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Abstract

In this paper R-matrices on a certain class of coupled Lie algebras are obtained.
With one of these R-matrices, we construct infinitely many bi-Hamiltonian struc-
tures for both the two-component BKP hierarchy and the Toda lattice hierarchy.
We also show that, when the above two hierarchies are reduced to their subhierar-
chies, these bi-Hamiltonian structures are reduced correspondingly.
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1 Introduction

The existence of Hamiltonian (or Poisson) structures reveals a very important property
of nonlinear evolutionary equations, see [9] and references therein. An efficient method
for introducing Hamiltonian structures of evolutionary equations written in the Lax
form is the so-called classical R-matrix formalism. The classical R-matrix formalism
was derived by Semenov-Tyan-Shanskii [22] to construct Poisson brackets on a Lie
algebra of an associative algebra on which the Lax equations are defined. This method
yields two compatible Poisson brackets, i.e., any linear combination of them is still
a Poisson bracket. Consequently one obtains a bi-Hamiltonian structure of the Lax
equation by performing a Dirac reduction [19] if needed. Such a formalism was first
established for anti-symmetric R-matrices satisfying the modified Yang-Baxter equation
[22]. As later developed by Li and Parmentier [17], also by Oevel and Ragnisco [20], the
R-matrix formalism becomes available for a wider class of R-matrices. Moreover, this
formalism can produce three compatible Poisson brackets on an associative algebra.

In this paper we study R-matrices on a “coupled” Lie algebra g = G− × G+, where
G± are appropriately defined Lie algebras (see Section 3 below). Our goal is to apply
the R-matrix formalism to construct Hamiltonian structures of Lax equations defined
on the Lie algebra g. Here we consider two typical examples of such Lax equations:
the two-component BKP hierarchy [6, 18] and the Toda lattice hierarchy [25].

The two-component BKP hierarchy, which is the popular abbreviation of the two-
component Kadomtsev-Petviashvili (KP) hierarchy of type B, was proposed by the
Kyoto school as a bilinear equation [6]. This hierarchy was recently represented into a
Lax form in [18] (cf. [23]) with two types of pseudo-differential operators. The sets D±
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of these two types of operators compose a coupled Lie algebra D− ×D+ of the form g.
By using an R-matrix on g introduced by Carlet [2], a bi-Hamiltonian structure of the
two-component BKP hierarchy was derived in [26]. The two-component BKP hierarchy
was also shown in [18] to be the universal hierarchy of Drinfeld-Sokolov hierarchies
associated to untwisted affine Kac-Moody algebra of type D with the zeroth vertex c0 of
its Dynkin diagram marked [10]. Such Drinfeld-Sokolov hierarchies are bi-Hamiltonian
systems. However, it seems that the bi-Hamiltonian structure given in [26] has no
corresponding reduction when the two-component BKP hierarchy is reduced to the
Drinfeld-Sokolov hierarchies of type D. With the help of an R-matrix on g introduced
below, we will see that the two-component BKP hierarchy in fact carries a series of
bi-Hamiltonian structures. Moreover, each of these bi-Hamiltonian structures can be
reduced to the bi-Hamiltonian structure of a corresponding Drinfeld-Sokolov hierarchy
of type D. Such a relation is analogous to the reduction from the KP hierarchy to
Gelfand-Dickey hierarchies [9].

As another example, the Toda lattice hierarchy [25] also has a Lax representation
defined on a coupled Lie algebra of the form g. This hierarchy is known to be equipped
with three compatible Hamiltonian structures found by Carlet [2], but the reduction
property of its Hamiltonian structures has not been considered before. We will show
below that the Toda lattice hierarchy possesses infinitely many bi-Hamiltonian struc-
tures, and, under suitable constraint such bi-Hamiltonian structures are reduced to
those of the extended bigraded Toda hierarchies [3, 5].

Our motivation is also from the study of Frobenius manifold. The concept of Frobe-
nius manifold was introduced by Dubrovin to give a geometrical description of WDVV
equations in topological field theory [11]. In the finite-dimensional case, Frobenius
manifolds link integrable hierarchies with relevant research branches via the fact that
with an arbitrary Frobenius manifold there is an associated bi-Hamiltonian structure of
hydrodynamic type [11, 15]. In 2009, by considering the Hamiltonian structures of the
Toda lattice hierarchy, Carlet, Dubrovin and Mertens [4] proposed the first example of
infinite-dimensional Frobenius manifold. To find more infinite-dimensional Frobenius
manifolds as well to consider their relation with Frobenius manifolds of finitely dimen-
sions, it is natural to study the Hamiltonian structures of hierarchies like the Toda
lattice hierarchy and clarify their reductions.

This paper is arranged as follows. In next section we state some facts on classi-
cal R-matrices, including the R-matrix formalism for deriving Poisson brackets and
how R-matrices are acted by the so-called intertwining operators (see below for the
definition). In Section 3 we find out all certain linear R-matrices on the Lie algebra
g = G− × G+, and classify them according to the action of intertwining involutions.
With a selected R-matrix on g, we apply the R-matrix formalism to the examples of
the two-component BKP hierarchy and the Toda lattice hierarchy in Section 4 and Sec-
tion 5 respectively. We will construct Hamiltonian structures of these two hierarchies
and study their reduction property. The final section is devoted to the summary and
outlook.
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2 Classical R-matrices

Let us recall briefly the R-matrix formalism developed in [22, 17, 20] and lay out some
relevant facts.

2.1 The R-matrix formalism

Let g be a complex Lie algebra. A linear transformation R : g → g is called an R-matrix
if it defines a Lie bracket as

[X,Y ]R = [R(X), Y ] + [X,R(Y )], X, Y ∈ g. (2.1)

A sufficient condition for a linear transformation R being an R-matrix is that it solves
the following modified Yang-Baxter equation

[R(X), R(Y )]−R([X,Y ]R) = −[X,Y ] (2.2)

for any X, Y ∈ g.

Remark 2.1 Generally the right hand side of (2.2) is written as α [X,Y ] with some
constant α. Note that the case α 6= 0 is equivalent to α = −1 by scaling R, and this is
the special case we consider here.

Assume g is an associative algebra, whose Lie bracket is defined naturally by the
commutator, and there is a function 〈 〉 : g → C that gives a non-degenerate symmetric
invariant bilinear form (inner product) 〈 , 〉 by

〈X,Y 〉 = 〈XY 〉 = 〈Y X〉, X, Y ∈ g.

Via this inner product g can be identified with its dual space g∗. Let Tg and T ∗g

denote the tangent and the cotangent bundles of g respectively, and their fibers have
the form TAg = g and T ∗

Ag = g∗ at any point A ∈ g.

Given an R-matrix R on g, there define three brackets:

{f, g}1(A) =
1

2

(

〈[A,df ], R(dg)〉 − 〈[A,dg], R(df)〉
)

, (2.3)

{f, g}2(A) =
1

4

(

〈[A,df ], R(A · dg + dg · A)〉 − 〈[A,dg], R(A · df + df ·A)〉
)

, (2.4)

{f, g}3(A) =
1

2

(

〈[A,df ], R(A · dg · A)〉 − 〈[A,dg], R(A · df · A)〉
)

, (2.5)

where f, g ∈ C∞(g) have gradients df,dg ∈ T ∗
Ag at A ∈ g. The brackets (2.3)–(2.5)

are called respectively the linear, the quadratic and the cubic brackets according to
[17, 20].

Let R∗ be the adjoint transformation of R with respect to the above inner product.
Then the anti-symmetric part of R is Ra = 1

2(R − R∗). The R-matrix formalism on
the algebra g is as follows.

Theorem 2.2 ([17, 20]) (1) For any R-matrix R the linear bracket is a Poisson
bracket.
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(2) If both R and its anti-symmetric part Ra solve the modified Yang-Baxter equation
(2.2), then the quadratic bracket is a Poisson bracket.

(3) If R satisfies the modified Yang-Baxter equation (2.2) then the cubic bracket is a
Poisson bracket.

Moreover, these three Poisson brackets are compatible whenever all the above con-
ditions are fulfilled.

On a non-commutative algebra g the R-matrix formalism gives no more Poisson
brackets of order higher than 3; however, when g is a commutative associative alge-
bra, by using R-matrices one can have Poisson brackets with order being any positive
integers, see [16].

Theorem 2.3 ([16]) Let g be a Lie algebra of a commutative associative algebra with
Lie bracket [·, ·] satisfying [X,Y Z] = [X,Y ]Z + Y [X,Z] for all X,Y,Z ∈ g. Assume
g is equipped with an ad-invariant inner product 〈·, ·〉 that is symmetric with respect to
the multiplication, i.e., 〈X Y,Z〉 = 〈X,Y Z〉 for all X,Y,Z ∈ g. If R ∈ End(g) is an
R-matrix, then on g there exist compatible Poisson brackets defined as follows:

{f, g}r(A) =
1

2

(

〈[A,df ], R(Ar−1dg)〉 − 〈[A,dg], R(Ar−1df)〉
)

(2.6)

with f, g ∈ C∞(g) and all positive integers r.

2.2 R-matrices and intertwining operators

A linear operator σ : g → g is called intertwining if it satisfies

σ[X,Y ] = [σX, Y ] = [X,σY ], X, Y ∈ g. (2.7)

Proposition 2.4 ([21]) If R is an R-matrix and σ is an intertwining operator, then
R ◦ σ is also an R-matrix.

Note that intertwining operators form a linear family. Hence the R-matrices R ◦ σ,
with R fixed and σ being intertwining operators, induce compatible Poisson brackets.

Definition 2.5 A linear operator σ : g → g is called an intertwining involution if it
satisfies (2.7) and σ ◦ σ = id.

Proposition 2.6 Let R be a solution of the modified Yang-Baxter equation (2.2) and
σ be an intertwining involution, then R ◦ σ solves equation (2.2).

Proof. This proposition follows from a simple calculation:

[R ◦ σX,R ◦ σY ]−R ◦ σ([R ◦ σX, Y ] + [X,R ◦ σY ])

=[R ◦ σX,R ◦ σY ]−R([R ◦ σX, σY ] + [σX,R ◦ σY ])

=− [σX, σY ] = −σ ◦ σ[X,Y ] = −[X,Y ].

�
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3 R-matrices on a coupled Lie algebra

Let G be a complex linear space with two subspaces G− and G+. Assume that on each
G± there is a Lie bracket, and these two brackets coincide on G− ∩ G+. Moreover, we
assume G± admit the following decompositions of Lie subalgebras:

G− = (G−)− ⊕ (G−)+, G+ = (G+)− ⊕ (G+)+ (3.1)

such that (G−)+ ⊂ (G+)+ and (G+)− ⊂ (G−)−. We consider the following coupled Lie
algebra

g = G− × G+ (3.2)

whose Lie bracket is defined diagonally by the brackets on G± as

[(X, X̂), (Y, Ŷ )] = ([X,Y ], [X̂, Ŷ ]), (X, X̂), (Y, Ŷ ) ∈ g.

Introduce a linear transformation

R : g → g, (X, X̂) 7→ (aX+ + bX− + c X̂−, d X̂+ + e X̂− + f X+) (3.3)

with a, b, c, d, e, f ∈ C. Here we use the subscripts ± to denote the projections onto
the Lie subalgebras (G−)± or (G+)± respectively. We substitute (3.3) into the modified
Yang-Baxter equation

[R(X), R(Y)] −R([X,Y]R) = −[X,Y], X = (X, X̂),Y = (Y, Ŷ ) ∈ g. (3.4)

The left hand side is expanded to

l.h.s.

= −(a2[X+, Y+] + a2[X+, Y−] + a2[X−, Y+] + b2[X−, Y−]

− (a2 − b2)([X+, Y−]− + [X−, Y+]−) + c(−a+ b+ f)([X+, Ŷ−]− + [X̂−, Y+]−)

− c(d+ e)[X̂, Ŷ ]− + c(e − d− c)[X̂−, Ŷ−],

d2[X̂+, Ŷ+] + d2[X̂+, Ŷ−] + d2[X̂−, Ŷ+] + e2[X̂−, Ŷ−]

− (d2 − e2)([X̂+, Ŷ−]− + [X̂−, Ŷ+]−) + f(d− e+ c)([X+, Ŷ−]+ + [X̂−, Y+]+)

+ f(a+ b)[X,Y ]+ + f(a− b− f)[X+, Y+]).

By comparing the coefficients in equation (3.4) we have

a2 = b2 = d2 = e2 = 1, (3.5)

c(−a+ b+ f) = 0, c(e− d− c) = 0, c(d+ e) = 0, (3.6)

f(a− b− f) = 0, f(d− e+ c) = 0, f(a+ b) = 0. (3.7)

These equations are easily solved, which leads to the the following result.

Proposition 3.1 The transformation R in (3.3) solves the modified Yang-Baxter equa-
tion (3.4) if and only if (a, b, c, d, e, f) is one of the following:

± (1,−1,−2, 1,−1, 2), ±(1,−1, 2,−1, 1, 2), (3.8)

± (1,−1, 0, 1, 1, 2), ±(1,−1, 0,−1,−1, 2), (3.9)

± (1, 1,−2, 1,−1, 0), ±(1, 1, 2,−1, 1, 0), (3.10)

(±1,±1, 0,±1,±1, 0). (3.11)
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On g there exist two intertwining involutions σ1 and σ2 defined by

σ1(X, X̂) = (−X, X̂), σ2(X, X̂) = (X,−X̂). (3.12)

They generate a group G = {id, σ1, σ2, σ1 ◦ σ2} of intertwining involutions. Up to the
action ofG (see Proposition 2.6), the solutions in each line of (3.8)-(3.10) are equivalent,
while the solutions in line (3.11) are divided to four equivalence classes.

Among the R-matrices given in Proposition 3.1, we are particularly interested in
the first one:

R(X, X̂) = (X+ −X− − 2X̂−, X̂+ − X̂− + 2X+). (3.13)

Below we will fix R as in (3.13), and use it to construct Hamiltonian structures for
integrable hierarchies whose Lax representation is defined on a coupled Lie algebra of
the form (3.2).

Example 3.2 The R-matrix corresponding to the solution (1,−1, 2,−1, 1, 2) in (3.8),
denoted by R̃, was first introduced by Carlet [2] on a coupled Lie algebra of difference
operators (see Section 5 below). This R-matrix was used in [2, 26] to construct Hamil-
tonian structures for the Toda lattice hierarchy and the two-component BKP hierarchy
respectively. It is easy to see that R̃ = R ◦ σ2, where R is given in (3.13).

Example 3.3 Every solution in line (3.11) splits into R-matrices on G− and G+.

Remark 3.4 When G− = G+, an R-matrix of the form (3.13) was used in [1] to show
the Liouville integrability of the Toda lattice defined on semi-simple Lie algebras. In
this case, G− × G− is called the classical double of the Lie algebra G−, on which the
“Adler-Kostant-Symes” R-matrices and the corresponding commutative hamiltonian
flows were studied recently in [13]. It seems interesting to consider the action of inter-
twining involutions to such R-matrices.

4 Hamiltonian structures of the two-component BKP hi-

erarchy

In this section we employ the R-matrix (3.13) to construct Hamiltonian structures
for the two-component BKP hierarchy, then consider the reduction property of these
Hamiltonian structures.

4.1 Notations and Lax representation

We review some notations in [18, 26] first. Let A be a commutative algebra over C,
and D : A → A a derivation. Assume A is equipped with a gradation A =

∏

i≥0 Ai

such that Ai · Aj ⊂ Ai+j and D(Ai) ⊂ Ai+1. Denote D =
{
∑

i∈Z fiD
i | fi ∈ A

}

and
consider its subspaces

D− =

{

∑

i<∞

fiD
i | fi ∈ A

}

, D+ =







∑

i∈Z

∑

j≥max{0,m−i}

ai,jD
i | ai,j ∈ Aj,m ∈ Z







.

(4.1)
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Then D− and D+ are called the algebras of pseudo-differential operators of the first
type and second type respectively, in which two elements are multiplied as series of the
following product of monomials:

fDi · gDj =
∑

r≥0

(

i

r

)

f Dr(g)Di+j−r, f, g ∈ A.

Given a pseudo-differential operator A =
∑

i∈Z fiD
i ∈ D±, its positive part, nega-

tive part, residue and adjoint operator are respectively

A+ =
∑

i≥0

fiD
i, A− =

∑

i<0

fiD
i, (4.2)

resA = f−1, A∗ =
∑

i∈Z

(−D)i · fi. (4.3)

The projections given in (4.2) induce the following subalgebra decompositions

D± = (D±)+ ⊕ (D±)−. (4.4)

Clearly (D−)+ ⊂ (D+)+ and (D+)− ⊂ (D−)−.

Now suppose A is the algebra of smooth functions on the circle S1, and D = d/dx
with x being the coordinate of S1. Introduce two pseudo-differential operators over A:

P = D +
∑

i≥1

uiD
−i, P̂ = D−1û−1 +

∑

i≥1

ûiD
i (4.5)

such that P ∗ = −DPD−1 and P̂ ∗ = −DP̂D−1. Then the two-component BKP hierar-
chy can be defined by the following Lax equations [18]:

∂P

∂tk
= [(P k)+, P ],

∂P̂

∂tk
= [(P k)+, P̂ ], (4.6)

∂P

∂t̂k
= [−(P̂ k)−, P ],

∂P̂

∂t̂k
= [−(P̂ k)−, P̂ ] (4.7)

with k ∈ Z
odd
+ .

To study Hamiltonian structures of this hierarchy, we need more notations. An
element of the quotient space F = A/D(A) is called a local functional. The map

〈 〉 : D → F , A 7→ 〈A〉 =
∫

resAdx (4.8)

induces an inner product on each of D± by

〈A,B〉 = 〈AB〉 = 〈BA〉. (4.9)

With respect to this inner product, the dual space of any subspace S ⊂ D± is denoted
by S∗. For example, one has

(D±)∗ = D±,
(

(D±)±
)∗

= (D±)∓. (4.10)
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The spaces D± can also be decomposed as

D± = D±
0 ⊕D±

1 , D±
ν =

{

A ∈ D± | A∗ = (−1)νA
}

. (4.11)

One sees that the dual subspaces of D±
ν are (D±

ν )
∗ = D±

1−ν . Every element of D±
ν can

be expressed in the form

∑

i∈Z

(

aiD
2i+ν +D2i+νai

)

, ai ∈ A,

hence for any l ∈ Z we have the following subspace decompositions:

D±
ν = (D±

ν )≥l ⊕ (D±
ν )<l, ν = 0, 1, (4.12)

where

(D±
ν )≥l =







∑

2i+ν≥l

(

aiD
2i+ν +D2i+νai

)

∈ D± | ai ∈ A







,

(D±
ν )<l =

{

∑

2i+ν<l

(

ai D
2i+ν +D2i+νai

)

∈ D± | ai ∈ A
}

.

4.2 bi-Hamiltonian representations

Let us represent the two-component BKP hierarchy (4.6), (4.7) in a bi-Hamiltonian
form. The procedure is almost the same with that in [26], where only one bi-Hamiltonian
structure was obtained with the help of the R-matrix R̃ (see Example 3.2). Now we use
the R-matrix (3.13) instead, and will derive infinitely many bi-Hamiltonian structures.

Take g in (3.2) to be the coupled Lie algebra

D = D− ×D+, (4.13)

where D− and D+ are the sets of pseudo-differential operators of the first type and the
second type over the differential algebra A. Recall (4.8) and (4.9), on D there exits an
inner product define as

〈(X, X̂), (Y, Ŷ )〉 = 〈(X, X̂)(Y, Ŷ )〉 = 〈X,Y 〉+ 〈X̂, Ŷ 〉, (X, X̂), (Y, Ŷ ) ∈ D. (4.14)

On the algebra D we have the R-matrix (3.13), in which the subscripts ± mean
the projections onto (D−)± or (D+)±. It is easy to see that R is anti-symmetric, i.e.,
R∗ = −R, with respect to the inner product (4.14). Hence its anti-symmetric part
Ra = R clearly satisfies the modified Yang-Baxter equation (2.2).

To state the result we need a bit more preparation. Generally every element in D

has the following expression

A =

(

∑

i∈Z

wiD
i,
∑

i∈Z

ŵiD
i

)

∈ D. (4.15)
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With the coefficients being a coordinate, D can be viewed as an infinite-dimensional
manifold. For any local functional F =

∫

f dx on this manifold, its variational gradient
δF/δA at A is defined by δF = 〈δF/δA, δA〉. More explicitly,

δF

δA
=

(

∑

i∈Z

D−i−1 δF

δwi
,
∑

i∈Z

D−i−1 δF

δŵi

)

,

where δF/δw =
∑

j≥0(−D)j
(

∂f/∂w(j)
)

. It shall be indicated that in this section we
only consider functionals with their gradients lying in D.

By using the second part of Theorem 2.2 we have the following result.

Lemma 4.1 Let F and H be two arbitrary functionals. On the algebra D there is a
quadratic Poisson bracket

{F,H}(A) =

〈

δF

δA
,PA

(

δH

δA

)〉

, A = (A, Â) ∈ D, (4.16)

where the Poisson tensor P : TD∗ → TD is defined by

P(A,Â)(X, X̂) =
(

− (AX + ÂX̂)−A+A(XA+ X̂Â)−,

(AX + ÂX̂)+Â− Â(XA+ X̂Â)+
)

. (4.17)

We proceed to reduce the Poisson bracket (4.16) to an appropriate submanifold of
D where the flows of the two-component BKP hierarchy are defined.

First, according to the decompositions (4.11), one can decompose the space D as

D = D0 ⊕D1, Dν = D−
ν ×D+

ν for ν = 0, 1. (4.18)

The subspaces D0 and D1 are dual to each other, hence at any point A ∈ Dν one has
T ∗
A
Dν = (Dν)

∗ = D1−ν . It is easy to check the following lemma.

Lemma 4.2 The subspaces D0 and D1 are Poisson submanifolds of D with respect to
the Poisson structure (4.16).

Second, given an arbitrary positive integer m, we let

A = (A, Â) = (DP 2m,DP̂ 2) (4.19)

with P and P̂ introduced in (4.5). One sees that

A = DP 2m = D2m+1 +
∑

i≤m

(viD
2i−1 + fiD

2i−2),

Â = DP̂ 2 = ρD−1ρ+
∑

i≥1

(v̂iD
2i−1 + f̂iD

2i−2), ρ = û−1.

Denote v̂0 = ρ2 and v = (vm, vm−1, . . . , v̂0, v̂1, . . . ). Observe that the coordinate v is re-
lated to u = (u1, u3, . . . , û−1, û1, û3, . . . ) given in (4.5) via a Miura-type transformation,
and that the coefficients f−i and f̂i are linear functions of derivatives of v determined
by the symmetry (A∗, Â∗) = −(A, Â).
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Operators of the form (4.19) compose a coset (D2m+1, 0) + Um, where

Um = (D−
1 )<2m ×

(

(D+
1 )≥0 ×M

)

, M = {ρD−1ρ | ρ ∈ A}, (4.20)

recalling (4.12). Here M is considered as a 1-dimensional manifold with coordinate ρ
and its tangent spaces

TρM = {ρD−1f + fD−1ρ | f ∈ A}. (4.21)

Then the tangent bundle of the coset (D2m+1, 0) + Um, denoted by TUm, has fibers

TAUm = (D−
1 )<2m ×

(

(D+
1 )≥0 ⊕ TρM

)

. (4.22)

Their dual spaces

T ∗
AUm = (D−

0 )≥−2m ×
(

(D+
0 )<−1 ⊕ T ∗

ρM
)

, T ∗
ρM = A (4.23)

compose the cotangent bundle T ∗Um of (D2m+1, 0) + Um. One sees that a functional
F on the coset (D2m+1, 0) + Um has variational gradient in T ∗

A
Um as

δF

δA
=

1

2





∑

i≤m

(

δF

δvi
D−2i +D−2i δF

δvi

)

,
∑

i≥0

(

δF

δv̂i
D−2i +D−2i δF

δv̂i

)



 .

Lemma 4.3 The map P : T ∗Um → TUm defined by the formula (4.17) is a Poisson
tensor on the coset (D2m+1, 0) + Um that consists of operators of the form (4.19).

Proof. One can show that the Poisson tensor P on D1 can be properly restricted to
the coset (D2m+1, 0) + Um, see the proof of Lemma 5.1 in [26] for details. Or, perform
a Dirac reduction from D1 to the coset (D2m+1, 0) + Um. That is, decompose

D1 = TAUm ⊕ VA, D∗
1 = D0 = T ∗

AUm ⊕ V∗
A,

where

VA = (D−
1 )≥2m+1 × ((D+

1 )<0/TρM),

V∗
A = (D−

0 )<−2m−1 × (T ∗
ρ )

⊥M, (T ∗
ρ )

⊥M = {Ŷ ∈ (D+
0 )+ | Ŷ (ρ) = 0},

and then check that the map

PA =





PUU
A

PUV
A

PVU
A

PVV
A



 : T ∗
AUm ⊕ V∗

A → TAUm ⊕ VA

defined in (4.17) is diagonal. The lemma is proved. �

Introduce a shift transformation on the coset (D2m+1, 0) + Um as

S : (A, Â) 7→ (A+ sD, Â+ sD), (4.24)

where s is a parameter. The push-forward of the Poisson tensor P in Lemma 4.3 has
the form S∗P = P2 − sP1 + s2 P0. It is straightforward to show P0 = 0, hence we
derive the following lemma.
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Lemma 4.4 On the coset (D2m+1, 0) +Um there exist two compatible Poisson tensors
defined as:

P1(X, X̂) =
(

− (DX +DX̂)−A− (AX + ÂX̂)−D

+A(XD + X̂D)− +D(XA+ X̂Â)−,

(DX +DX̂)+Â+ (AX + ÂX̂)+D

− Â(XD + X̂D)+ −D(XA+ X̂Â)+
)

, (4.25)

P2(X, X̂) =
(

− (AX + ÂX̂)−A+A(XA + X̂Â)−,

(AX + ÂX̂)+Â− Â(XA+ X̂Â)+
)

(4.26)

with (X, X̂) ∈ T ∗
A
Um at any point A = (A, Â) ∈ (D2m+1, 0) + Um.

Let {·, ·}m1,2 denote the Poisson brackets on (D2m+1, 0) + Um given by the Poisson
tensors P1,2 respectively. With the same method as used in the proof of Theorem 5.4
in [26], we arrive at the following result.

Theorem 4.5 For any positive integer m, the two-component BKP hierarchy (4.6),
(4.7) can be expressed in a bi-Hamiltonian recursion form as follows:

∂F

∂tk
= {F,Hk+2m}m1 = {F,Hk}m2 ,

∂F

∂t̂k
= {F, Ĥk+2}m1 = {F, Ĥk}m2 (4.27)

with k ∈ Z
odd
+ and Hamiltonians

Hk =
2m

k
〈P k〉, Ĥk =

2

k
〈P̂ k〉. (4.28)

Thus by using the R-matrix (3.13) we obtain a series of bi-Hamiltonian structures
for the two-component BKP hierarchy. They are different from the bi-Hamiltonian
structure given in [26].

Remark 4.6 Observe that the densities of Hamiltonian in (4.28) (cf. Hk = 2
k
〈P k〉

and Ĥk = − 2
k
〈P̂ k〉 in (5.19) of [26]) satisfy the so-called tau-symmetry condition [15],

hence they define a tau function. This tau function satisfies the bilinear equation of
the two-component BKP hierarchy in [6], see also [18].

4.3 Reductions of the bi-Hamiltonian structures

We now study the reductions of the bi-Hamiltonian structures in Theorem 4.5.

First, suppose the pseudo-differential operator A = (A, Â) in (4.19) satisfies

A = Â, i.e., P 2m = P̂ 2. (4.29)

It was shown in [18] that this constraint reduces the two-component BKP hierarchy

(4.6), (4.7) to the Drinfeld-Sokolov hierarchy associated to the affine Lie algebra D
(1)
m+1

with the zeroth vertex c0 of its Dynkin diagram marked [10].
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Operators L = A = Â form a coset contained in D−∩D+; on this coset we let FX(L)
denote the functional that has gradient X with respect to L. Suppose δFX(L)/δA =
(W, Ŵ ) whenever FX(L) is viewed as a functional on the coset (D2m+1, 0) + Um, then
we have X = (W + Ŵ )|

A=Â=L
. Thus the Poisson brackets in Theorem 4.5 under the

constraint (4.29) are as follows (the superscripts m omitted):

{FX(L), FY (L)}1
=
〈

(LX)− (DY )+ + (DX)− (LY )+ − (XL)− (Y D)+ − (XD)− (Y L)+
〉

, (4.30)

{FX(L), FY (L)}2 =
〈

(LX)− (LY )+ − (XL)− (Y L)+
〉

. (4.31)

They are just the bi-Hamiltonian structure of the Drinfeld-Sokolov hierarchy of type

(D
(1)
m+1, c0) given in Proposition 8.3 of [10], with Hamiltonians Hk and Ĥk in (4.28),

see also [18]. Thanks to the facts (DY )± = DY± and res [L, Y ] = 0, the first bracket
(4.30) can be rewritten to

{FX (L), FY (L)}1 =
〈

X,DY+L− LY+D −D(Y L)+ + (LY )+D
〉

=
〈

X,DY+L− LY+D − (DY L)+ + (LY D)+ − res [L, Y ]
〉

=
〈

L(X+DY+ − Y+DX+ + Y−DX− −X−DY−)
〉

,

which is just the formula (7.0) in [12].

Second, when P̂ = 0, the hierarchy (4.6), (4.7) becomes the BKP hierarchy [8].
In this case, the formulae (4.48) are reduced to bi-Hamiltonian representations for the
BKP hierarchy given by the following Poisson brackets:

{FX(A), FY (A)}m1 =
〈

X (−DY−A− (AY )−D +AY−D +D(Y A)−)
〉

, (4.32)

{FX(A), FY (A)}m2 =
〈

− (AX)+(AY )− + (XA)+(Y A)−
〉

, (4.33)

where A = DP 2m.

Furthermore, by setting A− = (DP 2m)− = 0 to the BKP hierarchy, what one

has is the Drinfeld-Sokolov hierarchy of type (B
(1)
m , c0) (see [10]). Distinctively we

denote L = DP 2m = (DP 2m)+. Then the bi-Hamiltonian structure of Drinfeld-Sokolov

hierarchy of type (B
(1)
m , c0) is reduced from (4.32), (4.33) to

{FX (L), FY (L)}1 =
〈

L(Y DX −XDY )
〉

, (4.34)

{FX (L), FY (L)}2 =
〈

(LX)−(LY )+ − (XL)−(Y L)+
〉

. (4.35)

4.4 More Hamiltonian structures and their reductions

The R-matrix (3.13) produces even more Hamiltonian structures for the two-component
BKP hierarchy.

For any positive integer m, we replace (4.19) by A = (DP 2m−1,DP̂ ). All such
operators form a coset (D2m, 0) + Vm, where

Vm = (D−
0 )<2m × (D+

0 )≥0.

With the same method as in §4.2, one can restrict the Poisson bracket (4.16) properly
to the coset (D2m, 0) + Vm. Denote the restricted bracket by { , }m, then we have the
following proposition.
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Proposition 4.7 For any positive integer m, the two-component BKP hierarchy (4.6),
(4.7) has the following Hamiltonian representation:

∂F

∂tk
= {F,Hk}m,

∂F

∂t̂k
= {F, Ĥk}m, k ∈ Z

odd
+ , (4.36)

where Hk =
2m− 1

k
〈P k〉 and Ĥk =

1

k
〈P̂ k〉.

When the two-component BKP hierarchy (4.6), (4.7) is constrained by

L = DP 2m−1 = DP̂ , (4.37)

it becomes the Drinfeld-Sokolov hierarchy of type (A
(2)
2m−1, c0) (see [10]), which possesses

a Hamiltonian structure reduced from (4.36) as:

{FX(L), FY (L)} =
〈

(LX)−(LY )+ − (XL)−(Y L)+
〉

. (4.38)

Example 4.8 In the particular case of m = 1 so that L = D + D−1ρ, we have the
reduced hierarchy

∂L

∂tk
= [(Lk)+, L], k ∈ Z

odd
+ . (4.39)

The bracket (4.38) can be rewritten as

{ρ(x), ρ(y)} =
1

2
ρ(x) δ′(x− y) + ρ′(x) δ(x − y)− 1

2
δ′′′(x− y).

Considering together the Hamiltonians Hk =
1

k
〈Lk〉, one sees that (4.39) is just the

Korteweg-de Vries hierarchy, see e.g. [9].

4.5 Dispersionless case

Let us consider Hamiltonian structures of the dispersionless two-component BKP hier-
archy.

Consider two algebras H− = A((z−1)) and H+ = A((z)) of Laurent series in z ∈ S1.
On each H± there exist a Lie bracket

[a, b] =
∂a

∂z

∂b

∂x
− ∂b

∂z

∂a

∂x
, (4.40)

and an ad-invariant inner product

〈a, b〉 = 〈a b〉, 〈a〉 = 1

2π
√
−1

∮

S1

∮

S1

a(z) dz dx. (4.41)

Let
p(z) = z +

∑

i≤0

ui z
2i−1 ∈ H−, p̂(z) =

∑

i≥0

ûi z
2i−1 ∈ H+, (4.42)
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then the dispersionless two-component BKP hierarchy is defined as

∂α(z)

∂tk
= [(p(z)k)+, α(z)],

∂α(z)

∂t̂k
= [−(p̂(z)k)−, α(z)], k ∈ Z

odd
+ , (4.43)

where α(z) ∈ {p(z), p̂(z)}. Here we use the subscripts ± to stand for the projections
of a series in H± to its nonnegative and negative part respectively. Recall that the
hierarchy (4.43) was first written down by Takasaki [24] as the hierarchy underlying
the D-type topological Landau-Ginzburg models.

Introduce the coupled Lie algebra H = H− ×H+, which is equipped with an inner
product

〈(a, â), (b, b̂)〉 = 〈a, b〉+ 〈â, b̂〉, (a, â), (b, b̂) ∈ H.

Define on H an R-matrix R as given in (3.13). Now we apply Theorem 2.3 with
r = 2 to construct bi-Hamiltonian structures for the dispersionless two-component
BKP hierarchy.

Given any positive integers m and n, let

a(z) = (a(z), â(z)) = (z p(z)2m, z p̂(z)2n). (4.44)

All such series form a coset (z2m+1, 0) + Um,n, where

Um,n =











∑

i≤m

vi z
2i−1,

∑

i≥1−n

v̂i z
2i−1



 ∈ H− ×H+







. (4.45)

In the same way as for the dispersive case, on the coset (z2m+1, 0) + Um,n there exist
two compatible Poisson brackets {·, ·}m,n

ν (ν = 1, 2) given by the following tensors:

P1(X(z), X̂(z))

=
(

− z([a(z),X(z)]− + [â(z), X̂(z)]−)− a(z)(∂xX(z) + ∂xX̂(z))−

+ [a(z), z(X(z) + X̂(z))−] + ∂x(X(z)a(z) + X̂(z)â(z))−,

z([a(z),X(z)]+ + [â(z), X̂(z)]+) + â(z)(∂xX(z) + ∂xX̂(z))+

− [â(z), z(X(z) + X̂(z))+]− ∂x(X(z)a(z) + X̂(z)â(z))+
)

, (4.46)

P2(X(z), X̂(z))

=
(

− a(z)([a(z),X(z)]− + [â(z), X̂(z)]−) + [a(z), (X(z)a(z) + X̂(z)â(z))−],

â(z)([a(z),X(z)]+ + [â(z), X̂(z)]+)− [â(z), (X(z)a(z) + X̂(z)â(z))+]
)

. (4.47)

where (X(z), X̂(z)) ∈ T ∗
aUm,n (equal to the dual space of Um,n). Thus we have

Proposition 4.9 For any positive integers m and n, the dispersionless two-component
BKP hierarchy (4.43) can be expressed as

∂F

∂tk
= {F,Hk+2m}m,n

1 = {F,Hk}m,n
2 ,

∂F

∂t̂k
= {F, Ĥk+2n}m,n

1 = {F, Ĥk}m,n
2 (4.48)

with k ∈ Z
odd
+ and

Hk =
2m

k
〈p(z)k〉, Ĥk =

2n

k
〈p̂(z)k〉.
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If the dispersionless two-component BKP hierarchy (4.43) is constrained by

p(z)2m = p̂(z)2n = l(z)

with l(z) = z2m +
∑m

i=1−n vi z
2i−2, then we have the following integrable hierarchy

∂l(z)

∂tk
= [(p(z)k)+, l(z)],

∂l(z)

∂t̂k
= [−(p̂(z)k)−, l(z)], k ∈ Z

odd
+ . (4.49)

This dispersionless hierarchy possesses a bi-Hamiltonian structure reduced from (4.46),
(4.47) as:

{FX (l), FY (l)}1 = 〈X(z), [l(z), Y (z)]+ − [l(z), Y (z)+]〉, (4.50)

{FX (l), FY (l)}2 = 〈X(z), l(z)[l(z), Y (z)]+ − [l(z), (l(z)Y (z))+]〉. (4.51)

Remark 4.10 The quantization of the dispersionless hierarchy (4.49) is the two-component
BKP hierarchy (4.6), (4.7) constrained by P 2m = P̂ 2n. This is called the (2m, 2n)-

reduction, which corresponds to the reduction of Lie algebras from go(2∞) to D
(1)
m+n

in the notation of [7]. In more details, due to the closedness of the 1-form

ω =
∑

k∈Zodd
+

(resP k dtk + res P̂ k dt̂k),

we introduce a tau function τ = τ(t, t̂) by

ω = d(2 ∂x log τ) with x = t1. (4.52)

With the same dressing method as in [18], one can show that the (2m, 2n)-reduction
of the two-component BKP hierarchy is equivalent to the following bilinear equation of
tau function:

reszz
2mj−1X(t; z)τ(t, t̂)X(t′;−z)τ(t′, t̂′)

=reszz
2nj−1X(t̂; z)τ(t, t̂)X(t̂′;−z)τ(t′, t̂′), j ≥ 0. (4.53)

Here X is a vertex operator given as

X(t; z) = exp







∑

k∈Zodd
+

tkz
k






exp






−
∑

k∈Zodd
+

2

kzk
∂

∂tk






,

and formally resz
∑

fiz
i = f−1. Note that the bilinear equation (4.53) with j = 0 is the

original form of the two-component BKP hierarchy [6], and the case j = 1 was written
down in [7] (see equation (2.25) there).

When n = 1, the bilinear equation (4.53) coincides with the Drinfeld-Sokolov hier-

archy of type (D
(1)
m+1, c0) (see [18]), whose bi-Hamiltonian structure (4.30), (4.31) can

be reduced from that of the two-component BKP hierarchy. When n > 1, however, up
to now we only obtain the bi-Hamiltonian structures (4.50), (4.51) for the dispersion-
less Lax equations. The difficulty to consider the dispersive case lies in the description
of the manifold consisting operators of the form (P̂ 2n)− with P̂ given in (4.5), which
obstructs a Dirac reduction needed.
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5 Hamiltonian structures of the Toda lattice hierarchy

In this section we apply the R-matrix (3.13) to the case of the Toda lattice hierarchy.

5.1 Lax representation

Let A be the set of discrete functions whose support is a finite subset of Z, and Λ be a
shift operator on A such that Λ(f(n)) = f(n+ 1). Denote E =

{
∑

i∈Z fi Λ
i | fi ∈ A

}

,
and for A =

∑

i∈Z fi Λ
i ∈ E one has

A≥k = A>k−1 =
∑

i≥k

fiΛ
i, A<k = A≤k+1 =

∑

i<k

fiΛ
i, (5.1)

ResA = f0, 〈A〉 =
∑

n∈Z

ResA(n) =
∑

n∈Z

f0(n). (5.2)

The space E contains the following two subspaces:

E− =

{

∑

i<∞

fi Λ
i | fi ∈ A

}

, E+ =

{

∑

i>−∞

fi Λ
i | fi ∈ A

}

. (5.3)

Define a product by f(m)Λi · g(n)Λj = f(m)g(n+ i)Λi+j , then E± become associative
algebras. Hence they are Lie algebras with Lie bracket given by the commutator. It is
easy to see that the formula

〈A,B〉 = 〈AB〉 = 〈BA〉 , A,B ∈ E± (5.4)

defines a non-invariant inner product on each of E±.

One has the decompositions of Lie subalgebras:

E± = (E±)≥0 ⊕ (E±)<0

Introduce
L = Λ+

∑

i≤0

uiΛ
i ∈ E−, L̂ =

∑

i≥−1

ûiΛ
i ∈ E+, (5.5)

then the Toda lattice hierarchy [25] is defined as

∂L

∂tk
= [(Lk)≥0, L],

∂L̂

∂tk
= [(Lk)≥0, L̂], (5.6)

∂L

∂t̂k
= [−(L̂k)<0, L],

∂L̂

∂t̂k
= [−(L̂k)<0, L̂], (5.7)

where k runs over all positive integers.

5.2 Hamiltonian structures

Consider the coupled Lie algebra

E = E− × E+, (5.8)
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whose Lie bracket is defined diagonally. Similar to the case for D in the previous
section, one defines on E an inner product according to (5.4), and hence the gradient of
functionals in C∞(E). Here only functionals with gradient lying in E will be considered.

The R-matrix (3.13) on the Lie algebra E reads

R(X, X̂) = (X≥0 −X<0 − 2X̂<0, X̂≥0 − X̂<0 + 2X≥0). (5.9)

One can check that the adjoint transformation of R satisfies

R∗(X, X̂) = −R(X, X̂) + 2R0(X, X̂),

where R0(X, X̂) = (Res(X + X̂),Res(X + X̂)). Hence the anti-symmetric part of R is

Ra(X, X̂) =
1

2
(R(X, X̂)−R∗(X, X̂)) = R(X, X̂)−R0(X, X̂). (5.10)

Claim The transformation Ra satisfies the modified Yang-Baxter equation (3.4).
Proof. Sine R solves the modified Yang-Baxter equation, for any X = (X, X̂),Y =
(Y, Ŷ ) ∈ E we have

[Ra(X), Ra(Y)]−Ra([Ra(X),Y] + [X, Ra(Y)]) + [X,Y]

=− [R0(X), R(Y)] − [R(X), R0(Y)] +R([R0(X),Y] + [X, R0(Y)])

+R0([R(X),Y] + [X, R(Y)]) −R0([R0(X),Y] + [X, R0(Y)]). (5.11)

On the right hand side, the first three terms cancel due to [R0(X), R(Y)] = R([R0(X),Y]);
the fourth term is equal to (f, f) with

f =Res([X≥0 −X<0 − 2X̂<0, Y ] + [X,Y≥0 − Y<0 − 2Ŷ<0])

+ Res([X̂≥0 − X̂<0 + 2X≥0, Ŷ ] + [X̂, Ŷ≥0 − Ŷ<0 + 2Y≥0])

=2Res([X≥0 − X̂<0, Y ] + [X,−Y<0 − Ŷ<0]

+ [X̂≥0 +X≥0, Ŷ ] + [X̂,−Ŷ<0 + Y≥0])

=2Res([X,Y≤0]− [X̂, Y>0] + [X,−Y<0 − Ŷ<0]

+ [X̂ +X, Ŷ≤0] + [X̂,−Ŷ<0 + Y≥0])

=Res([X + X̂,Res(Y + Ŷ )]) = 0;

clearly the last term vanishes. Therefore the claim is proved. �

According to Theorem 2.2 we have the following result.

Lemma 5.1 Let F and H be two arbitrary functionals. On E there exist three com-
patible Poisson brackets:

{F,H}ν(A) =

〈

δF

δA
,Pν

(

δH

δA

)〉

, ν = 1, 2, 3, (5.12)

where A ∈ E and the Poisson tensors Pν : TD∗ → TD are defined by

P1(X, X̂) =
(

[−X<0 − X̂<0, A] + [X,A]≤0 + [X̂, Â]≤0,
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[X≥0 + X̂≥0, Â]− [X,A]>0 − [X̂, Â]>0

)

, (5.13)

P2(X, X̂) =
1

2

(

[−(AX +XA)<0 − (ÂX̂ + X̂Â)<0, A]

+A([X,A]≤0 + [X̂, Â]≤0) + ([X,A]≤0 + [X̂, Â]≤0)A,

[(AX +XA)≥0 + (ÂX̂ + X̂Â)≥0, Â]

− Â([X,A]>0 + [X̂, Â]>0)− ([X,A]>0 + [X̂, Â]>0)Â
)

. (5.14)

P3(X, X̂) =
(

[−(AXA+ ÂX̂Â)<0, A] +A([X,A]≤0 + [X̂, Â]≤0)A,

[(AXA + ÂX̂Â)≥0, Â]− Â([X,A]>0 + [X̂, Â]>0)Â
)

. (5.15)

As before these Poisson structures need to be reduced to appropriate subsets of E.

Given two arbitrary positive integers N and M , with L and L̂ in (5.5) we let

A = (A, Â) = (LN , L̂M ). (5.16)

All such operators form a coset (ΛN , 0) + UN,M of E, where

UN,M = (E−)<N × (E+)≥−M .

On this coset, the tangent bundle TUN,M and the cogtangent bundle T ∗UN,M have
their fibers respectively

TAUN,M = UN,M , T ∗
AUN,M = U∗

N,M = (E−)>−N × (E+)≤M .

As in Lemma 4.3, we perform a Dirac reduction for Poisson structures Pν in
Lemma 5.1 from E to the coset coset (ΛN , 0) + UN,M . The procedure is similar with
that in [2], so we only sketch the main steps. First, we have the decompositions of
subspaces

E = UN,M ⊕ VN,M = U∗
N,M ⊕ V∗

N,M .

Where VN,M = (E−)≥N×(E+)<−M and V∗
N,M = (E−)≤−N×(E+)>M . Then, the Poisson

tensors

Pν =





PUU
ν PUV

ν

PVU
ν PVV

ν



 : U∗
N,M ⊕ V∗

N,M → UN,M ⊕ VN,M

are reduced onto the coset (ΛN , 0) + UN,M as

Pred
ν = PUU

ν − PUV
ν ◦

(

PVV
ν

)−1 ◦ PVU
ν .

After a long but straightforward calculation, we conclude that, the first tensor P1 can
be restricted to the coset directly, for P2 one needs a correction term, but the reduction
of P3 is not clear except for N = M = 1.

Lemma 5.2 On the coset (ΛN , 0) + UN,M there are two compatible Poisson structures

Pred
ν : T ∗UN,M → TUN,M , ν = 1, 2 (5.17)

defined as

Pred
1 (X, X̂) = P1(X, X̂), (5.18)
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Pred
2 (X, X̂) = P2(X, X̂)− ([f,A], [f, Â]). (5.19)

where (X, X̂) ∈ T ∗
A
UN,M and

f =
1

2
(1 + ΛN )(1− ΛN )−1(Res([X,A] + [X̂, Â))

with (1− ΛN )−1 = 1 + ΛN + Λ2N + · · · .

Let {·, ·}N,M
ν be the Poisson brackets on the coset (ΛN , 0) + UN,M given by the

tensors Pred
ν in the above lemma. The following result can be verified directly.

Theorem 5.3 For any positive integers N and M , the Toda lattice hierarchy (5.6),
(5.7) has the following bi-Hamiltonian representation:

∂F

∂tk
= {F,Hk+N}N,M

1 = {F,Hk}N,M
2 ,

∂F

∂t̂k
= {F, Ĥk+M}N,M

1 = {F, Ĥk}N,M
2 (5.20)

with k > 0 and arbitrary functional F and

Hk =
N

k
〈Lk〉, Ĥk =

M

k
〈L̂k〉. (5.21)

In the particular case N = M = 1, on the coset (Λ, 0) + U1,1 there exists another
Poisson structure Pred

3 that is compatible with Pred
1 and Pred

2 . More precisely,

Pred
3 (X, X̂) = P3(X, X̂)− ([Z,A], [Z, Â]), (X, X̂) ∈ T ∗

AUN,M (5.22)

where Z = (A(g Λ−1 + hΛ−2)A)≥0 with functions g and h determined by

(1− Λ)(g) = Res([X,A] + [X̂, Â]),

(1− Λ)(h)− g(1 − Λ−1)(ResA) = Res([X,A]Λ + [X̂, Â]Λ).

In this case, the derivatives ∂/∂tk and ∂/∂t̂k with k ≥ 2 of the Toda lattice hierarchy
can also be represented into Hamiltonian flows of Pred

3 , cf. [2].

5.3 Reduction to Hamiltonian structures of the extended bigraded

Toda hierarchies

We constrain the Toda lattice hierarchy as follows:

LN = L̂M = L, (5.23)

where L has the form

L = ΛN + vN−1Λ
N−1 + vN−2Λ

N−2 + · · · v−MΛ−M . (5.24)

With the same method as in §4.3, under the constraint (5.23) the Poisson brackets in
Theorem 5.3 are reduced to:

{FX(L), FY (L)}1 = 〈X, [Y≥0,L]≤0 − [Y<0,L]>0〉 , (5.25)
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{FX(L), FY (L)}2 =

〈

X, [−(LY + Y L)<0,L] +
1

2
L[Y,L]≤0 +

1

2
[Y,L]≤0L

〉

−
〈

X,
1

2
[(1 + ΛN )(1 − ΛN )−1(Res [Y,L])

〉

. (5.26)

These formulae has the same expression with the bi-Hamiltonian structure of the ex-
tended bigraded Toda hierarchy [5, 3].

We recall briefly the construction of the extended bigraded Toda hierarchy. First,
certain continuation procedure needs to be performed. That is, replace A by the
algebra of analytic functions, such that f(n) is replaced by f(n ǫ) with some small
constant ǫ, and the shift operator Λ becomes eǫD with D = d/dx. Second, to obtain
a complete integrable hierarchy from L in (5.24), one needs not only the factorizations
L = LN = L̂M with L and L̂ as in (5.5), but also a logarithm operator LogL defined
in an appropriate way, see [5, 3] for details. Thus up to a scalar transformation of the
time variables, the extended bigraded Toda hierarchy is composed of the Hamiltonian
flows given by the Poisson brackets (5.25), (5.26) together with Hamiltonians (5.21)
and

HL
k =

2

(k − 1)!

〈

Lk−1

(

LogL − 1

2

(

1

M
+

1

N

)

ck−1

)〉

, k ≥ 1, (5.27)

where c0 = 0 and ck = 1 + · · ·+ 1
k
.

One can also consider Hamiltonian structures of the dispersionless Toda hierar-
chy. However, in contrast to the case of the two-component BKP hierarchy, nothing is
obtained beyond the dispersionless limit of the above result. Mention that, the disper-
sionless limit of Pred

2 for M = N = 1 was written down in Proposition 3.3 of [4], for
the purpose of constructing an infinite dimensional Frobenius manifold there.

6 Summary and outlook

On the Lie algebra g in (3.2), we write down all R-matrices of the form (3.3) that
satisfy the modified Yang-Baxter equation (2.2). These R-matrices are connected by
the action of the group G of intertwining involutions generated by σ1 and σ2 in (3.12).
Among the R-matrices we have found, the one (3.13) is particularly efficient in deriving
Hamiltonian structures for Lax equations defined on g. Two typical examples, the
two-component BKP hierarchy and the Toda lattice hierarchy, are considered. It is
interesting to apply the R-matrix (3.13) to other hierarchies, such as multicomponent
Toda lattice hierarchies [25] and their generalizations. We leave it to a subsequent
publication.

For each of the two-component BKP hierarchy and the Toda lattice hierarchy, we
obtain infinitely many bi-Hamiltonian structures, which correspond to Poisson brackets
on different submanifolds of Lie algebras of the from (3.2). Moreover, they can be
reduced to bi-Hamiltonian structures (4.30), (4.31) for Drinfeld-Sokolov hierarchies
of type D and (5.25), (5.26) for the extended bigraded Toda hierarchies respectively.
This is an advantage of R in (3.13) comparing with the other R-matrices given in
Proposition 3.1. For instance, a nonidentity intertwining involutions σ may not preserve
the constraints (4.29) or (5.23), hence Hamiltonian structures derived from the R-
matrix R ◦ σ would not admit such constraints.
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As suggested by [4], we hope that there also exist infinite-dimensional Frobenius
manifolds underlying the bi-Hamiltonian structures (4.48) and (5.20) of the two-component
BKP hierarchy and the Toda lattice hierarchy. Furthermore, since the bi-Hamiltonian
structures (4.30), (4.31) and (5.25), (5.26) reduced from them are associated to finite-
dimensional Frobenius manifolds defined on the orbit space of corresponding (extended)
affine Weyl groups [3, 11, 14, 12], the reduction property of the bi-Hamiltonian struc-
tures (4.48) and (5.20) probably gives insights into the connection between Frobenius
manifolds of finite and infinite dimensions. We will consider it in subsequent publica-
tions.

Acknowledgment. The author is grateful to Boris Dubrovin, Si-Qi Liu and Youjin
Zhang for helpful discussions and comments.

References
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