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Hierarchical Gompertzian growth mapswith application in astrophysics
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The Gompertz model describes the growth in time of the siz@gsfificant quantities associated to a large
number of systems, taking into account nonlinearity fesgoy a linear equation satisfied by a nonlinear func-
tion of the size. Following this scheme, we introduce a clafskierarchical maps which describe discrete
sequences of intermediate characteristic scales. We fendeheral solutions of the maps, which account for
a rich set of possible phenomena. Eventually, we providengioitant application, by showing that a map
belonging to the class so introduced generates all the wab@strophysical length and mass scales.

PACS numbers: 89.75-k, 05.20.-y, 05.10.Gg

The laws of growth of many systems, and the deep origin of |Symbol Meaning
their characteristic scales of, e. g., length, mass, energy- o, B Parameters of the Gompertz eq.
merosity, are intensively investigated in many branchesbf (1) Size at time’
ence, such as biomedicine, economy, and population dynam- . Initial size

ics. The Gompertz model was originally introduced in 1825

by B. Gompertz[[1] as a model of human mortality: Gom- Zoo Asymptotic (or reference) size
pertz found empirically the fitting distribution of humaneag v Ratiozo/ 2o
for a given community. From the first half of the twentieth s(t) Relative sizez(t)/zo0
century the Gompertz model, and the associated Gompertz| s, n-th relative sizez,, /2« in the discrete map
equation, have become a frequently used tool to account for [, Ins,
r_nec_hamsms of growth[[2]. The form of the Gompertz equa- & Parameter of the discrete map
tion is: ;

Ry n-th astrophysical length scale

_1% —B—al (3) (1) R |Max. astroph. length scale (Radius of the obs. uhiv.)
dt z7 A Min. length scaleR, (radius of a nucleon)

wherez describes the "size” (not necessarily a spatial size) of | Mx n-th astrophysical Mass scale

some quantity characterizing the systefrand« denote two M Max. astroph. mass scale (Mass of the obs. unjv.)
positive constants with the dimensions of the inverse oéfim m Min. mass scalé/, (mass of a nucleon)
andz is a constant with the same dimensions oEq. (1) can - Velocity of the light
be recast as: G Gravitational constant
d(l
(In s) = —alns, (2)
dt TABLE I: Meaning of the symbols

wheres(t) = 2(t)/z00, @Ndzs = Zexp (B/a). The Gom-
pertz equation is then characterized by four parametels (al

dependent on the specific system): 3, 2., and the initial We observe that the Gompertz model includes in a very

condition (*scale”)z(0) = z. Its solution is: interesting and peculiar way nonlinearity, which is a macro
scopic mirror of a nonlinear microscopic background ruling
2(t) = zoo exp [(In7y) - =], (3)  the growth of natural systems. In fact, the equation looks

linear in a suitable functiony(s) of the original (relative)
wherey = zp/z. Itis immediately verified that this solu- size s, while the nonlinearity is introduced by the fact that
tion always approaches monotonically in timg. Depend- the functiony is itself a nonlinear function of; in partic-
ing on the conditions) < 2z, = Zexpf/a (v < 1),0r ular,y(s) = Ins, or, equivalently,s(y) = expy. On the
20 > Zeo = Zexpf/a (v > 1), the system monotonically other hand, while the Gompertz equation describes a con-
grows or monotonically decreases, respectively, from the d tinuous growth of a size in time, we know that many sys-
mensiorz to the dimension.,, approaching the asymptotic tems are placed on some discrete sequence of sizes, ranging
valuez., with the characteristic time~—!. In TABLE Iwe list ~ from a minimum to a maximum scale. Therefore, follow-
the main symbols which have been exploited, or which will being the Gompertz model, we try to describe these sequence
exploited in the following, with their meanings. of scales by a sequende,,} of relative sizes resulting from
the solution of dinear map fulfilled by anonlinearfunction,

y(s$n) = yn, Of s,
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whered,, are proportionality coefficients. The solution of the of the system oscillates indefinitely above and below therref
map is obviously: ence value,, assuming in alternating way the pair of values
~(@=1 and~(1-%) and does not converge to any asymptotic
& limit. Therefore, we see that the discrete maps so introdluce
Yn = Yo H O ) describe a variety of situations.

k=0 In order to investigate the usefulness of the mapk (L0), (11)
Here,s,, will be defined bys,, = z, /2, Wherez,, is then-th ~ W€ move towards an appligation, by prgmising some consid-
size, andz.. is an asymptotic, or reference, size. Moreover,erations. We observe that, if the growth is monotane<(1),
for further generalization, we at first allow the dependencé!Sually one knows (phenomenologically) the initial and the
of the proportionality constant on (analogously, we could final sizes o, zo.) of a system, and that, i < 1 (aggre-
promotex to a suitable function of the time in the Gompertz 9ation process) the initial valug, is noting but the size of
equation). The choice of the nonlinear functigfs,) = y, 1€ More elementary constituent of the system, apds the
is obviously a crucial question: this choice, in principkg] ~ Maximum size, while ify > 1 (fragmentation process),. is
depend on the specific system, and it should be made followh€ Size of the more elementary constituent, ant instead
ing physical criteria and phenomenological observatigng. e maximumsize. The (phenomenological) knowledge of the
the Gompertz model suggests that the logarithm can play 8xtremal sizes, together with a good fit for the valueofs
privileged and somewhat universal role. This suggestion i§ufficient to determine all the intermediate scales. Olsligu
strengthened by the connection among Gompertz model, log More ambitious go_al _could be to o_b_tam the h|erarch|cql se-
normality and stability, as we will briefly discuss in the eon dueénce of characteristic scaleg by fixing phenomenologi-
clusions [8]. We then selegt, = Ins,, (OF s, = expyn). cally only the initial sizezy, and obtaining the values éfand

Thus, if~ is defined as in the Gompertz equatigp,= In~, of z, by independent theoretical hypotheses. This, as we will
and the solutior{5) gives: show, can be done when the physical background underlying

the system is well established.
Sl = Spom, (6) Now, we show that Eq.[{11) can be applied in the frame-
work of astrophysics: we assume that the components on dif-
i. e. ferent scales of the observed universe organize themsaives
. cording to our scheme, and proceed to verify this hypothesis
sp = (7)Hi=o %, (7)  We choose for,, the sequence of the length scales ("radii”)
. ) of the astrophysical aggregations, and replace the symhols
Furthermore, resorting again to the Gompertz model, we makgith  and .. with R, and all the others in a consistent
the simplifying choice,, = 6 = 1 — &, obtaining manner. Moreover, we fi% = 1/2. Beinga < 1, the map
is monotone. We assume also thaf is the size of the ele-
mentary constituent (i. e. the minimum size). Thus, theiradi
R,, are monotonically increasing, and their asymptotic limit
Yn = (1—a)"In~,, (9) Risthe maximum radius_ (i. e. the obseryed radius of the uni-
verse). We remark that in our computation we consider only
the order of magnitude of the radii, expressed (in centime-

Ynt1 = (1 = @)yn,, (8)

Spi1 = 55}*5‘), (10)  ters) as powers of(. It is natural to choose as elementary
constituent a nucleon, because the system is ruled by gravi-

and tation, which in turn is determined by the mass distribution
(1—ay" and nucleons contain all the significant (observed) mass. Ou
Sn =7 : (11)  minimum size is then the radius of a nucleon as measured by

. . a-particles scatteringRy, = A = 10~ 3cm. It is also known
In fact, Eq. [8) looks as the form of the discretized Gompertzth;)tR the observedg?é)dius of the universefis= 10%cm

equation. It is, however, worth to be remarked that the phys[@] Then~ = 10-39. The mapl(ID), with — 1/2, becomes

ical tf.“ea”'”g of t?e d.|fscretet.ma|1p is different Irom that O.I theasquare—root mapwhile if we uses,, = R,,/ R we obtain for
continuous equation; in particular, we are not necessadly - i ageometric-mean map

thorized to interpret Eqg.[{8) as an equation in (discrelized
time. _ 1

We now comment on the behavior of the solutidng (11). We R = (Bn B)2. 12)
see that a monotone sequence (increasing<f 1, decreas- Now, exploiting Eq. [IL) withy = 1073° anda = 1/2,
ing if v > 1) is assured only if < 1 (while monotonicityis  or, equivalently, Eq. [(12), we obtain the rapidly convetgen
always assured by the Gompertz equation). If, instéad,1,  sequence in the first column of TABLE II.
the map[(B), (with solutioh{9)) changes its sign at each,step These length scales represent, in order of magnitude, just
and, correspondingly, the valuesof oscillate but with two  the main six observed astrophysical length scales [4] (tbs-p
further possible behaviors. & is not an integer number, the ence of two aggregates both for radids and for radiusi,
size of the system approaches the asymptotic valuby os-  is discussed later). Therefore, we have obtained a first im-
cillating in alternating way above and below it, with morelan portant result: we can fit the intermediate astrophysicajtie
more damped oscillations. {f is an integer number, the size scales by choosing a specific valuexgfand by exploiting the
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RADIUS|MASS AGGREGATE sn, and has the same form of solution with the replacement
10%m |10%%¢ planetesimal vy =70
10%em |10%g neutron star , 3 3

- - — (1-a)" — ,0(1-&)"
10'%em | 10%4g solar system 0 =(7) =7 ‘ (15)
10'%em | 10*g |  s.m. black hole Moreover, putting together the allometric relations at aege
10%tem | 10%yg typical galaxy n and atn = 0, we obtain also the proportionality constant
10%¥cm | 10%¢g | cluster of galaxies as:b = My/z.
10%5¢em | 1052 |supercluster of galaxiés In the case of the universe, we consider the sequence of
10%¢m | 10°%g| observed universe the massed/,,, and the sequence of their radij,, and find

their "allometric” relation by introducing another assuiop

(of "minimum fluctuation”), probably less intuitive with re

TABLE II: List of astrophysical length scales and of the empond- ~ Spect to the first one, but reasonable if one considers that th

ing mass scales, with the associated astrophysical aggsega very complex character of the gravitational systems, aed th
huge numbers of elementary constituents induce instiakilit
and fluctuationsAn aggregate can bind a test particle up to a

experimentally determined values of the two extremal lengt distance where the gravitational force generated by theegg

scales. gate on atest particle reduces to a value comparable with the

However, as remarked previously, a scientific theory withbackground fluctuating force, whose magnitude is deterthine

somepredictivepower should be able to determine, on the ba-by the elementary constituerithe claim gives, for each:

sis of few other assumptions, both the (apparently arlyitrar

choicea = 1/2, and the value of the maximum siZ& by G% —_q* (16)

the mere phenomenological knowledge of the minimum scale. R2 A2

We now show that this is actually possible by resorting to.

a suitable assumption naturally suggested by the physics o€+

the gravitational systemsie assume that the dimension of M. — bR2 17)

the aggregate with radiu®; (and massM) is given by the " "

Schwartzschild radius of a three-dimensional close pagkin whereb = m/A2 = 100g/cm?. Then,§ = 2, and, being

of elementary constituents (nucleons: radiysmassm), i. & = 1/2, we obtain the sequence:
e. by a "collaps” restricted by the constraint that the eseap
velocity is the maximum one: the velocitgf the light This M, =~ "D, (18)

hypothesis leads to the following two conditions:
where, by denotind/ (instead ofM.) the asymptotic value
(13) providing the total mass of the observed universe, we have
exploited: m/M = ~2. Then, once the sequence for the
radii is established, the allometric relation, and the kihow
whereG is the gravitational constant. The second equationsge of the minimum mass:, automatically provide the se-
one requires that the mass density per unit volume of the firg§ne. Fromy = 10-3% andm = 10~24 g, we obtain (in order

aggregate coincide with that of a nucleon (three-dimeradion of magnitude) the sequence of the second column in TABLE

M m GM:CQ

RN TR

close packing). By eliminating the mas$, we obtain: Il, which represents just the sequence of the observed-astro
i physical masses. In the last column of TABLE Il we describe
Ry = (AR)?, (14)  the corresponding structures. Note also that the total wiass

the observed universe corresponds to that of = 107® nu-

. B ) . . _ | _
with B = (Ac)?/Gm. Inserting the numerical values of ¢jeons, in perfect agreement with the central value obthine
A, ¢, g,m providesRk = 10*°cm, i. e. just the observed radius from nucleosynthesis calculations [4].

of the universe. Thus, we see that our simple hypothesislead

both to an independent determination of the maximumBize We conclude this letter with the following observations and

andto the value ofy which coincides with our original choice remarks:

(Note in fact that Eq.[(14) is Eq(IL2) with = 0). Here we Being the macroscopic behavior of complex systems the re-

comment also that, by defining (in order of magnitude) the agsult of the collective behavior of a huge number of elemgntar

T of the observed universe iy = ¢T', from the expression constituents, it must be a mean effect deriving by a suitable

soon established faR we get: T = A\2¢/Gm = 10'%s,i. e.  microscopic (stochastic) model. In fact, in réf. [3] it ha=eh

just the right order of magnitude. recently proved that the Gompertz equation imacroscopic
Finally, we aim to determine, besides the length scales, alsconsequencef the action of a microscopic, lognormally dis-

the masses of the astrophysical aggregates. To this pyrpogsgbuted diffusion process performed by the elementary con

we note that, if some other quantity of the system, 88y,  stituents of the system, because this equation holds for the

is connected ta,, by the "allometric” relation:M,, = bz?, medianof the process, which then provides the evolution in

then the quantity;, = M, /M., satisfies the same map as time of the macroscopic characteristic size.
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We remark that hypotheses and results on the astrophysiuantities whose evolution is characterized by osciltetj@s
cal structures here discussed, and the hierarchical maps fdescribed by the maps with > 1.
the sequence of astrophysical radii and masses are cashtaine

in papers previously published by the authors in collabhonat elation in Eq. [[TB) and the relatiofi{16) is solved by the fac

ywth _other researchers|[5]. However_, we as well remark tha[hat to the same radit, can be associated the masfs and
in this letter we frame these results in a model based on dis-

crete maps deduced by the Gompertz model of growth. Thalsothe mass\/,, . 1, where the masa/,, satisfies the relation

G two-dimensional close packing), while the mags. ;
background stochastic origin of the Gompertz model [3], to- ) ( . ot . .
gether with the derivation from physical hypothesis of tak v satisfies the relatiorL (1.3) (three-dimensional close pagki

ues ofa and of the asymptotic lengtR, lead us to interpret critical” aggregate) lIE]' For example, as is well known,

our scheme as a first important step towards the discover}at[nemmn star (three dimensional close packing with mass

—_ 34 H . .

of the underlying process performed by the elementary con; > — 1% 9) has, in ord(_ar of magn!tude, .the same radius
. ) (R1 = 10°m) of a planetesimal (two dimensional close pack-
stituents, and responsible for the observed sequencerof ast .

. ) . ing with massM; = 10'°g). Similar considerations can be
physical scales. Note, in fact, that it clearly emerges foom : ; . .
extended by comparing a typical galaxy with a supermassive

model the role of a geometrical progression,. whose_ reIEE‘VancloIack-hole at the center of the galaxy bulge, whose estiinate
in the framework of natural phenomena and in a variety of ex- !

- RAPOPSNI i
perimental environments was highlighted already at theoénd mass (until bilions of solar masses, i, 1. “g) is in fact com

nineteenth century by F. Galtar [6] and by D. McAlister [7], parable with that of the whole galaxyl [8]. This explains the

which showed that the geometrical mean (median) describetgv.o structures associated to the first two radii in Table mSu

the behavior of a large set of natural phenomena better tha?Ing up, our mo(;i_el alloyvs t\|/vp|053|ble£el?udences, given by: d
the arithmetic one. R,,M,} (two-dimensional close-packed aggregates) an

The discrete maps here introduced can provide a generélR”’ My} (three-dimensional close-packed, critical aggre-

model that can be potentially exploited to search for the engates), and this scheme is confirmed at least on geglend
. . on scaleRs.

lightenment of a large number of growth phenomena in many
fields of research. Namely searching for sequences of sig- A question which is worth to be deepened is the meaning of
nificant scales associated to different systems, whichipossthe proportionality parameters in the linearized maps.tBist

bly develop these intermediate scales step by step in time, @uestion is connected to the more general, and alreadyraise
which organize themselves on all these scales simultaheousquestion of the possible stochastic background underiyieg

Itis also of great interest to investigate the existenceatiiral ~ maps, and will be addressed in forthcoming papers.

We remark that the apparent discrepancy between the first
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