we explain in more detail how the Doppler correc-
tion to the waveform comes about. Let us consider the
effect of an acceleration to the COM position vector. For
simplicity we consider the toy-model of a perfect circular
orbit with angular velocity ω, whose position vector in
the COM can be parameterized as

~x = b (cosωt, sinωt, 0) , (A1)

where b is the binary’s separation and we have erected
a Cartesian coordinate system, with the binary in the
x̂-ŷ plane. If an external force is present that causes
an acceleration, this in turn will cause a displacement
~x → ~x′ = ~x + δ~x. Let us parameterize the magnitude
of this displacement as |δ~x| = (1/2)v̇lost

2, which holds to
Newtonian order for a uniformly accelerated body. One
can then show that the shift in the magnitude of the
COM velocity vector is simply

|~v′| = |~v|+
1

2
v̇lost (x̂ · δx̂) +O(v̇2

los
t2) , (A2)

where v̇ = ~̇x is the unperturbed velocity vector. Notice
that there is a factor of 1/2 here, just as in the estimates
of Sec. II.
Before proceeding, it is useful to concentrate on this

velocity shift further. Choosing δ = π/2 = ι, one can
easily show that

vlos ∼
MSec

MTot

vNewt(ωNewtt)

[

1−
1

6
ω2

Newt
t2 +O(ω4

Newt
t4)

]

,

(A3)
upon Taylor expanding about ωNewtt ≪ 1. We can take
the time-derivative of vlos and then Taylor-expand again
to find:

v̇lost ∼ −
MSec

MTot

vNewt (ωNewtt)

[

1−
1

2
ω2

Newt
t2 +O(ω4

Newt
t4)

]

.

(A4)
Obviously, this is the same as simply Taylor-expanding
vlos to leading order.
One effect of the COM velocity drift is a Doppler shift

to the waveform. Special relativity predicts that if a fre-
quency source is moving with velocity v away from the
observer at an angle θ, then the frequency observed is

ω′ =
ω

Γ
(1 + v cos θ)

−1
,

∼ ω

[

1− v cos θ + v2
(

cos2 θ −
1

2

)

+O(v4)

]

,(A5)

where ω is the frequency of the source, ω′ is the fre-
quency the observer detects and Γ = (1 − v2)−1/2 is the
usual special relativity factor. In the notation of Sec. II,
v cos θ = vlos.
We can then easily integrate this quantity, assuming

a constant ω, to recover the ∆ΦGW computed in Sec II.
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Setting ι = π/2 = δ, we find

∆ΦGW = −ω

∫

vlos(t)dt ,∼ −
N

2

(

MSec

MTot

)

vNewt (ωNewtT ) .

(A6)
Notice that by choosing δ = π/2, there is no leading-
order, unobservable constant velocity drift term. In the

second line, we have Taylor expanded about ωNewtt = 0
and used that ΦGW,Tot = N = ωT , where T is the time
of integration, and that ΦGW,Tot = N , where N is the to-
tal number of radians in the non-accelerating waveform.
Notice that this is the same ∆ΦGW correction described
in Sec. II.
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