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Abstract

We introduce in this paper an elliptic dynamical reflection algebra describing an
SOS model with reflecting end. Using factorizing Drinfel’d twist, we compute
the partition function of this model with domain wall boundary conditions. We
show that it can be represented in the form of a single Izergin determinant.
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1. Introduction

SOS type models in statistical mechanics play an important role for math-
ematical physics. Since the pioneer works of Baxter on the eight vertex model
[2], they arise as a necessary step towards resolution of vertex model without
charge conservation [5, 16]. As they are described by dynamical Yang-Baxter
algebra, they also arise as underlining algebraic structure of conformal field
theories [15]. From the algebraic point of view, they are intensively studied
due to their relations to quasi-hopf structures [4] and current algebras [20, 22].
Furthermore, they are related to combinatorics and dynamical enumeration of
alternating sign matrix [21].

Within the Quantum Inverse Scattering frameworks, partition functions are
essential for the study of correlations functions [8, 9, 11, 10]. The partition
function for such elliptic SOS model with domain wall boundary conditions
has already been computed by different methods in [22, 21], but due to the
dynamical nature of the underlining algebras, it is presented as a sum of matrix
determinants. Recently, partition function of an alternative trigonometric SOS
model with reflecting end has been computed as a single determinant [17]. It is
shown there that such boundaries permit to avoid the difficulty of the inherent
dynamical algebra, by means of a dynamical reflection algebra. We generalize in
this letter the result to the elliptic case, which is the most general SOS models,
by use of the concept of factorizing Drinfel’d twist.
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2. Preliminaries: elliptic theta functions

Let τ be a fixed complex parameter such that: Im(τ) > 0 and denote
p = e2iπτ . Throughout this paper, we will use the notation

h(λ) = eλ
∞∏

i=0

(1− pie−2λ)(1− pi+1e2λ). (1)

Up to a multiplicative factor, h(λ) equals the Jacobi theta function θ1(iλ) [25].
This function is odd and satisfy the addition rule

h(x+ u)h(x− u)h(y + v)h(y − v)− h(x+ v)h(x− v)h(y + u)h(y − u) (2)

= h(x+ y)h(x− y)h(u+ v)h(u − v).

In the degenerate case, we have: limp→0 h(λ) = 2 sinh(λ).

Definition 2.1. f is a theta function of norm t and order N if there exist N
constants {ξi}i=1,...,N and

∑N

i=1 ξi = t such that

f(λ) =

N∏

i=1

h(λ+ ξi). (3)

Using this definition, we have the classical theorem [24]

Theorem 2.1. Let f be

f(λ) =
∑

j

N∏

i=1

h(λ+ ξ
j
i ), (4)

where for any j,
∑N

i=1 ξ
j
i = t. Then f is a theta function of order N and norm

t.

This theorem gives a powerful tool to prove theta functions identities.

3. Algebraic framework

We start by introducing the dynamical reflection algebra which is underlin-
ing integrability of the elliptic SOS model with reflecting end as we will show in
this paper. This algebra is actually built as a comodule over the elliptic quan-
tum group Eτ,η(sl2). The main object for defining the elliptic quantum group
Eτ,η(sl2) [15] is the dynamical R matrix, R : C× C −→ End(V ⊗ V ), V ∼ C2

R(λ; θ) =




R++
++(λ; θ) 0 0 0

0 R+−
+−(λ; θ) R+−

−+(λ; θ) 0
0 R−+

+−(λ; θ) R−+
−+(λ; θ) 0

0 0 0 R−−
−−(λ; θ)


 , (5)
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which satisfies the dynamical Yang-Baxter equation

R12(λ1 − λ2; θ − ησz
3)R13(λ1 − λ3; θ)R23(λ2 − λ3; θ − ησz

1)

=R23(λ2 − λ3; θ)R13(λ1 − λ3; θ − ησz
2)R12(λ1 − λ2; θ),

(6)

where we denote by σx,y,z
a the usual Pauli matrices in the two dimensional space

Va ∼ C2. We are interested here in the elliptic solution of this equation [19],
which is the most general case

R++
++(λ; θ) = R−−

−−(λ; θ) = h(λ+ η)

R+−
+−(λ; θ) = R−+

−+(λ;−θ) =
h(λ)h(θ − η)

h(θ)
(7)

R+−
−+(λ; θ) = R−+

+−(λ;−θ) =
h(η)h(θ − λ)

h(θ)
,

The elliptic Eτ,η(sl2) quantum group is the algebra generated by meromorphic
funtions of the generator of h, the Cartan subalgebra of sl2, that we denote

by σz , and the matrix elements of T (λ; θ) =

(
A(λ; θ) B(λ; θ)
C(λ; θ) D(λ; θ)

)
∈ End(C2)

with non-commutative entries, satisfying the dynamical Yang-Baxter algebra
relations

R12(λ1 − λ2; θ − ησz)T1(λ1; θ)T2(λ2; θ − ησz
1)

=T2(λ2; θ)T1(λ1; θ − ησz
2)R12(λ1 − λ2; θ). (8)

We are interested here only in diagonalizable h-module V where the weight
zero property holds

[T0(λ; θ), σ
z
0 + σz

V ] = 0. (9)

We define the following Dynamical Reflection Algebra generated by mero-
morphic functions of σz ∈ h and the matrix element of T (λ; θ) ∈ End(C2) with
non commutative entries subject to the relations

R12(λ1 − λ2; θ − ησz)T1(λ1; θ)R21(λ1 + λ2; θ − ησz)T2(λ2; θ) (10)

= T2(λ2; θ)R12(λ1 + λ2; θ − ησz)T1(λ1; θ)R21(λ1 − λ2; θ − ησz).

Let K : C × C −→ End(C2), be a (scalar) representation of this algebra in
C (i.e C-number matrix) viewed as one dimensional h-module of sl2 with the
standard action on v ∈ C, σz.v = 0

3



R12(λ1 − λ2; θ)K1(λ1; θ)R21(λ1 + λ2; θ)K2(λ2; θ)

=K2(λ2; θ)R12(λ1 + λ2; θ)K1(λ1; θ)R21(λ1 − λ2; θ). (11)

This is essentially the reflection equation introduced in [23], with the dy-
namical R-matrix instead of the usual one. A representation as above is said of
weight zero if

[K0(λ; θ), σ
z
0 ]. (12)

This means that K is diagonal solution of the above equation. Let T (λ; θ) a
weight zero representation of the dynamical Yang-Baxter algebra in V . Then

T (λ; θ) = T (λ, θ)K(λ; θ)T−1(−λ; θ), (13)

is a weight zero representation of the dynamical reflection algebra in C⊗ V .
In this letter, we are mostly interested in a particular representation of this

dynamical reflection algebra, which is built on the well-known evaluation rep-
resentation of Eτ,η(sl2) in the space V = ⊗N

i=1C
2
i which is constructed from the

R-matrix (7)

T0(λ; θ) = R01(λ− ξ1; θ − η

N∑

i=2

σz
i )...R0N (λ− ξN ; θ) (14)

=

(
A(λ; θ) B(λ; θ)
C(λ; θ) D(λ; θ)

)
,

and the specific diagonal solution of (11)

K(λ; θ) =

(
h(θ+ζ−λ)
h(θ+ζ+λ) 0

0 h(ζ−λ)
h(ζ+λ)

)
, (15)

which depends on an arbitrary parameter ζ. So our main object of study is the
boundary monodromy matrix, a representation of (10) in C× V , V = ⊗N

i=1C
2
i

T (λ; θ) = γ̂(λ)T (λ; θ)K(λ; θ)T−1(−λ; θ) (16)

=

(
A(λ; θ) B(λ; θ)
C(λ; θ) D(λ; θ)

)
,

with normalization coefficients

γ̂(λ) = (−1)N
N∏

i=1

h(λ+ ξi − η)h(λ+ ξi + η). (17)

This representation has a clear statistical mechanics interpretation, it de-
scribes an elliptic SOS model with reflecting end. Before introducing this sta-
tistical mechanics model, we give in the next section convenient expression for
the boundary monodromy operators (16).
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4. Symmetry and Drinfel’d twist

In this section, we collect some useful relations of the R-matrix and corre-
sponding monodromy operators. This relations will help us to obtain manage-
able expressions of the boundary operators (16) with the help of the factorizing
Drinfel’d twist.

4.1. R-matrix and boundary operators

The R-matrix satisfies three important properties
1. Zero weight1:

[σz
1 + σz

2 , R12(λ; θ)] = 0 (18)

This symmetry reflects the six vertex texture of the statistical weights:
R

µν
αβ = 0 unless α + β = µ + ν. It is easy to see that this relation induces

a similar relations for the transposed R matrix

[σz
1 − σz

2 , R
t1
12(λ; θ)] = 0 (19)

2. Unitarity:

R12(λ; θ)R21(−λ; θ) = −h(λ− η)h(λ+ η)Id (20)

3. Crossing Symmetry:

We write the crossing relation for the dynamical R-matrix in the following
compact form:

− σ
y
1 : Rt1

12(−λ− η; θ + ησz
1) : σ

y
1

h(θ − ησz
2)

h(θ)
= R21(λ; θ) (21)

where we assume the following normal ordering : the σz
1 in the argument of the

R-matrix (which does not commute with it) is always on the right of all other
operators involved in the definition of R.

4.2. Boundary monodromy matrix

Using the crossing relation (21) and the zero weight for the transposed R-
matrix (19) we get

γ̂(λ)T−1(−λ; θ) ≡RN0(λ+ ξN ; θ)...R10(λ+ ξ1; θ − η

N∑

i=2

σz
i )

=γ(λ)σy
0T

t0(−λ− η; θ + ησz
0)σ

y
0

h(θ − ηSz)

h(θ)
, (22)

1This property is sometimes referred in statistical mechanics as the Ice Rule
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with normalization coefficients

γ(λ) = (−1)N , (23)

and the short notation: σz
V = Sz =

∑N

i=1 σ
z
i . A very important decomposition

of the B operators is given by means of the generalized crossing relation for the
bulk monodromy matrix (22). It implies for the B operators

B(λ; θ) =γ(λ)
(
K−

−B(λ; θ)A(−λ − η; θ + η)−K+
+A(λ; θ)B(−λ − η; θ − η)

)

×
h(θ − ηSz)

h(θ)
. (24)

Furthermore, the equation (10) contains the commutation relations for the
generators: A(λ; θ), B(λ; θ), C(λ; θ) and D(λ; θ). The only one which is im-
portant for the computation of the partition function is the relation for the B
operators

B(λ1; θ)B(λ2; θ) = B(λ2; θ)B(λ1; θ) (25)

4.3. Symmetric representation and the F-basis

Representation of Drinfel’d twist [3] was first applied by Maillet and Sanchez
de Santos [13] in order to obtain completely symmetric representation of the
bulk monodromy operators for Yang-Baxter type algebra, which are highly non
local in terms of the quantum local operators. The idea is to perform a change
of basis in the space of states where the bulk monodromy operators remains
completely symmetric.

This representation is very useful for the computation of partition functions,
scalar products and correlation functions of integrable spin chains with periodic
boundary conditions [8, 9] but also for diagonal boundary conditions [10, 11], as
it reduces drastically the combinatorial difficulty of handling highly non-local
representation.

In this representation, not only the bulk monodromy operators remain sym-
metric, we also have a direct insight into the analytical property of this opera-
tors.

For the evaluation representation of dynamical Yang-Baxter algebras, such
representation of the bulk monodromy operators was proposed in [1]. This
construction is based on a dynamical F -matrix which factorizes the dynamical
R-matrix in the following way

F21(−λ; θ)R12(λ; θ) = F12(λ; θ). (26)

After a suitable co-product over all quantum spaces it leads to a change of basis
F{ξ} where the bulk operators A(λ; θ), B(λ; θ) (14) have symmetric expressions

A(λ; θ) = F{ξ}(θ)A(λ; θ)F
−1
{ξ}(θ − η) (27)

=
h(θ − η)

h
(
θ + η(N−Sz

2 − 1)
) ⊗N

i=1

(
h(λ− ξi + η) 0

0 h(λ− ξi)

)

i

,
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and

B(λ; θ) = F{ξ}(θ)B(λ; θ)F−1
{ξ}(θ + η) (28)

=
h(η)

h(θ)

N∑

i=1

h(θ − λ+ ξi)σ
−
i ⊗N

j 6=i

(
h(λ− ξj + η) 0

0
h(λ−ξi)h(ξi−ξj+η)

h(ξi−ξj)

)

j

.

A very important property is that the reference states |0〉 =
∏N

i=1 ↑ξi and

|0̄〉 =
∏N

i=1 ↓ξi are left and right invariant under the action of F{ξ}

F{ξ}(θ)|0〉 = F−1
{ξ}(θ)|0〉 = |0〉, 〈0|F{ξ}(θ) = 〈0|F−1

{ξ}(θ) = 〈0|, (29)

and
F{ξ}(θ)|0̄〉 = F−1

{ξ}(θ)|0̄〉 = 〈0̄|, 〈0̄|F{ξ}(θ) = 〈0̄|F−1
{ξ}(θ) = 〈0̄|. (30)

Using the decomposition (24) of the boundary operator B(λ; θ), it is easy to
compute its expression in this new basis

B(λ; θ) = F{ξ}(θ)B(λ; θ)F
−1
{ξ}(θ) (31)

= γ(λ)

N∑

i=1

{h(θ + ζ + ξi)

h(θ + ζ + λ)

h(ζ − ξi)

h(ζ + λ)
h(2λ)h(η)

σ−
i ⊗N

j 6=i



h(λ+ ξj)h(λ− ξj + η) 0

0
h(λ−ξj)h(λ+ξj+η)h(ξi−ξj+η)

h(ξi−ξj)




j

}

×
h(θ − ηSz)

h(θ + ηN−Sz

2 )
.

5. Elliptic SOS model with reflecting end

Let us now introduce the SOS model, which is a two-dimensional statistical
mechanics lattice model where Boltzmann weights are attached to each face.
There are 6 possible face configurations where each height θ can differ only by
±η for adjacent sides

θ − η θ − 2η

θ θ − η

θ + η θ + 2η

θ θ + η

θ − η θ

θ θ + η

θ + η θ

θ θ − η

θ + η θ

θ θ + η

θ − η θ

θ θ − η
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θ − ηθ

K+
+(λ; θ)

θ + ηθ

K−
−(λ; θ)

Figure 1: Boundary configuration with external height θ.

The corresponding statistical weights Rab
cd are collected into the dynamical

R matrix (7). In the limit p → 0, the model becomes equivalent to the trigono-
metric SOS model. Furthermore, the limit θ → ∞ gives rise to the well-known
six vertex model [12]. Dealing with boundary weights requires to introduce the
boundary matrix K(λ; θ) which we choose to be (15). Notice that in the trigono-
metric case, K(λ; θ) reduces to the trigonometric solution of [17]. We consider
this model with a reflecting end, which means that each horizontal line makes
a U-turn on the left side of the lattice. As we choose a diagonal solution, it
produces two configurations characterized by the weights K±

±(λ; θ).

It is important to note that such reflecting end imposes a constant external
height θ for the left side of the lattice. This reflecting end leads to different
parametrizations of the weight if they are in the two different half the rows.
Indeed, parametrization should respect row and line multiplication, and also
some fundamental symmetry of the R matrix (as the zero weight (18)). We can
easily check that this convention leads to a well defined inhomogeneous model:

R
c−d,a−c
a−b,b−d(λj + ξi; a)

a b

c d

e f

R
f−d,e−f
e−c,c−d (λj − ξi; e)

Here we consider the model with domain wall boundary conditions, the
heights decrease from left to right on the upper boundary, the heights grow
from left to right on the lower boundary. As left external height is fixed these
two conditions determine completely the configuration on the right boundary
(heights decreasing in the upward direction).
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θ-Nηθ-(N-1)η

θ

θ

θ

θ

θ+Nη 

θ-η

θ-(N-1)η

θ-(N-2)η

θ-(N-3)η

θ+(N-3)η

θ+(N-2)η

θ+(N-1)η

θ+(N-1)ηθ+η

Figure 2: Domain Wall Boundary Conditions

6. Partition Function

The partition function of the SOS model introduced in the previous section
can be written in terms of the boundary monodromy matrix

ZN,2N({λ}, {ξ}, θ) =

N∏

i=1

↑λi

N∏

j=1

↓ξj

N∏

i=1

T (λi; θ)

N∏

i=1

↑ξi

N∏

j=1

↓λj
(32)

=〈0̄|
N∏

i=1

B(λi; θ)|0〉

=〈0̄|

N∏

i=1

B(λi; θ)|0〉

We follow the standard way to compute the partition function [12, 6], first we
establish a set of properties defining it in an unique way and then we propose a
determinant formula which satisfies all these conditions.

The partition function (32) satisfies the following properties:

i) ZN,2N({λ}, {ξ}, θ) is symmetric in λi. This property follows from the com-
mutation relation (25) for the operators B.

ii) ZN,2N({λ}, {ξ}, θ) is symmetric in ξi. This is a direct consequence of the
Dynamical Yang-Baxter Equation (6).

It is sufficient to insert Ri+1,i(ξi+1 − ξi; θ − η
∑N

j=i+2) in (32) to get the
symmetry for any elementary permutation ξi ↔ ξi+1.
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iii) For each parameter λi the normalized partition function

Z̃N,2N({λ}, {ξ}, θ) =
N∏

i=1

h(θ + ζ + λi)h(ζ + λi)

h(2λi)
ZN,2N({λ}, {ξ}, θ), (33)

is a theta function of order 2N − 2 and norm (N − 1)η with respect to
the variable λi. To prove it, we use the representation of the partition
function in the F-basis and consider the action of the most right B(λN ; θ)
operator. Due to the symmetric representation of B(λN ; θ) in the F -basis,
the operator

h(θ + ζ + λN )h(ζ + λN )

h(2λN )
B(λN ; θ)

acts due to (31) as

N∑

i=1

N∏

k=1,k 6=i

h(λN + ξk)h(λN − ξk + η)

which is a theta function of the desired form thanks to the standard theorem
of Section 1. This property remains true for any λi with the help of i).

iv) For N = 1 the partition function is just a sum of two terms

Z1,2(λ, ξ, θ) =
h(η)h(θ − η)

h2(θ)

×

(
h(θ + ζ − λ)

h(θ + ζ + λ)
h(λ− ξ)h(θ + λ+ ξ)

+
h(ζ − λ)

h(ζ + λ)
h(λ+ ξ)h(θ − λ+ ξ)

)
(34)

as there are only two configurations possible.

v) Recursive relations.
There are two points where we can easily establish recursive relations, fixing
the configuration in the lower right or the upper right corner by setting
λ1 = ξ1 or λN = −ξ1. It is easy to see that it leads to the following
recursive relations

ZN,2N ({λ}, {ξ}, {θ})

∣∣∣∣∣
λ1=ξ1

=
h(η)h(ζ − λ1)

h(ζ + λ1)

×

N∏

i=1

h(λi + ξ1)
h(θ + (N − 2i)η)

h(θ + (N − 2i+ 1)η)

×

N∏

i=2

h(λ1 − ξi + η)h(λ1 + ξi + η)h(λi − ξ1 + η)

× Z(N−1),2(N−1)({λ}2...N , {ξ}2...N , {θ}) (35)
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ZN,2N ({λ}, {ξ}, {θ})

∣∣∣∣∣
λN=−ξ1

=
h(η)h(θ + ζ − λN )

h(θ + ζ + λN )

×

N∏

i=1

h(λi − ξ1)
h(θ + (N − 2i)η)

h(θ + (N − 2i+ 1)η)

×

N∏

i=2

h(λN + ξi + η)h(λN − ξi + η)h(λi−1 + ξ1 + η)

× Z(N−1),2(N−1)({λ}1...N−1, {ξ}2...N , {θ}) (36)

Lemma 6.1. The set of conditions i)-v) uniquely determines the partition func-
tion ZN.2N({λ}, {ξ}, {θ}).

Indeed, it is sufficient to observe that the normalized partition function (33) is
a theta function of order 2N − 2 and norm (N − 1)η in each parameter λi. So
we need 2N − 1 independent conditions to uniquely determine it. Using the
symmetry ii) the recursion relations v) can be established for any point λi = ξj
( or λi = −ξj ). Hence we can prove by induction starting from the case N = 1
that the partition function is uniquely determined as we need.

Theorem 6.1. The partition function of the elliptic SOS model with reflecting
end can be represented in the following form

ZN,2N({λ}, {ξ}, {θ}) = γ(λ) detMij

N∏

i=1

(
h(θ + η(N − 2i))

h(θ + η(N − 2i+ 1))

)

×

N∏
i,j=1

h(λi + ξj)h(λi − ξj)h(λi + ξj + η)h(λi − ξj + η)

∏
1≤i<j≤N

h(ξj + ξi)h(ξj − ξi)h(λj − λi)h(λj + λi + η)
(37)

where the N ×N matrix Mij can be expressed as

Mi,j =
h(θ + ζ + ξj)

h(θ + ζ + λi)
·
h(ζ − ξj)

h(ζ + λi)

×
h(2λi)h(η)

h(λi − ξj + η)h(λi + ξj + η)h(λi − ξj)h(λi + ξj)
(38)

To prove the theorem, it is sufficient to check the property i) to v).

Remark 6.1. The partition function reduces to that of the trigonometric SOS
model with reflecting end in the limit p → 0
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Taking the limit of (37) we obtain up to irrelevant numerical factor

ZN,2N({λ}, {ξ}, {θ}) = γ(λ) detMij

N∏

i=1

(
sinh(θ + η(N − 2i)

sinh(θ + η(N − i))

)

×

N∏
i,j=1

sinh(λi + ξj) sinh(λi − ξj) sinh(λi + ξj + η) sinh(λi − ξj + η)

∏
1≤i<j≤N

sinh(ξj + ξi) sinh(ξj − ξi) sinh(λj − λi) sinh(λj + λi + η)
.

(39)

where the N ×N matrix Mij is

Mi,j =
sinh(θ + ζ + ξj)

sinh(θ + ζ + λi)
·
sinh(ζ − ξj)

sinh(ζ + λi)

×
sinh(2λi) sinh η

sinh(λi − ξj + η) sinh(λi + ξj + η) sinh(λi − ξj) sinh(λi + ξj)
. (40)

We recover in this way the previous result of [17].

Conclusions

In this paper, we have computed the partition function of the elliptic SOS
model with domain wall boundary conditions and one reflecting end. The main
result is that this partition function is expressed as a single determinant, gener-
alizing the recent observation in the trigonometric case that SOS type models
with such boundaries give rise to a simpler representation of their partition
functions. Recently, the trigonometric version of this SOS model was associated
to open XXZ spin chains with particular boundary conditions in a very natural
way by means of gauge transformation (Vertex-IRF, [18]). It seems to be natu-
ral to ask for such relation between the result of this paper and the open XYZ
spin chains, leading to the possibility to study XXZ and XYZ spin chains with
boundary in a unified framework in opposition to the periodic case.
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