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Hierarchical Gompertzian growth maps with application in astrophysics
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The Gompertz model describes the growth in time of the size ofsignificant quantities associated to a large
number of systems, taking into account nonlinearity features by a linear equation satisfied by a nonlinear func-
tion of the size. Following this scheme, we introduce a classof hierarchical maps which describe discrete
sequences of intermediate characteristic scales. We find the general solutions of the maps, which account for
a rich set of possible phenomena. Eventually, we provide an important application, by showing that a map
belonging to the class so introduced generates all the observed astrophysical length and mass scales.
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The laws of growth of many systems, and the deep origin of
their characteristic scales of, e. g., length, mass, energy, or nu-
merosity, are intensively investigated in many branches ofsci-
ence, such as biomedicine, economy, and population dynam-
ics. The Gompertz model was originally introduced in 1825
by B. Gompertz [1] as a model of human mortality: Gom-
pertz found empirically the fitting distribution of human age
for a given community. From the first half of the twentieth
century the Gompertz model, and the associated Gompertz
equation, have become a frequently used tool to account for
mechanisms of growth [2]. The form of the Gompertz equa-
tion is:

z−1dz

dt
= β − α ln (

z

z̃
), (1)

wherez describes the ”size” (not necessarily a spatial size) of
some quantity characterizing the system,β andα denote two
positive constants with the dimensions of the inverse of time,
andz̃ is a constant with the same dimensions ofz. Eq. (1) can
be recast as:

d(ln s)

dt
= −α ln s, (2)

wheres(t)
.
= z(t)/z∞, andz∞ = z̃ exp (β/α). The Gom-

pertz equation is then characterized by four parameters (all
dependent on the specific system):α, β, z∞, and the initial
condition (”scale”)z(0) = z0. Its solution is:

z(t) = z∞ exp [(ln γ) · e−αt], (3)

whereγ
.
= z0/z∞. It is immediately verified that this solu-

tion always approaches monotonically in timez∞. Depend-
ing on the conditionsz0 < z∞ ≡ z̃ expβ/α (γ < 1), or
z0 > z∞ ≡ z̃ expβ/α (γ > 1), the system monotonically
grows or monotonically decreases, respectively, from the di-
mensionz0 to the dimensionz∞, approaching the asymptotic
valuez∞ with the characteristic timeα−1. In TABLE I we list
the main symbols which have been exploited, or which will be
exploited in the following, with their meanings.
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Symbol Meaning

α, β Parameters of the Gompertz eq.

z(t) Size at timet

z0 Initial size

z∞ Asymptotic (or reference) size

γ Ratioz0/z∞
s(t) Relative sizez(t)/z∞
sn n-th relative sizezn/z∞ in the discrete map

yn ln sn

α̃ Parameter of the discrete map

Rn n-th astrophysical length scale

R Max. astroph. length scale (Radius of the obs. univ.)

λ Min. length scaleR0 (radius of a nucleon)

Mn n-th astrophysical Mass scale

M Max. astroph. mass scale (Mass of the obs. univ.)

m Min. mass scaleM0 (mass of a nucleon)

c Velocity of the light

G Gravitational constant

TABLE I: Meaning of the symbols

We observe that the Gompertz model includes in a very
interesting and peculiar way nonlinearity, which is a macro-
scopic mirror of a nonlinear microscopic background ruling
the growth of natural systems. In fact, the equation looks
linear in a suitable functiony(s) of the original (relative)
size s, while the nonlinearity is introduced by the fact that
the functiony is itself a nonlinear function ofs; in partic-
ular, y(s) = ln s, or, equivalently,s(y) = exp y. On the
other hand, while the Gompertz equation describes a con-
tinuous growth of a size in time, we know that many sys-
tems are placed on some discrete sequence of sizes, ranging
from a minimum to a maximum scale. Therefore, follow-
ing the Gompertz model, we try to describe these sequence
of scales by a sequence{sn} of relative sizes resulting from
the solution of alinear map fulfilled by anonlinearfunction,
y(sn) ≡ yn, of sn:

yn+1 = δnyn, (4)
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whereδn are proportionality coefficients. The solution of the
map is obviously:

yn = y0

n∏

k=0

δk. (5)

Here,sn will be defined bysn
.
= zn/z∞, wherezn is then-th

size, andz∞ is an asymptotic, or reference, size. Moreover,
for further generalization, we at first allow the dependence
of the proportionality constant onn (analogously, we could
promoteα to a suitable function of the time in the Gompertz
equation). The choice of the nonlinear functiony(sn) ≡ yn
is obviously a crucial question: this choice, in principle,will
depend on the specific system, and it should be made follow-
ing physical criteria and phenomenological observations.But
the Gompertz model suggests that the logarithm can play a
privileged and somewhat universal role. This suggestion is
strengthened by the connection among Gompertz model, log-
normality and stability, as we will briefly discuss in the con-
clusions [3]. We then selectyn = ln sn (or sn = exp yn).
Thus, ifγ is defined as in the Gompertz equation,y0 = ln γ,
and the solution (5) gives:

sn+1 = sn
δn , (6)

i. e.

sn = (γ)
∏

n

k=0
δk . (7)

Furthermore, resorting again to the Gompertz model, we make
the simplifying choiceδn ≡ δ ≡ 1− α̃, obtaining

yn+1 = (1− α̃)yn, , (8)

yn = (1− α̃)n ln γ, , (9)

sn+1 = s(1−α̃)
n , (10)

and

sn = γ(1−α̃)n . (11)

In fact, Eq. (8) looks as the form of the discretized Gompertz
equation. It is, however, worth to be remarked that the phys-
ical meaning of the discrete map is different from that of the
continuous equation; in particular, we are not necessarilyau-
thorized to interpret Eq. (8) as an equation in (discretized)
time.

We now comment on the behavior of the solutions (11). We
see that a monotone sequence (increasing ifγ < 1, decreas-
ing if γ > 1) is assured only if̃α < 1 (while monotonicity is
always assured by the Gompertz equation). If, instead,α̃ > 1,
the map (8), (with solution(9)) changes its sign at each step,
and, correspondingly, the values ofzn oscillate, but with two
further possible behaviors. If̃α is not an integer number, the
size of the system approaches the asymptotic valuez∞ by os-
cillating in alternating way above and below it, with more and
more damped oscillations. If̃α is an integer number, the size

of the system oscillates indefinitely above and below the refer-
ence valuez∞, assuming in alternating way the pair of values
γ(α̃−1) andγ(1−α̃), and does not converge to any asymptotic
limit. Therefore, we see that the discrete maps so introduced
describe a variety of situations.

In order to investigate the usefulness of the maps (10), (11),
we move towards an application, by premising some consid-
erations. We observe that, if the growth is monotone (α̃ < 1),
usually one knows (phenomenologically) the initial and the
final sizes (z0, z∞) of a system, and that, ifγ < 1 (aggre-
gation process) the initial valuez0 is noting but the size of
the more elementary constituent of the system, andz∞ is the
maximum size, while ifγ > 1 (fragmentation process),z∞ is
the size of the more elementary constituent, andz0 is instead
the maximum size. The (phenomenological) knowledge of the
extremal sizes, together with a good fit for the value ofα̃, is
sufficient to determine all the intermediate scales. Obviously,
a more ambitious goal could be to obtain the hierarchical se-
quence of characteristic scaleszn by fixing phenomenologi-
cally only the initial sizez0, and obtaining the values of̃α and
of z∞ by independent theoretical hypotheses. This, as we will
show, can be done when the physical background underlying
the system is well established.

Now, we show that Eq. (11) can be applied in the frame-
work of astrophysics: we assume that the components on dif-
ferent scales of the observed universe organize themselvesac-
cording to our scheme, and proceed to verify this hypothesis.
We choose forzn the sequence of the length scales (”radii”)
of the astrophysical aggregations, and replace the symbolszn
with Rn and z∞ with R, and all the others in a consistent
manner. Moreover, we fix̃α = 1/2. Being α̃ < 1, the map
is monotone. We assume also thatR0 is the size of the ele-
mentary constituent (i. e. the minimum size). Thus, the radii
Rn are monotonically increasing, and their asymptotic limit
R is the maximum radius (i. e. the observed radius of the uni-
verse). We remark that in our computation we consider only
the order of magnitude of the radii, expressed (in centime-
ters) as powers of10. It is natural to choose as elementary
constituent a nucleon, because the system is ruled by gravi-
tation, which in turn is determined by the mass distribution;
and nucleons contain all the significant (observed) mass. Our
minimum size is then the radius of a nucleon as measured by
α-particles scattering:R0 ≡ λ = 10−13cm. It is also known
thatR, the observed radius of the universe, isR = 1026cm
[4]. Thenγ = 10−39. The map (10), with̃α = 1/2, becomes
asquare-root map, while if we usesn = Rn/R we obtain for
the radii ageometric-mean map:

Rn+1 = (Rn R)
1

2 . (12)

Now, exploiting Eq. (11) withγ = 10−39 and α̃ = 1/2,
or, equivalently, Eq. (12), we obtain the rapidly convergent
sequence in the first column of TABLE II.

These length scales represent, in order of magnitude, just
the main six observed astrophysical length scales [4] (the pres-
ence of two aggregates both for radiusR1 and for radiusR2

is discussed later). Therefore, we have obtained a first im-
portant result: we can fit the intermediate astrophysical length
scales by choosing a specific value ofα̃, and by exploiting the
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RADIUS MASS AGGREGATE

106cm 1015g planetesimal

106cm 1034g neutron star

1016cm 1034g solar system

1016cm 1044g s.m. black hole

1021cm 1044g typical galaxy

1023cm 1049g cluster of galaxies

1025cm 1052g supercluster of galaxies

1026cm 1054g observed universe

TABLE II: List of astrophysical length scales and of the correspond-
ing mass scales, with the associated astrophysical aggregates

experimentally determined values of the two extremal length
scales.

However, as remarked previously, a scientific theory with
somepredictivepower should be able to determine, on the ba-
sis of few other assumptions, both the (apparently arbitrary)
choiceα̃ = 1/2, and the value of the maximum sizeR, by
the mere phenomenological knowledge of the minimum scale.
We now show that this is actually possible by resorting to
a suitable assumption naturally suggested by the physics of
the gravitational systems:We assume that the dimension of
the aggregate with radiusR1 (and massM) is given by the
Schwartzschild radius of a three-dimensional close packing
of elementary constituents (nucleons: radiusλ, massm), i.
e. by a ”collaps” restricted by the constraint that the escape
velocity is the maximum one: the velocityc of the light. This
hypothesis leads to the following two conditions:

M

R3
1

=
m

λ3
; G

M

R1
= c2, (13)

whereG is the gravitational constant. The second equation
is the Schwartzschild condition for the radius, while the first
one requires that the mass density per unit volume of the first
aggregate coincide with that of a nucleon (three-dimensional
close packing). By eliminating the massM , we obtain:

R1 = (λR)
1

2 , (14)

with R = (λc)2/Gm. Inserting the numerical values of
λ, c, g,m providesR = 1026cm, i. e. just the observed radius
of the universe. Thus, we see that our simple hypothesis leads
both to an independent determination of the maximum sizeR,
andto the value of̃α which coincides with our original choice
(Note in fact that Eq. (14) is Eq. (12) withn = 0). Here we
comment also that, by defining (in order of magnitude) the age
T of the observed universe byR = cT , from the expression
soon established forR we get:T = λ2c/Gm ≡ 1016s, i. e.
just the right order of magnitude.

Finally, we aim to determine, besides the length scales, also
the masses of the astrophysical aggregates. To this purpose,
we note that, if some other quantity of the system, sayMn,
is connected tozn by the ”allometric” relation:Mn = bzδn,
then the quantityqn

.
= Mn/M∞ satisfies the same map as

sn, and has the same form of solution with the replacement
γ → γ

′

= γδ:

qn = (γ
′

)(1−α̃)n ≡ γδ(1−α̃)n . (15)

Moreover, putting together the allometric relations at a generic
n and atn = 0, we obtain also the proportionality constantb
as:b = M0/z

δ
0.

In the case of the universe, we consider the sequence of
the massesMn, and the sequence of their radiiRn, and find
their ”allometric” relation by introducing another assumption
(of ”minimum fluctuation”), probably less intuitive with re-
spect to the first one, but reasonable if one considers that the
very complex character of the gravitational systems, and the
huge numbers of elementary constituents induce instabilities
and fluctuations:An aggregate can bind a test particle up to a
distance where the gravitational force generated by the aggre-
gate on a test particle reduces to a value comparable with the
background fluctuating force, whose magnitude is determined
by the elementary constituent. The claim gives, for eachn:

G
Mn

R2
n

= G
m

λ2
, (16)

i. e.:

Mn = bR2
n, (17)

whereb = m/λ2 = 100g/cm2. Then,δ = 2, and, being
α̃ = 1/2, we obtain the sequence:

Mn = γ2(2−n
−1)m, (18)

where, by denotingM (instead ofM∞) the asymptotic value
providing the total mass of the observed universe, we have
exploited: m/M = γ2. Then, once the sequence for the
radii is established, the allometric relation, and the knowl-
ege of the minimum massm, automatically provide the se-
quence of the intermediate mass scales until the maximum
one. Fromγ = 10−39 andm = 10−24 g, we obtain (in order
of magnitude) the sequence of the second column in TABLE
II, which represents just the sequence of the observed astro-
physical masses. In the last column of TABLE II we describe
the corresponding structures. Note also that the total massof
the observed universe corresponds to that ofγ−2 ≡ 1078 nu-
cleons, in perfect agreement with the central value obtained
from nucleosynthesis calculations [4].

We conclude this letter with the following observations and
remarks:

Being the macroscopic behavior of complex systems the re-
sult of the collective behavior of a huge number of elementary
constituents, it must be a mean effect deriving by a suitable
microscopic (stochastic) model. In fact, in ref. [3] it has been
recently proved that the Gompertz equation is amacroscopic
consequenceof the action of a microscopic, lognormally dis-
tributed diffusion process performed by the elementary con-
stituents of the system, because this equation holds for the
medianof the process, which then provides the evolution in
time of the macroscopic characteristic size.
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We remark that hypotheses and results on the astrophysi-
cal structures here discussed, and the hierarchical maps for
the sequence of astrophysical radii and masses are contained
in papers previously published by the authors in collaboration
with other researchers [5]. However, we as well remark that
in this letter we frame these results in a model based on dis-
crete maps deduced by the Gompertz model of growth. The
background stochastic origin of the Gompertz model [3], to-
gether with the derivation from physical hypothesis of the val-
ues ofα̃ and of the asymptotic lengthR, lead us to interpret
our scheme as a first important step towards the discovery
of the underlying process performed by the elementary con-
stituents, and responsible for the observed sequence of astro-
physical scales. Note, in fact, that it clearly emerges fromour
model the role of a geometrical progression, whose relevance
in the framework of natural phenomena and in a variety of ex-
perimental environments was highlighted already at the endof
nineteenth century by F. Galton [6] and by D. McAlister [7],
which showed that the geometrical mean (median) describes
the behavior of a large set of natural phenomena better than
the arithmetic one.

The discrete maps here introduced can provide a general
model that can be potentially exploited to search for the en-
lightenment of a large number of growth phenomena in many
fields of research. Namely searching for sequences of sig-
nificant scales associated to different systems, which possi-
bly develop these intermediate scales step by step in time, or
which organize themselves on all these scales simultaneously.
It is also of great interest to investigate the existence of natural

quantities whose evolution is characterized by oscillations, as
described by the maps with̃α > 1.

We remark that the apparent discrepancy between the first
relation in Eq. (13) and the relation (16) is solved by the fact
that to the same radiusRn can be associated the massMn and
alsothe massMn+1, where the massMn satisfies the relation
(16) (two-dimensional close packing), while the massMn+1

satisfies the relation (13) (three-dimensional close packing,
”critical” aggregate) [5]. For example, as is well known,
a neutron star (three dimensional close packing with mass
M2 = 1034g) has, in order of magnitude, the same radius
(R1 = 106m) of a planetesimal (two dimensional close pack-
ing with massM1 = 1015g). Similar considerations can be
extended by comparing a typical galaxy with a supermassive
black-hole at the center of the galaxy bulge, whose estimated
mass (until billions of solar masses, i. e.1042g) is in fact com-
parable with that of the whole galaxy [8]. This explains the
two structures associated to the first two radii in Table I. Sum-
ming up, our model allows twopossiblesequences, given by:
{Rn,Mn} (two-dimensional close-packed aggregates) and
{Rn,Mn+1} (three-dimensional close-packed, critical aggre-
gates), and this scheme is confirmed at least on scaleR1, and
on scaleR2.

A question which is worth to be deepened is the meaning of
the proportionality parameters in the linearized maps. Butthis
question is connected to the more general, and already raised,
question of the possible stochastic background underlyingthe
maps, and will be addressed in forthcoming papers.
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