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 Abstract − The paper deals with joint state and parameter estimation for nonlinear continuous-time systems. Based 

on a guaranteed LPV approximation, the set adaptive observers design problem is solved avoiding the exponential com-

plexity obstruction usually met in the set-membership parameter estimation. Potential application to fault diagnosis is 

considered. The efficacy of the proposed set adaptive observers is demonstrated on several examples. 
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  1. Introduction 

 The observer design problem for nonlinear systems has been an area of intensive research during the last two dec-

ades. There exist a lot of solutions dealing with diverse forms of system models, see for instance [3], [24]. Typically, 

the observer design problem is solvable if the system model can be transformed to a canonical form, that may be an 

unacceptable assumption in many applications. Consider a generic nonlinear system 

  ( , , , )t=x f x u d , ( )= +y h x v  (1) 

where nR∈x , mR∈u , lR∈d , pR∈y , pR∈v  are respectively the state, the control, the disturbances, the output and 

the measurement noise; t R∈ , the functions f , h  are continuous with respect to all arguments and differentiable with 

respect to x  and u .  

 In the literature, several observers are built based on an approximation (or a transformation) of the nonlinear model 

(1) to a Linear Parametric-Varying (LPV) one [6], [19]. LPV models are described by: 

  ( ( ) ) ( ( ) )t t= ρ + ρx A x B u , ( ( ))t= ρ +y C x v , (2) 

where the scheduling parameter vector ρ∈P  is a priori unknown, but with known bounds, and P  is a set of functions 

that remain in a compact real subspace. Let us stress that the system (2) is an equivalent representation of (1), in the 

sense that trajectories of (1) remain in the trajectories of (2). Among available methodologies for LPV model construc-

tions one can mention the Jacobian linearization, the state transformation and the state substitution approaches [20], 

[28], [31]. The idea is to replace nonlinear complexity of the model (1) by enlarged parametric variation in the linear 

model (2). Such LPV transformation simplifies the design of an observer for the system (1). As it will be shown in this 

paper, sometimes the complete LPV linearization is not necessary and a partial one may be more suitable. For example, 

for the observer design purposes some nonlinearities depending only on the output y  can be preserved in order to de-

crease the uncertainties of the model (2) collected in the vector ρ . The observer design methodology proposed in this 

paper based on a guaranteed LPV transformation recently developed in [26]. By “guaranteed”, it is understood that the 

nonlinear trajectory is sure to remain in the set of trajectories of the resulting LPV model. It is based on an interval lin-

earization around the operational state domain instead of a linearization throughout the equilibrium points. The pro-

posed LPV approximation is performed by means of interval analysis [13], [21]. 

 In the following, an adaptive set observer is developed based on (2) in a set-membership context. There exist three 

main approaches to perform interval state estimation for systems described by (2): the prediction/correction mechanism 
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as in the Kalman filter [14], [25]; the approach based on comparison theorem [18], [23]; and the closed loop interval 

observers with cooperative observation error dynamics [2], [12], [22]. The latter has been extended in [26] for nonlinear 

systems using LPV approximations with known minorant and majorant matrices for (2). Unfortunately, these state esti-

mators are efficient only when the parameter uncertainties are not large.  

 To the best of our knowledge, joint state and parameter estimation has not been fully studied for systems described 

by (1) in a bounded error context. An attempt was made in [25] to take into account the uncertain parameters in set-

membership framework, where the parameter estimation problem is formulated as a set inversion and solved by the 

SIVIA algorithm (Set Inversion Via Interval Analysis) [15]. An inclusion test involving a validated integration of a set 

of ordinary differential equations (ODEs) should be evaluated over a time horizon. Such a procedure is computationally 

time-consuming since the complexity of SIVIA is exponential with respect to the parameter vector dimension. In [16] 

the validated integration of ODEs is associated with consistency techniques in order to reduce the computing time. 

Nevertheless, the algorithm in [16] is efficient only for very moderate levels of noise and the complexity remains expo-

nential. In the following, the methodology proposed in [26] is extended to deal with joint state and parameter estimation 

even for higher dimensional systems and with large parametric uncertainty. The idea is to develop set-membership 

adaptive observers based on the works reported in [9], [11], [33], [35]. 

 In this paper a procedure for adaptive set observer design is proposed for a subclass of the LPV representation (2). 

The main feature of this step is that cooperativity property of the state observers (which can be assigned by the proper 

choice of the observer gain [26]) is not inherited by the adaptive counterpart. Resolution of this issue requires especial 

consideration and additional conditions checking. The main advantage is that no bisection is needed in the parameter 

estimation procedure and the complexity of the algorithm is not exponential. Secondly, a consistency check residual for 

the nonlinear continuous-time system (1) is computed based on its LPV approximation and the proposed adaptive set 

observer. Potential application to model based fault diagnosis is then investigated. It is shown that the independently 

computed estimates of the unknown parameters improve robustness of fault detection, while decreasing the false alarm 

level. 

 The paper is organized as follows. In the Section 2 the formal problem statement is presented. Some preliminaries 

are given in Section 3. The adaptive observer equations and the applicability conditions for the adaptive set observer are 

derived in Section 4. Two different sets of conditions are analyzed leading to cooperative or competitive adaptive ob-

server loops. The combined set state observer is analyzed in Section 5. Application of the proposed technique to fault 

detection is considered in Section 6. Through the paper numerical examples are provided to illustrate the results. 

 

  2. Problem statement 

 Let us assume that the system (1) can be transformed to the following form: 

  ( ( ) ) ( ( ) ) ( ) ( )t t= ρ + ρ + φ +x A x B u y G y θ , (3) 

  =y C x , v = +y y v , 

where nX R∈ ⊂x , mU R∈ ⊂u , pY R∈ ⊂y  are the state, the input and the output vectors; qR∈ Θ ⊂θ  is the vector 

of uncertain parameters; pV R∈ ⊂v  is the measurement noise; vy  is the vector of noisy measurements of the system 

(3), rRρ ∈ ϒ ⊂  is some scheduling parameter vector. The compact sets X , U , Y , V , Θ  and ϒ  are given a priori, it 

assumed that there exist some constant vectors , n
m M R∈x x  such that m M≤ ≤x x x  for all X∈x . The vector func-

tion φ  and columns of the matrix function G  are locally Lipschitz continuous, C  is some constant matrix of appropri-

ate dimension. The majorant matrices mA , MA , mB , MB  are given such that  
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  ( )m MρA A A≺ ≺ , ( )m MρB B B≺ ≺  

for all ρ∈ ϒ  (the inequality A B≺  for matrices A , B  with dimension n m×  is understood elementwise , ,i j i jA B≤ , 

1,i n= , 1,j m= ). Note, that since Y∈y  and V∈v  there exist constants 0kφ > , 0Gk >  such that 

| ( ) ( ) | | |v kφφ − φ ≤y y v  and | ( ) ( ) | | |v Gk− ≤G y G y v . 

 R e m a r k  1 . The output dependency of the function G  as well as the linearity of the output map are the main 

restrictions on the system (1) and on its LPV transformation. In addition, it is assumed that in the system (3), the LPV 

transformation is not applied to some nonlinear terms dependent only on the output y  and, the functions φ  and G  are 

preserved in their original form. In fact, to increase accuracy of the system (1) LPV approximation, one should explic-

itly handle with care the output dependency in all nonlinearities, thus the most accurate presentation of (3) could be 

  ( ( ), ) ( ( ), ) ( ) ( )t t= ρ + ρ + φ +x A y x B y u y G y θ . 

In an example below we will consider this issue with more details, however for brevity of presentation, all theoretical 

results will be formulated only for the system (3) (an extension on the former case is trivial). □ 

 In the following the aim is to design an adaptive observer that, in the noise-free case, provides interval observation 

of unmeasured components of the state vector x  in (1) and estimates the set of admissible values for the vector θ . For 

any ( )t V∈v , 0t ≥  the observer solutions should be bounded. 

 Finally, parametric fault detection is a potential application of the proposed techniques that is investigated in the last 

part of the paper. In this case, the vector θ  could be composed of two parts: the first one represents the physical pa-

rameters which are not exactly known and the second part contains some “fictive” parameters used to model the effect 

of faults. The latter parameters (or some of them) become significantly different from their nominal range when a fault 

occurs. In order to decide whether the detected discrepancy is significant, a decision test, based on a convenient dis-

tance, should be used to confirm the presence of a fault. Without loss of generality, the fictive parameters are assumed 

to have zero value in the nominal fault free case. For a complete fault diagnosis and health monitoring process, this 

means that some a priori knowledge about the faults and their effect is available to build adequately the parameter vec-

tor θ  for a given application. 

 

  3. Preliminaries 

 A. Monotone systems 

 The system 

  ( , )t=x f x , X∈x , 0t ≥  (4) 

with the solution 0( , )tx x  for the initial condition 0( 0 ) =x x  is called monotone, if 0 0≤x ξ  ⇒ 0 0( , ) ( , )t t≤x x x ξ  for 

all 0t ≥  [29] (for the vectors 0x , 0ξ  the inequality 0 0≤x ξ  is understood elementwise). The system (4) is called co-

operative if ( , ) / 0i jf t x∂ ∂ ≥x  for all 1 i j n≤ ≠ ≤ , t R∈  and X∈x  [29]. Cooperative systems form a subclass of 

monotone ones. A matrix A  with dimension n n×  is called cooperative if , 0i jA ≥  for all 1 i j n≤ ≠ ≤ . Note that for 

the cooperative stable system (the matrix A  is cooperative and Hurwitz) 

  ( ) ( ) ( )t t t= +s A s r , nR∈s , nR∈r , 0t ≥  

the properties ( 0 ) 0≥s , ( ) 0t ≥r  for all 0t ≥  imply ( ) 0t ≥s  for 0t ≥  and, conversely, ( 0 ) 0≤s , ( ) 0t ≤r  for all 

0t ≥  ensures ( ) 0t ≤s  for 0t ≥ . The system (4) is called competitive if ( , ) / 0i jf t x∂ ∂ ≤x  for all 1 i j n≤ ≠ ≤ , t R∈  

and X∈x , the competitive systems behave like cooperative in backward time [29]. 
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 B. Persistency of excitation 

 The Lebesgue measurable and square integrable matrix function 1 2: l lR R ×→R  with dimension 1 2l l×  admits 

( , )ϑ –persistency of excitation (PE) condition, if there exist strictly positive constants  and ϑ  such that  

  
1

( ) ( )
t

T
l

t
s s ds

+
≥ ϑ∫ R R I  

for any t R∈ , where 
1lI  denotes identity matrix of dimension 1 1l l×  [1], [34]. 

 L e m m a  1 [9]. Consider the time-varying linear dynamical system 

  ( ) ( ) ( )Tt t t= −Γ +p R R p b , 0t R+∈ , 

where 1lR∈p , Γ  is a positive definite symmetric matrix of dimension 1 1l l×  and the functions 1 2: l lR R ×
+ →R , 

1: lR R+ →b  are Lebesgue measurable, b  is essentially bounded, function R  is ( , )ϑ –PE for some 0> , 0ϑ > .  

Then, for any initial condition 1
0( ) lt R∈p , the solution of the system is defined for all 0t t≥  and verifies ( 0γ >  is the 

smallest eigenvalue of the matrix Γ ) 

  
1

00.5 ( ) 1 1 0.5
0| ( ) | | ( ) | (1 2 ) || ||t tt t e e

−− γ ϑ − − − − − ϑ γ≤ + + ϑ γp p b . □ 

 This lemma states that a linear system with a persistently excited time-varying matrix gain and a bounded additive 

disturbance has bounded solutions. 

 

  4. Interval parameters estimation 

 To proceed, we would like to introduce  the following assumptions dealing with stabilizability by output feedback of 

the system (3) linear part.  

 A s s u m p t i o n  1. There exist matrices L , 0T= >Q Q  and 0T= >P P  such that 

  [ ( ) ] [ ( ) ]Tρ − + ρ − = −A L C P P A L C Q  

for all ρ ∈ ϒ . □ 

 For the system 

  [ ( ( ) ) ]t= ρ − +s A L C s r , nR∈s , nR∈r , ( )tρ ∈ ϒ  for 0t ≥ , (5) 

this assumption ensures uniform asymptotic stability property for 0=r  and boundedness of the system solutions for 

any bounded input r  (input-to-state stability property holds [30]). The system (5) is the linear part of (3) closed by out-

put feedback with a gain L . This assumption is required for classical adaptive observer design for the system (3). It 

will be shown later that this assumption is not actually required for the proposed approach. It will be relaxed leading to 

the following assumption, that ensures existence of an adaptive set observer for (3). 

 A s s u m p t i o n  2. There exist matrices mL , ML  such that the matrices m m−A L C  and M M−A L C  are Hur-

witz and cooperative, and for all Y∈y , V∈v  we have 0 ( )+G y v≺ . □ 

 In addition, since ∈ Θθ , there exist two vectors q
m R∈θ  and q

M R∈θ  such that m M≤ ≤θ θ θ  for all ∈ Θθ . 

Based on these assumptions, the equations of adaptive observer are introduced below in two steps.  

 

 A. The ideal case 

 Firstly, assume that the signal ( )tρ ∈ ϒ  is available for measurements and assumption 1 holds. Then, an adaptive 
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observer [33], [35] for the system (3) could be built as: 

  ( )( ( ) ) ( ( ) ) ( )v vt t= ρ + ρ + φ + −ζ A ζ B u y L y Cζ ; (6) 

  [ ( ( ) ) ] ( )vt= ρ − −Ω A L C Ω G y ; (7) 

  0 ( )T T
v= − − +θ Γ Ω C y Cζ CΩθ , 0 0 0T= >Γ Γ , (8) 

where nR∈ζ  is the vector of “estimates” for x ; the matrix n qR ×∈Ω  is an auxiliary variable, which helps to overcome 

high relative degree obstruction in the system (3), i.e. to identify the value of θ  even in the cases when only higher or-

der time derivatives of the output y  depend on θ ; qR∈θ  is the estimate of θ . Defining the observation error 

= −ε x ζ , the estimation error = −θ θ θ  and the auxiliary variable = + Ωδ ε θ  we obtain 

  [ ( ( ) ) ] ( )v vt= ρ − + +ε A L C ε G y θ d ,  (9) 

  ( ) ( ) [ ( ) ( ) ]v v v= φ − φ + − −d y y G y G y θ L v , 

  [ ( ( ) ) ] vt= ρ − +δ A L C δ d , (10) 

  0 ( )T T= + −θ Γ Ω C Cδ v CΩθ . (11) 

As in [9], [11], [33], [35], if assumption 1 is satisfied and Y∈y , V∈v , then since the systems (7) and (10) have form 

similar to (5), all solutions of the system (7) are bounded, i.e. there exists 0kΩ >  such that | ( ) |t kΩΩ ≤  for all 0t ≥ . 

Furthermore, we have that | | [ | | | | ] | |v Gk kφ≤ + +d θ L v  for ∈ Θθ , V∈v , then the signal vd  remains bounded with 

amplitude proportional to that of v . Therefore, the solutions of (10) are bounded and for the case ( ) 0t =v , 0t ≥  the 

system is asymptotically stable. In addition, if the signal ( )T TtΩ C  is persistently exciting, then from lemma 1 the es-

timation error ( )tθ  remains bounded, and for ( ) 0t =v , 0t ≥  the asymptotic relation holds: 

  lim ( )t t→+ ∞ =θ θ . 

Finally, ( ) ( ) ( )t t t= −ε δ Ω θ  for all t R∈  and the observation error is bounded since the signals ( )tδ  and ( )tΩ  have 

the same boundedness property. Therefore, the system (6)−(8) is an estimator for θ  in the noise free case. The presence 

of noise does not destabilize the observer. Note, that as in [9], [11], [33], [35] a complication of the equation (6) allows 

one to ensure observation of ( )tx  by ( )tζ , however, as it will be shown later such a nice property is not inherited by 

an adaptive set observer. This is why the simplified equation (6) is considered here. 

 Moreover, since the system (7) is a stable time-varying filter, the requirement that the signal ( )T T tC Ω  should be 

PE is related with the same properties of the signal ( ( ))v tG y . 

 

 B. The adaptive set observer equations 

 Usually the signal ( )tρ ∈ ϒ  is not measured and not available on-line, thus the observer (6)−(8) is not realizable. 

For this case we propose an interval observer based on Assumption 2 instead of Assumption 1 previously: 

  ( ) ( )o o o o v o v o= + + φ + −ζ A ζ B u y L y Cζ ; (12) 

  [ ] ( )o o o v= − −Ω A LC Ω G y ; (13) 

  ( )T T
o o o v o o o= − − +θ Γ Ω C y Cζ CΩ θ , (14) 

where the index { , }o m M∈  denotes the upper and lower interval bounds, n
o R∈ζ , n q

o R ×∈Ω  and  q
o R∈θ  have the 
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same meaning, the matrix 0T
o o= >Γ Γ  is a design parameter of the algorithm (14).  

 In set observer design the monotonicity property of observers equations plays an essential role. As it can be deduced 

from equations (12)−(14), the monotonicity of the first two subsystems (12), (13) is predefined by assumption 2 condi-

tions. Monotonicity of the system (14), that defines dynamics of parameters estimator, may not be followed by the same 

property of the systems (12), (13). Actually, it is shown below that under some conditions, the dynamics of the system 

(14) can be either cooperative or competitive, impacting the admissible set of θ  construction. In the following subsec-

tions each case will be analyzed and the new results are summarized in the theorems 1 and 2. 

 

 C. The competitive case 

 The following theorem establishes stability and monotonicity properties of the observers (12)−(14) for { , }o m M∈ . 

 T h e o r e m  1. Let assumption 2 hold, and ( )t X∈x , ( )t U∈u , ( )t V∈v , ( )tρ ∈ ϒ  and ∈ Θθ  for all 0t ≥ , 

and assume that the signals ( )T T
o tΩ C  are ( , )o oϑ –PE for some 0o > , 0oϑ > , { , }o m M∈ . Then: 

(i) for all 0t ≥  and { , }o m M∈  the solutions ( )o tζ , ( )o tΩ  and ( )o tθ  of the system (12)−(14) are 

bounded provided that ( )t V∈v , 0t ≥ ; 

(ii) 0 C≺ , ( ) 0t ≡v  for all 0t ≥  and there exists a matrix Γ  such that for all 0 oΓ Γ≺ ≺ , { , }o m M∈ , 

a.  if ( 0 ) 0o =Ω , { , }o m M∈ , ( 0 ) 0m ≥ε , (0) 0M ≤ε , (0)M m=θ θ , ( 0 )m M=θ θ  and there exist 

1
0

lim ( ) ( )
T T T

o o oT
T t t dt−

→+ ∞
= − ∫b Ω C Cε , 1

0
lim ( ) ( )

T T T
o o oT

T t t dt−
→+ ∞

= ∫R Ω C CΩ , { , }o m M∈  such that 

1
M m m

−<θ R b , 1
M M m
− <R b θ , then ( ) ( )M mt t≤ ≤θ θ θ , 0t ≥ . 

b. if ( 0 ) 0o =Ω , { , }o m M∈ , (0) 0m ≤ε , (0) 0M ≥ε , ( 0 )m m=θ θ , ( 0 )M M=θ θ  and 1
M M M

−<θ R b , 

1
m m m
− <R b θ , then ( ) ( )m Mt t≤ ≤θ θ θ , 0t ≥ . 

 P r o o f . Define o oε = −x ζ , o o= −θ θ θ  and o o o= + Ωδ ε θ  for { , }o m M∈ , then we obtain 

  [ ] ( )o o o o v o v= − + + +ε A L C ε G y θ p d ,  [ ( ( )) ] [ ( ( )) ]o o ot t= ρ − + ρ −p A A x B B u , (15) 

  [ ]o o o o o v= − + +δ A L C δ p d , (16) 

  ( )T T
o o o o o o= + −θ Γ Ω C Cδ v CΩ θ . (17) 

The new term op  appears in (15), (16) due to the introduction of oA , oB  in (12)−(14). Under assumption 2 for Y∈y , 

V∈v  all solutions of the system (13) are bounded, i.e. there exists , 0okΩ >  such that ,| ( ) |o ot kΩΩ ≤  for all 0t ≥ . 

Then | | [ | | | | ] | |v G ok kφ≤ + +d θ L v  and for ∈ Θθ , V∈v  the signal vd  remains bounded. The signal op  is bounded 

for any ( )tρ ∈ ϒ , ( )t X∈x , ( )t U∈u . Therefore, if assumption 2 is satisfied, the solutions of the system (16) are 

bounded. In addition, if the signal ( )T T
o tC Ω  is persistently exciting, then from lemma 1 the system (17) solutions re-

main bounded. Since ( ) ( ) ( )o o ot t t= −ε δ Ω θ  for all 0t ≥ , the observation error ( )o tε  is bounded. Therefore, the first 

part of the theorem is proven, and the solutions of the system (15)−(17) remain bounded provided that ( )t X∈x , 

( )t U∈u , ( )t V∈v , 0t ≥ . 

 Now, let ( ) 0t =v  for all 0t ≥ , that implies ( ) 0v t =d , 0t ≥ . Since 0 ( )+G y v≺  for all ( )t Y∈y , ( )t V∈v , 

0t ≥ , then monotonicity of the system (13) ensures that ( ) 0o tΩ ≺  for all 0t ≥  and { , }o m M∈  for ( 0 ) 0o =Ω . In 
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the equation (14) the gain matrix ( ) ( )T T
o o ot tΓ Ω C CΩ , 0t ≥  is positive semidefinite and not negative elementwise for 

both { , }o m M∈  due to 0 C≺  (the system (14) is competitive [29]). The matrix coefficients oΓ , { , }o m M∈  define 

the rate of changes for the variables 0θ . A modification of oΓ , { , }o m M∈  does not affect on behavior of the variables 

( ) ( )T T
o ot tΩ C CΩ  and ( ) ( )T T

o ot tΩ C Cε  (they are defined by the decoupled from (14) equations (12), (13) and their 

initial conditions). If oΓ , { , }o m M∈  are chosen sufficiently small, then the variables 0 ( )tθ  become “slowly-varying” 

in the system (3), (12)−(14) and the variables ( )o tΩ  and ( )o tε  are the “fast” ones. In such conditions, it is possible to 

apply averaging technique for the equation (14) simplification [5], [27]: 

  ( ) [ ( ) ]o o o o ot t= −θ Γ b R θ . (18) 

The matrices oR , { , }o m M∈  are positive definite due to PE condition ( 0.5 /o o o q≥ ϑR I  according to lemma A1 

from [9]). The system (18) is competitive and stable. The solutions of the system (18) asymptotically converge to the 

equilibrium 1
o o o
∞ −=θ R b . If 1

M m m
−<θ R b  and 1

M M m
− <R b θ , then using relations between solutions of stable averaged 

system and the original one (Theorem 5.5.1 in [27]) we get that 

  lim ( )m Mt
t

→+ ∞
≥θ θ , lim ( )M mt

t
→+ ∞

≤θ θ . 

This fact implies that the same relations hold in backward time (for the initial conditions (0) 0m ≤θ , (0) 0M ≥θ ) and 

( ) 0m t ≤θ , ( ) 0M t ≥θ  for all 0t ≥ .  

 The part (ii).a of the theorem has been proven. The part (ii).b can be proven in the same way. ■ 

 
 Theorem 1 establishes the conditions under which the estimation of the set of possible values for θ  is guaranteed. 

These conditions restrict admissible values for initial conditions of the system (12)−(14) and the gains oΓ , 

{ , }o m M∈ . For the given set X  the conditions ( 0 ) 0m ≥ε , (0) 0M ≤ε  can be easily realized. 

 The most restrictive condition of the theorem deals with oR  and ob  computation for { , }o m M∈ , they can be 

computed only asymptotically (afterwards the observer (12)−(14) runs). However, these quantities can be used to test 

reliability of the observers. The values 1
o o o
∞ −=θ R b , { , }o m M∈  can be evaluated and compared on-line with mθ  and 

Mθ , i.e. the estimates 

  1
0

( ) ( ) ( )
t T T

o o ot t d−= − τ τ τ∫b Ω C Cε , 1
0

( ) ( ) ( )
t T T

o o ot t d−= τ τ τ∫R Ω C CΩ  (19) 

are well defined for all finite ot ≥ , { , }o m M∈  (by lemma A1 from [9], the matrix ( )o tR  is not singular for ot ≥ ) 

and the variable 1( ) ( ) ( )o o ot t t∞ −=θ R b  can be used for o
∞θ  evaluation. Therefore, while the restrictions ( )o t∞ ≈θ o

∞θ , 

{ , }o m M∈  required in theorem 1 are satisfied, the observers generate reliable interval estimates for the vector θ . 

 From another point of view, theorem 1 fixes initial conditions for the systems (12)−(14), i.e. if the property 

m M≤ ≤x x x  holds for all X∈x  for some n
m R∈x , n

M R∈x , then the conditions of the part (ii).a of theorem 1 are 

satisfied taken ( 0 )m m=ξ x , ( 0 )M M=ξ x , ( 0 ) 0o =Ω , { , }o m M∈ , ( 0 )m m=θ θ , ( 0 )m M=θ θ . Therefore, in the 

system (3), (12)−(14) the unspecified initial conditions are ( 0 ) X∈x  only, then oR  and ob , { , }o m M∈  are func-

tions of ( 0 )x  (assuming for simplicity that ( ) 0t =v ). If the system (3) is also monotone, then computation of oR  and 

ob , { , }o m M∈  for the cases ( 0 ) { , }m M∈x x x  with { , }m M∈θ θ θ  has to provide worst-case estimates on the values 
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of oR  and ob , { , }o m M∈ . 

 R e m a r k  2 . The necessity of oR , ob , { , }o m M∈  computation and the idea of the observers (12)−(14) design 

can be clarified in other words for the case of assumption 1 ( m M= =L L L ), when ( ) 0t ≥x , ( ) 0t ≥u  for all 0t ≥ . In 

such situation ( ) 0m t ≥p , ( ) 0M t ≤p . Define oΩ = −E Ω Ω , where Ω  is the system (7) solution with ( 0 ) 0=Ω , then 

  [ ] [ ( ( )) ]o otΩ Ω= − + ρ −E A LC E A A Ω . 

The system (7) is stable from assumption 1, cooperative ( ( ( ) )m Mt− ρ − −A L C A LC A L C≺ ≺  for all 0t ≥  and both 

m −A L C  and M −A L C  are cooperative from assumption 2) with negative input and zero initial conditions, there-

fore, ( ) 0tΩ ≺  for all 0t ≥  (indeed, ( 0 ) 0≤Ω  and if , ( )i j tΩ , 1 i n≤ ≤ , 1 j q≤ ≤  approaches zero from below, then 

, ( )i j tΩ  becomes negative ensuring that ( ) 0tΩ ≺  for all 0t ≥ ). Thus, [ ( ( )) ] ( ) 0mt tρ −A A Ω ≺  and 

0 [ ( ( ) ) ] ( )Mt tρ −A A Ω≺ , that under assumption 2 means for ( 0 ) 0o =Ω : 

  ( ) ( ) ( ) 0M mt t tΩ Ω Ω≺ ≺ ≺  for all 0t ≥ . 

Cooperativeness of the matrix o −A L C  in the system (16) implies that ( ) 0m t ≥δ , ( ) 0M t ≤δ  for all 0t ≥  provided 

that (0) 0m ≥δ , ( 0 ) 0M ≤δ  respectively (the conditions (0) 0m ≥δ , ( 0 ) 0M ≤δ  are satisfied for ( 0 ) 0m ≥ε  and 

(0) 0M ≤ε  since ( 0 ) 0o =Ω ).  

 Further, in the equation (17) the gain matrix ( ) ( )T T
o o ot tΓ Ω C CΩ , 0t ≥  is positive semidefinite and not negative 

elementwise for both { , }o m M∈  (the system (17) is competitive [29]), ( ) ( ) 0T T
m m mt t ≤Γ Ω C Cδ  and 

( ) ( ) 0T T
M M Mt t ≥Γ Ω C Cδ  for all 0t ≥ . If oΓ , { , }o m M∈  are chosen sufficiently small, then the variables 0 ( )tθ  

become “slowly-varying” in the system (3), (13), (15)−(17) and the variables ( )o tΩ  and ( )o tδ  are the “fast” ones. 

Under these conditions averaging technique gives: 

  ( ) [ ( ) ]o o o o ot t= −θ Γ h R θ , 1
0

lim ( ) ( )
T T T

o o oT
T t t dt−

→+ ∞
= ∫h Ω C Cδ . (20) 

Note, that ( ) ( )T T
o ot tΩ C Cδ  and ( ) ( )T T

o ot tΩ C CΩ  are elementwise sign definite functions, therefore, oh  and oR  

inherit this property, namely 0m M≤ ≤h h ; 0T
o o= >R R , 0 oR≺ , { , }o m M∈ . 

Additionally, since ( ) ( ) 0M mt tΩ Ω≺ ≺  for all 0t ≥  we have m MR R≺ . Thus, the system (20) is competitive and 

stable. The solutions of the system (20) converge asymptotically to the equilibrium 1
o o o
∞ −=θ R h . In addition, if 

1 0m m
− ≤R h  and 1 0M M

− ≥R h , then  

  lim ( ) 0mt
t

→+ ∞
≤θ , lim ( ) 0Mt

t
→+ ∞

≥θ . 

For competitive systems this fact implies that ( ) 0m t ≤θ , ( ) 0M t ≥θ  for all 0t ≥  for the initial conditions (0) 0m ≤θ , 

(0) 0M ≥θ , that is exactly the conclusion of part (ii).a of theorem 1 (the part (ii).b can be illustrated by the case 

( ) 0t ≤x , ( ) 0t ≤u  for all 0t ≥ ). 

 Unfortunately, all these nice monotonicity properties for oh  and oR , { , }o m M∈  are not enough to ensure  

1 0m m
− ≤R h  and 1 0M M

− ≥R h  (the inverse matrices 1
o
−R  are not elementwise sign definite in general case). As a result, 

the requirement on 1
o o
−R b  on-line checking is introduced in theorem 1. □ 
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  Fig. 1. Results of simulation in example 1 (without disturbances): o
∞θ  ((a), (b)) and oθ  ((c), (d)), { , }o m M∈ . 

 

 R e m a r k  3 . Let us stress that PE property of the signals ( )T T
o tΩ C , { , }o m M∈  can also be checked on-line by 

computing the integrals 

  ( ) ( )
ot

T T
o o

t
d

+

τ τ τ∫ Ω C CΩ , { , }o m M∈  

for some 0o >  for all 0t ≥ . While these integrals result in a nonsingular matrix, the PE property holds. According to 

lemma A1 in [9], non-singularity of these integrals are equivalent to the same property of the following integral: 

  1

0
( ) ( )

t
T T
o ot d− τ τ τ∫Ω C CΩ , 

that coincides with ( )o tR  from (19). Thus, by calculating (19), it is possible to check on-line PE properties for 

( )T T
o tΩ C , { , }o m M∈ , simultaneously with verification of the conditions on 1

o o
−R b , { , }o m M∈ . □ 

 R e m a r k  4 . If the functions ( )o tCΩ  and ( )o tCε  are T -periodical, then the limits can be dropped in the defi-

nitions of oh  and oR , { , }o m M∈  in theorem 1 formulation [27]. In this case, on-line verification of the conditions 

for 1
o o
−R b  via (19) becomes trivial. □ 

 Fulfillment of the conditions 1
M m m

−<θ R b , 1
M M m
− <R b θ  or 1

M M M
−<θ R b , 1

m m m
− <R b θ  implies that the lower and 

upper estimates of possible values of oθ , { , }o m M∈  lie outside of the admissible values interval [ , ]m Mθ θ  for the 

vector of unknown parameters θ . However, this fact does not mean that the observer (12)−(14) can not improve avail-

able a priori estimate on the admissible interval [ , ]m Mθ θ . The variables oθ , { , }o m M∈  converge to these conserva-

tive asymptotic estimates 1
o o
−R b  for sufficiently small values of oΓ . By closing the gains oΓ , { , }o m M∈  to the 
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boundary Γ  it is possible to compute a more accurate estimate on admissible interval values for θ , that we are going to 

show in the following example. 

 E x a m p l e  1 . Let  

  
1 0.5sin( ) 1 0

( ) 1.2 2 0.3cos(3 ) 1.3
0 1 3 0.6 cos( 2 )

t
t t

t

− +⎡ ⎤
⎢ ⎥= − +
⎢ ⎥− +⎣ ⎦

A , 
0
0
0

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

B , 1 0 0
0 1 0
⎡ ⎤= ⎢ ⎥⎣ ⎦

C , 

  
0 1

( ) 1 0.2sin(2 ) 0
0 1 0.3sin(3 )

t t
t

⎡ ⎤
⎢ ⎥= −
⎢ ⎥+⎣ ⎦

G . 

In this example, we assume that the exact dependence of the matrix A  on time argument is not known and only majo-

rant matrices are available: 

  
1.5 1 0

1.2 2.3 1.3
0 1 3.6

m

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

A , 
0.5 1 0

1.2 1.7 1.3
0 1 2.4

M

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

A , 

while the matrix function ( )tG  is measured as it is required in the system (1). Assume that  

  1
2

if 0 ;( ) if ,k

t tt t t t
θ

θ

≤ ≤⎧= ⎨ < ≤⎩
θθ θ   1

2
1
⎡ ⎤= ⎢ ⎥⎣ ⎦

θ , 2
1
2

−⎡ ⎤= ⎢ ⎥−⎣ ⎦
θ , 

where 600ft =  is the time of simulation and 0.5 ft tθ = . Let 

  2 0 0
0 3 1

T
m M

⎡ ⎤= = = ⎢ ⎥⎣ ⎦
L L L , 

then assumption 2 holds for 

  
3.5 1 0

1.2 5.3 1.3
0 0 3.6

m

−⎡ ⎤
⎢ ⎥− = −
⎢ ⎥−⎣ ⎦

A L C , 
2.5 1 0

1.2 4.7 1.3
0 0 2.4

M

−⎡ ⎤
⎢ ⎥− = −
⎢ ⎥−⎣ ⎦

A LC   

and [1 4.5]Tm = −θ , [3.5 7]TM =θ  for 0 t tθ≤ ≤  and [ 2.5 9]Tm = − −θ , [ 0 4.5]TM =θ  for ft t tθ ≤ ≤ .  

 Let ( 0 ) [ 1 1 1]T=x  and 25m M= = =Γ Γ Γ I . The results of (19) computations and on-line graphical checking the 

conditions on 1
o o
−R b , { , }o m M∈  are shown in Fig. 1,a and b. As we can deduce from these figures the conditions of 

the point (ii).a of theorem 1 are satisfied for 0 t tθ≤ ≤ , and conditions of the point (ii).b are satisfied for ft t tθ ≤ ≤ . 

The variables θ  (the estimate of the ideal observer (6)−(8)), mθ  and Mθ  are plotted in Fig. 1,c and d for the case 

without disturbances. The variables θ , mθ  and Mθ  for the case of a stochastic noise presence with | ( ) | 1t ≤v  are 

shown in Fig. 2. □ 

 Before we continue it is worth to emphasize one feature of the proposed set adaptive observers illustrated by figures 

1 and 2. The purpose is not the exact estimation of the values of uncertain parameters, but to evaluate the set or the in-

terval of admissible values for such parameters. Therefore, the lower or upper estimate may have a different sign with 

respect to the real value of the parameter. The accuracy of the proposed approach is characterized by the interval length 

comparing with the “size” of uncertainty and complexity presented in the estimated system. In the situation when it is 

possible to design a conventional observer converging to exact values of state x  or parameters d  there is no need in 

interval observation. However, frequently for complex nonlinear systems with signal and parametric uncertainties the 

design of conventional exact observers is not possible. In this case the interval observation becomes useful, being the 

only available solution in practice. 
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  Fig. 2. Results of simulation in example 1 (with disturbances): oθ , { , }o m M∈ . 

 

 D. Cooperative case 

 Competitiveness of the adaptive observers (12)−(14) follows by assumption that 0 C≺ . Such restriction is natural 

and corresponds to situation when some part of the state space vector x  coordinates is available for measurements. Re-

laxation of this assumption leads to the case when the matrices ( ) ( )T T
o o ot t−Γ Ω C CΩ , { , }o m M∈  may become coop-

erative. 

 T h e o r e m  2. Let assumption 2 hold, and ( )t X∈x , ( )t U∈u , ( )t V∈v , ( )tρ ∈ ϒ  and ∈ Θθ  for all 0t ≥ , 

and assume that the signals ( )T T
o tΩ C  are ( , )o oϑ –PE for some 0o > , 0oϑ > , { , }o m M∈ . Then 

(i) for all t R∈  and { , }o m M∈  the solutions ( )o tζ , ( )o tΩ  and ( )o tθ  of the system (12)−(14) are 

bounded provided that ( )t V∈v , 0t ≥ ; 

(ii) let  ( ) 0t ≡v  and the matrices ( ) ( )T T
o o ot t−Γ Ω C CΩ  be cooperative for all 0t ≥ , { , }o m M∈ , 

a. if for all 0t ≥  and { , }o m M∈ , { , } \O m M o= , 

  ( ) [ ( ) ( ) ] 0T T
o o o o ot t t+ ≥Γ Ω C C ε Ω θ , ( ) ( ) ( ) 0T T

o o o O ot t − ≥Γ Ω C CΩ θ θ ; 

   ( ) [ ( ) ( ) ] 0T T
O O O O Ot t t+ ≤Γ Ω C C ε Ω θ , ( ) ( ) ( ) 0T T

O O O o Ot t − ≤Γ Ω C CΩ θ θ , 

then ( ) ( )o Ot t≤ ≤θ θ θ , 0t ≥ . 

b. there exists a matrix Γ  such that for all 0 oΓ Γ≺ ≺ , { , }o m M∈  if the signals ( )o tCε  and 

( )o tCΩ  are T -periodical for some 0T > , 0t ≥  and for all 0t ≥  and { , }o m M∈ , 

{ , } \O m M o= , 

  o o o≤b R θ , ( ) 0o O o− ≥R θ θ ; O O O≥b R θ , ( ) 0O o O− ≤R θ θ , 

then ( ) ( )o Ot t≤ ≤θ θ θ , 0t ≥ , where  

  1
0

( ) ( )
T T T

o o oT d−= − τ τ τ∫b Ω C Cε , 1
0

( ) ( )
T T T

o o oT d−= τ τ τ∫R Ω C CΩ . 

 P r o o f . The part (i) of the theorem can be proven in the same way as in theorem 1. Under conditions of the part 

(ii).a the system (14) is asymptotically stable cooperative with sign definite inputs. Rewriting the system (14) equations 

we obtain: 

  T T T T T T
o o o o o o o o o o o= − − −θ Γ Ω C Cε Γ Ω C CΩ θ Γ Ω C CΩ θ , o o= −θ θ θ , { , }o m M∈ . (21) 
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The matrices ( ) ( )T T
o o ot t−Γ Ω C CΩ , { , }o m M∈  are cooperative and stable (persistency of excitation ensures the last 

property). If the signals T T T T T T
o o o o o o o o o− = − −Γ Ω C Cδ Γ Ω C Cε Γ Ω C CΩ θ , { , }o m M∈  are sign definite, then apply-

ing monotonicity, it is possible to substantiate the desired relations between ( )m tθ , ( )M tθ  and θ . Let us evaluate the 

signal T T
o o o−Γ Ω C Cδ  sign using the given measurable information. Note that 

  ( )T T T T T T T T
o o o o o o o o o o o o o o− = − − − −Γ Ω C Cδ Γ Ω C Cε Γ Ω C CΩ θ Γ Ω C CΩ θ θ , 

and the sign of the signals T T T T
o o o o o o o− −Γ Ω C C ε Γ Ω C CΩ θ , { , }o m M∈  can be verified on-line. The sign of the 

last term for all m M≤ ≤θ θ θ  lies between zero and the sign of ( )T T
o o o O o−Γ Ω C CΩ θ θ , { , }o m M∈ , 

{ , } \O m M o= 1 (the matrix T T
o o oΓ Ω C CΩ  is competitive/monotone). Therefore, the set of implications hold: 

 ( ) ( ) ( ) ( ) 0T T T T
o o o o o o ot t t t− − ≤Γ Ω C Cε Γ Ω C CΩ θ , ( ) ( ) ( ) 0T T

o o o O ot t− − ≤Γ Ω C CΩ θ θ , 0t ≥  ⇒ ( )o t ≤θ θ ; 

 ( ) ( ) ( ) ( ) 0T T T T
o o o o o o ot t t t− − ≥Γ Ω C Cε Γ Ω C CΩ θ , ( ) ( ) ( ) 0T T

o o o O ot t− − ≥Γ Ω C CΩ θ θ , 0t ≥  ⇒ ( )o t ≥θ θ , 

that implies the theorem claim (ii).a. To prove part (ii).b, assume that norm of the matrices oΓ , { , }o m M∈  are chosen 

small enough to ensure that the variables ( )o tθ  are slowly-varying in the system (12)−(14). Applying averaging tech-

nique for the equation (21) with T -periodical right hand side [5], [27] we obtain: 

  o o o o o= − −θ b R θ R θ , { , }o m M∈ , 

where the matrices oR , { , }o m M∈  are cooperative and Hurwitz by the same arguments. Again  

  ( )o o o o o o o− = − − −b R θ b R θ R θ θ   

and the sign of o o o−b R θ  can be verified during or before the observers operation and 

( ) [ 0, ( ) ]o o o O o− ∈ −R θ θ R θ θ  for all m M≤ ≤θ θ θ  and { , }o m M∈ , { , } \O m M o= . ■ 

 The cooperative case is more sophisticated and it requires an on-line verification of a bigger number of conditions. 

To check constraints imposed on ob , oR , { , }o m M∈  for the system (3) solutions being T -periodical asymptotically, 

the following variables can be computed for t T> : 

  1( ) ( ) ( )
t T T

o o ot T
t T d−

−
= − τ τ τ∫b Ω C Cε , 1( ) ( ) ( )

t T T
o o ot T

t T d−
−

= τ τ τ∫R Ω C CΩ . 

 
 E x a m p l e  2 . Let  

  
1 0.1sin(3 ) 1 0.4 0.2sin(3 )

( ) 0 1 0.3cos( ) 1
0.5 0.1cos( 2 ) 1 2 0.2cos( 2 )

t t
t t

t t

− + +⎡ ⎤
⎢ ⎥= − +
⎢ ⎥+ − +⎣ ⎦

A , 
0
0
0

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

B , 1 0 1
1 1 0

−⎡ ⎤= ⎢ ⎥⎣ ⎦
C , 

  
1 0

( ) 0.3 0.3sin( 2 ) 0
0 0.3 0.2sin(3 )

t t
t

⎡ ⎤
⎢ ⎥= +
⎢ ⎥+⎣ ⎦

G . 

Again, in this example we assume that the exact dependence of the matrix A  on time argument is not known and only 

majorant matrices are available: 

  
0.9 1 .6
0 0.7 1

0.6 1 1.8
m

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

A , 
1.1 1 0.2
0 1.3 1

0.4 1 2.2
M

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

A , 

while the matrix function ( )tG  is measured. Assume that  

                                                           
1 The symbol \ is used for the set complement. 
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  1
2

if 0 ;( ) if ,k

t tt t t t
θ

θ

≤ ≤⎧= ⎨ < ≤⎩
θθ θ   1

.5
1

−⎡ ⎤= ⎢ ⎥−⎣ ⎦
θ , 2

0
2

⎡ ⎤= ⎢ ⎥−⎣ ⎦
θ , 

where 600ft =  is the time of simulation and 0.5 ft tθ = . Let 

  0 1 0
0.5 1 1

T
m

−⎡ ⎤= ⎢ ⎥−⎣ ⎦
L , 0 1 0

1 1 0.6

T
M

−⎡ ⎤= ⎢ ⎥⎣ ⎦
L , 

then assumption 2 holds for [ 1 2.5]Tm = − −θ , [ 0.5 0 ]TM =θ  and 

  
1.6 0.5 0.2
0 2.3 0

1.4 2 2.2
m m

−⎡ ⎤
⎢ ⎥− = −
⎢ ⎥−⎣ ⎦

A L C , 
1.9 0 0.6
0 1.7 0
0 0.4 1.8

M M

−⎡ ⎤
⎢ ⎥− = −
⎢ ⎥−⎣ ⎦

A L C  .  
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  Fig. 3. Results of simulation in example 2 (without disturbances): oθ , { , }o m M∈ . 

 

 Let ( 0 ) [ 0 0 0]T=x  and ([40 180] )T
m M diag= = =Γ Γ Γ . From the system equations we conclude that the so-

lutions become asymptotically 2 π -periodical functions of time. Numerical calculations show that ( )tG  is persistently 

excited with 2= π , therefore the signals ( )T T
o tΩ C , { , }o m M∈  possess the same property. Numerical calculation of 

the matrices ( ) ( )T T
o o ot t−Γ Ω C CΩ , ( )o tb , ( )o tR  for both { , }o m M∈  shows that the conditions  

  ( ) ( )m m mt t≤b R θ , ( ) ( ) 0m M mt − ≥R θ θ ; ( ) ( )M M Mt t≥b R θ , ( ) ( ) 0M m Mt − ≤R θ θ  

are satisfied for all 25t ≥  (the first 25 seconds is the interval of the observer convergence from the chosen zero initial 

conditions). Therefore, all conditions of theorem 2, part (ii).b hold and it should be ( ) ( )m Mt t≤ ≤θ θ θ , 25t ≥ , that is 

confirmed by results of the system simulation presented in Fig. 3. The variables mθ  and Mθ  for the case of a stochas-

tic noise presence with | ( ) | 0.5t ≤v  are plotted in Fig. 4. □ 

 R e m a r k  5 . It is important to note that the conditions of assumption 2 used in theorems 1,2 to substantiate prop-

erties of the adaptive set observers are less restrictive than the corresponding conditions of assumption 1 applicable to 

the conventional adaptive observers (it is hard to compute the matrices L  and P  from assumption 1 in general case). 

This fact justifies that the set observers can be applied in case where conventional observers can not be realized due to 

lack of information about the system or plant models complexity. □ 
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  Fig. 4. Results of simulation in example 2 (with disturbances): oθ , { , }o m M∈ . 

 

  5. Set state observer 

 Consider the following observers 

  ( ) ( ) ( )
oo o o o v v O o v o= + + φ + + −ξ A ξ B u y G y θ L y Cξ , , { , }oo O m M∈ , (22) 

where oOθ , { , }oO m M∈  are generated by (14) and n
o R∈ξ , { , }o m M∈  are the state estimates. The equation (22) 

partly repeats (12), however, the state oζ , { , }o m M∈  of the system (12) can not be used for the state x  interval esti-

mation since one of the inequalities m M<θ θ  or M m<θ θ  holds depending on the auxiliary conditions formulated in 

theorems 1,2. This is why an additional index oO  is introduced in (22). Under conditions of theorems 1,2 the state in-

terval observation via (22) follows by standard arguments [29]. 

 T h e o r e m  3. Let assumption 2 hold, and ( )t X∈x , ( )t U∈u , ( )t V∈v , ( )tρ ∈ ϒ  and ∈ Θθ  for all 0t ≥ , 

and assume that the signals ( )T T
o tΩ C  are ( , )o oϑ –PE for some 0o > , 0oϑ > , { , }o m M∈ . Then 

(i) for all 0t ≥  and { , }o m M∈  the solutions ( )o tξ , ( )o tζ , ( )o tΩ  and ( )o tθ  of the system (12)−(14), 

(22) are bounded provided that ( )t V∈v , 0t ≥ ; 

(ii) let  ( ) 0t ≡v , ( ) 0t ≥x , ( ) 0t ≥u  for all 0t ≥  and theorem 1, part (ii) or theorem 2, part (ii) conditions 

are verified indicating that ( ) ( )o Ot t≤ ≤θ θ θ , , { , }o O m M∈ , 0t ≥ , then also ( ) ( ) ( )m Mt t t≤ ≤ξ x ξ  

for all 0t ≥  provided that ( 0 ) ( 0 ) ( 0 )m M≤ ≤ξ x ξ  and mO o= , MO O=  in (22); 

(iii) let  ( ) 0t ≡v , ( ) 0t ≤x , ( ) 0t ≤u  for all 0t ≥  and theorem 1, part (ii) or theorem 2, part (ii) conditions 

are verified indicating that ( ) ( )o Ot t≤ ≤θ θ θ , , { , }o O m M∈ , 0t ≥ , then also ( ) ( ) ( )M mt t t≤ ≤ξ x ξ  

for all 0t ≥  provided that ( 0 ) ( 0 ) ( 0 )M m≤ ≤ξ x ξ  and mO O= , MO o=  in (22). 

 P r o o f . Consider the estimation errors o o= −e x ξ , , { , }oo O m M∈ , 

  [ ] ( )[ ]
oo o o o v O v o= − + − + +e A L C e G y θ θ d p , (23) 

  [ ( ( )) ] [ ( ( )) ]o o ot t= ρ − + ρ −p A A x B B u , ( ) ( ) [ ( ) ( )]v v v= φ − φ + − −d y y G y G y θ L v . 

Since all conditions of theorem 1, part (i) or theorem 2, part (i) are satisfied, then the solutions ( )o tζ , ( )o tΩ  and 

( )o tθ  are bounded for both { , }o m M∈ . While ( )t X∈x , ( )t U∈u , ( )t V∈v , ( )tρ ∈ ϒ  and ∈ Θθ  the signals 

( )o tp , { , }o m M∈  and ( )v td  stay bounded, and under assumption 2, (23) is an asymptotically stable cooperative 
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linear system with bounded input ( )[ ]
ov O v o− + +G y θ θ d p , that implies boundedness of the variables ( )o tξ , 

{ , }o m M∈ . The part (i) has been proven. 

 To substantiate the part (ii) note that in this case ( ) 0m t ≥p , ( ) 0M t ≤p , ( ) 0v t =d  for 0t ≥ . Then the system (23) 

with o m=  is cooperative with positive input ( )[ ]o m− +G y θ θ p , by standard arguments in this case, if ( 0 ) 0m ≥e , 

then the property ( ) 0m t ≥e  is preserved for all 0t ≥ . For o M=  the system (23) is cooperative with negative valued 

input ( )[ ]O M− +G y θ θ p , that for (0) 0M ≤e  implies ( ) 0M t ≤e , 0t ≥ . In the case of part (iii), ( ) 0M t ≥p , 

( ) 0m t ≤p , ( ) 0v t =d  for all 0t ≥ . Then the input ( )[ ]O m− +G y θ θ p  is negative and the input ( )[ ]o M− +G y θ θ p  

is positive, that implies the theorem claim. ■ 

 
 For easy reference, the computational procedure is summarized as follows: 

1. Take the given sets X , U , V , Y , Θ , ϒ  and compute the bounds mx , Mx , mθ  and Mθ . 

2. Transform the system (1) to the LPV form (3). 

3. Find the matrices oL , { , }o m M∈  and verify Assumption 2. 

4. Build the set adaptive observer (12)−(14). Calculate (19) and check the PE condition. Distinguish competitive 

or cooperative cases: 

a. Competitive case ( 0 C≺ ). Verify the properties of either o
∞θ  or o

∞θ , { , }o m M∈  in accordance with 

the part (ii) of Theorem 1. 

b. Cooperative case (the matrix ( ) ( )T T
o o ot t−Γ Ω C CΩ , 0t ≥  is cooperative). Check the inequalities of 

the part (ii) of Theorem 2. 

5. Augment the set state observer (22) and check the conditions of the parts (ii) or (iii) of Theorem 3. 

 
 E x a m p l e  2  (continue). It was shown previously that in this case ( ) ( )m Mt t≤ ≤θ θ θ  for all 25t ≥ . Since 

( ) 0t =u  and 0≤θ , then ( ) 0t ≤x  for all 0t ≥  and the conditions of theorem 3, part (iii) are satisfied. The corre-

sponding trajectory of the state observers (22) is shown in Fig. 5 for two time windows (after and before tθ ). □ 

 As in the ideal case (6)−(8) if some components of ρ  are available for measurement (the output y , for instance), 

then they can be preserved in the matrices mA , MA  that become matrix functions ( )mA y , ( )MA y , this idea is illus-

trated in the next example. 
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  Fig. 5. Results of state estimation in example 2 (without disturbances). 
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  Fig. 6. The parameters set estimation for (24): oθ , { , }o m M∈ . 

 
 E x a m p l e  3 . Consider a double mass model for a vibration crusher [10], the masses correspond to two platforms 

connecting by springs and excited by rotating motors each. We assume, that movements of platforms are possible in 

vertical plane only. Mathematical model of the system has form 

  1 2 1 1 1

2 1 2 1 3 0 1 1 1 2 2

; ;
( ) ( )( ) / ( ) ( ) ( );

x x y x v
x m t x c m t x x c m t x u t u t

= = +
= −β − − − + θ + θ  (24a) 

  3 4 2 3 2

4 2 4 1 3 1 3 3 1 4 2

; ;
( ) ( )( ) ( ) ( ) ( ),

x x y x v
x M t x c M t x x c M t x u t u t

= = +
= −β + − − + θ + θ  (24b) 

where Rx ∈1 , Rx ∈3  are displacements of the platforms from their steady state positions, Rx ∈1 , Rx ∈3  are veloci-

ties of the platforms; Ry ∈1 , Ry ∈2  are noisy measurements; 1u , 2u  are exciting forces formed by the rotating mo-

tors located on the platforms; 1β , 2β  are small known friction coefficients; values of spring stickiness 1c , 0c  are 

known, the value c  of coupling stickiness is unknown; 4R∈θ  is the vector of unknown control gains. Values of 

masses m  and M  are assumed unknown and time-varying. Uppers bounds are given for all unknown parameters and 

the state x : m Mc c c≤ ≤ , ( )m Mm m t m≤ ≤ , ( )m Mm M t m≤ ≤ , m M≤ ≤θ θ θ , m M≤ ≤x x x . The controls are the posi-

tive half-period square pulses with amplitude 1 and periods 5 and 6 respectively. Take  

1 1 1
1 0

1 1 1
2 0

0 1 0 0
( ) 0

0 0 0 1
0 ( )

M m m m M
m

m M M m m

c m c m c m

c m c m c m

− − −

− − −

⎡ ⎤
⎢ ⎥− β + −⎢ ⎥=
⎢ ⎥
⎢ ⎥− β + −⎣ ⎦

A , 
1 1 1

1 0

1 1
2 0

0 1 0 0
( ) 0

0 0 0 1
0 ( )

m M M M m
M

M m M M

c m c m c m

c mm c m c m

− − −

− −

⎡ ⎤
⎢ ⎥− β + −⎢ ⎥=
⎢ ⎥
⎢ ⎥− β + −⎣ ⎦

A , 

1 2

1 2

0 0 0 0
( ) ( ) 0 0( ) 0 0 0 0
0 0 ( ) ( )

u t u tt

u t u t

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G ,
1

1

1
2

1 0
( ) 0

0 1
0 ( )

M m
m

M m

c m

c m

−

−

⎡ ⎤
⎢ ⎥− β +⎢ ⎥
⎢ ⎥
⎢ ⎥− β +⎣ ⎦

L , 
1

1

1
2

1 0
( ) 0

0 1
0 ( )

m M
M

m M

c m

c m

−

−

⎡ ⎤
⎢ ⎥− β +⎢ ⎥=
⎢ ⎥
⎢ ⎥− β +⎣ ⎦

L , 

0=B , ( ) 0yϕ = , then the matrices o o−A L C , { , }o m M∈  are cooperative and asymptotically stable (assumption 2 

is satisfied). For the parameters  

 .25mm = , .33Mm = ; 0.08mc = , 0.12Mc = , 0.1c = ; [0.5 0 0 0.5]Tm =θ , [2 1 1 2]TM =θ , [1 0.5 0.5 1.3]T=θ , 
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  1 1 1( ) 0.5( )(1 0.1( 0.5 ) / [1 0.1| 0.5 |]) 0.05sin(3 )M m k k mm t m m t t t t m t− − −= − + − + − + + , 1 1( ) ( )M mM t m m m t− −= + − , 

where 100kt =  is the simulation time interval, the results of the parameter θ  interval estimation are shown in Fig. 6. 

The estimates provided by the state observer (22) are plotted in Fig 7. □ 
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  Fig. 7. Upper and lower bounds for the state vector in (24). 

 

 R e m a r k  6 . The requirement imposed in theorems 1−3 on initial conditions ( 0 )oξ , ( 0 )oζ , ( 0 )oΩ , ( 0 )oθ , 

{ , }o m M∈  are not restrictive and can be skipped, that may result in additional transients in the intervals evaluation 

(for linear stable systems the asymptotic behavior is defined by properties of external inputs). □ 

 R e m a r k  7 . An advantage of the designed solution is that exponential complexity usual for set-membership pa-

rameter estimation is avoided. In [15], [16], [25], the problem is formulated as a Constraint Satisfaction Problem (CSP) 

involving an ordinary differential equation. The CSP is solved in a rigorous way using branch and bound algorithms. 

The main particularity of these techniques is that the parameter domain is systematically partitioned at each iteration 

that makes the complexity exponential with respect to the dimension of the parameter vector. It has been proven that the 

number of iterations is given by: 

  ( )([ ]) / 1 qN W= Θ ε + , 

where ([ ])W Θ  is the width of the domain of the parameter vector θ  (a measure of the set Θ ); ε  is a tolerance fixed by 

the user in order to have a result in a finite time, and q  is the dimension of the parameter vector. In addition, it is im-

portant to note that each iteration should be solved for all the instants of time jt , where 0j ≥  lies in the range of the 

interval of simulation. This process is known to be time-consuming. This limitation is avoided in our work and the di-

mension of the proposed observer is 2 (2 )n n q q+ × + , that is similar to the Kalman filter. This achievement makes 

reasonable application of the proposed observer to higher dimensional uncertain nonlinear systems. □ 

 Let us consider application of the proposed set adaptive observers in the fault detection problem.  

 

  6. Fault detection 

 The main idea of model-based fault detection and diagnosis is to check whether the behavior of the plant is consis-
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tent with its fault-free model. Many model-based approaches use estimation of some relevant internal or observed vari-

ables to produce fault-indicating signals (residuals), see [7] and [8] for a recent survey. 

 In this section we assume that in the system (3) the faults appearance is modeled by the vector θ  (the absence of 

faults corresponds to the case 0=θ ). The problem is to detect a significant change of the vector θ  value within mini-

mum amount of time.  

 

 A. Fault detection procedure 

 To solve this problem, in [26] it is proposed to use the following set observers: 

  ( ) ( )o o o o v o v o= + + φ + −ζ A ζ B u y L y Cζ , { , }o m M∈ , 

that coincide with (12). The observers (12) estimate the interval of the state vector values for the nominal case 0=θ . 

Under some mild assumptions in this case we have ( ) ( ) ( )m Mt t t≤ ≤y y y  for all 0t ≥ , m m=y Cζ , M M=y Cζ , and 

a failure of this conditions indicates a fault appearance [4], [26]. The fault detection signal is defined as follows 

  1( ) ( ) ... ( )pS t s t s t= ∨ ∨ , , ,0 if ( ) ( ) ( ) ,
( )

1 otherwise ,
m i i M i

i
y t y t y t

s t
≤ ≤⎧= ⎨

⎩
 1,i p= , (25) 

then ( ) 0S t =  in the nominal case and ( ) 1S t =  if a fault is detected (the symbol ∨  is stated for the “logic or”). A 

method of the smallest detectable fault estimation for the observers (12) is also discussed in [4], [26]. 

 What new can be added to this procedure with application of (12)−(14) and (22)? Firstly, let us stress that (12) are 

incorporated in the adaptive set observers, therefore the indicator (25) can be still verified. Secondly, the observers 

(12)−(14) provide the interval estimation for the fault vector θ  directly, that allows us to generate the additional fault 

indicator signal as follows: 

  1( ) ( ) ... ( )qD t d t d t= ∨ ∨ , , ,0 if ( ) 0 ( ) ,( )
1 otherwise ,

m j M i
j

t td t
⎧ θ ≤ ≤ θ= ⎨
⎩

 1,j q= . (26) 

Under conditions of theorems 1 and 2 (exchanging indexes m , M  probably) a separation of the signal (26) from zero 

indicates a fault appearance, while the variables mθ , Mθ  evaluate the admissible interval of the fault θ  (that can help 

with the fault isolation). And finally, the observers (22) estimate the state x  values taking into account the interval 

[ , ]m Mθ θ , i.e. the condition ( ) ( ) ( )m Mt t t≤ ≤ξ x ξ  approves the interval [ , ]m Mθ θ  and a failure of these bounds im-

plies that either conditions of theorems 1 and 2 are not satisfied or the level of measurement noise/disturbances is very 

high. Then the third indicating signal can be defined as follows 

  1( ) ( ) ... ( )pZ t z t z t= ∨ ∨ , , ,0 if ( ) ( ) ( ) ,
( )

1 otherwise ,
m i i M i

i
t y t t

z t
ψ ≤ ≤ ψ⎧= ⎨

⎩
 1,i p= , m m=ψ Cξ , M M=ψ Cξ . (27) 

Again, the case ( ) 0Z t =  corresponds to the situation m M≤ ≤θ θ θ  and ( ) ( ) ( )m Mt t t≤ ≤ξ x ξ , while ( ) 1Z t =  indi-

cates the opposite status. Therefore, the proposed approach consists in a simultaneous verification of the test signals 

(25)−(27), which gives more tools for fault detection and isolation than the conventional approach based on the set state 

observers. 

 Let us demonstrate workability of this approach through a simple application. 

 

 B. State monitoring for three-tanks-system 

 As in works [17], [26], [32], [36] consider the three-tank-system presented in Fig. 8 and described by the following 

equations: 
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  1 13 1 3 1 1( )cS x a x x u= − ρ − + + θ , ( ) ( ) | |x sign x xρ = ;  

  2 32 3 2 20 2 2 2( ) ( )cS x a x x a x u= − ρ − − ρ + + θ ; (28) 

  3 13 1 3 32 3 2 3( ) ( )cS x a x x a x x= ρ − − ρ − + θ , 

 

  
x1 

Sc 

x3

Sc 

x2

Sc 

u1 u2

a13 a32 a20

 
  Fig. 8. The structure scheme of the three-tank-system 

 

where the variables 0ix > , 1,3i =  denote the liquids levels in the corresponding tanks, 1 3[ ... ]Tx x=x ; ju , 1, 2j =  are 

pump flows attached to the tanks 1 and 2, 1 2[ ]Tu u=u ; cS  is the cross section area of the tanks; the tanks are con-

nected via the pipes with outflow coefficients 13 32a a=  and 20a  is the nominal outflow coefficient, 

13 32 20[ ]Ta a a=a . The possible actuator faults in the tanks 1 and 2 are modeled by 1θ  and 2θ , the faulty outflow in 

the tank 3 is described by 3θ , 1 3[ ... ]T= θ θθ . 

 It is required to design a fault detection system for the model (28). Here we consider two scenarios. In the first one 

as in [26] we assume that only the variables 1x  and 2x  are available for measurements and the nominal values of the 

model (28) parameters ( 13a , 32a , 20a  and cS ) are given. In this case we do not take into account possible faults in the 

tank 3 ( 3θ  is set to zero). In the second scenario as in [26], [32] all state variables ix , 1,3i =  are accessible for direct 

measurements, but the model (28) parameters a  belong to some interval of uncertainty, i.e. the real values a  of the 

model parameters belong to the interval [ , ]m Mr ra a , where the coefficients mr , Mr  define admissible deviations of a  

from the nominal values a . The parameter cS  is typically known and is not changing during normal operation. In both 

cases the domain of the state x  values is given, i.e. ( )m Mt≤ ≤x x x  for all 0t ≥  in the current operating mode. 

 To apply the approach proposed here we need to transform the system (28) to the form of (3), for this purpose note 

that 0.5( ) / ( ) | |x x x x −ρ = λ = , then the model (28) can be rewritten as follows: 

  1( , ) cS−= + +x A x a x Bu θ , (29) 

13 1 3 13 1 31
32 3 2 20 2 32 3 2

13 1 3 32 3 2 32 3 2 13 1 3

( ) 0 ( )
( , ) 0 ( ) ( ) ( )

( ) ( ) ( ) ( )
c

a x x a x x
S a x x a x a x x

a x x a x x a x x a x x

−
− λ − λ −⎡ ⎤

⎢ ⎥= − λ − − λ λ −
⎢ ⎥λ − λ − − λ − − λ −⎣ ⎦

A x a , 1
1 0
0 1
0 0

cS−
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

B , 

that is similar to (3). For the first scenario from (29) we get 

  
13 1 ,3 13 1 ,3

1
32 ,3 2 20 2 32 ,3 2

13 1 ,3 32 ,3 2 32 ,3 2 13 1 ,3

( ) 0 ( )
( ) 0 ( ) ( ) ( )

( ) ( ) ( ) ( )

M m
m c m M

m M m M

a y x a y x
S a x y a y a x y

a y x a x y a x y a y x

−
⎡ ⎤− λ − λ −
⎢ ⎥= − λ − − λ λ −⎢ ⎥

λ − λ − − λ − − λ −⎢ ⎥⎣ ⎦

A y , 
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Fig. 9. The results of simulation for the first scenario (without noise): the output y  and its reference dy  ((a), (b)); oθ  

for { , }o m M∈  ((c), (d)); the fault indicating signals s  and d  ((e), (g)). 

 

  
13 1 ,3 13 1 ,3

1
32 ,3 2 20 2 32 ,3 2

13 1 ,3 32 ,3 2 32 ,3 2 13 1 ,3

( ) 0 ( )
( ) 0 ( ) ( ) ( )

( ) ( ) ( ) ( )

m M
M c M m

M m M m

a y x a y x
S a x y a y a x y

a y x a x y a x y a y x

−
⎡ ⎤− λ − λ −
⎢ ⎥= − λ − − λ λ −⎢ ⎥

λ − λ − − λ − − λ −⎢ ⎥⎣ ⎦

A y , 

  1 0 0
0 1 0

⎡ ⎤= ⎢ ⎥⎣ ⎦
C , =G B , 

1 0
0 1
0 0

m M
⎡ ⎤
⎢ ⎥= =
⎢ ⎥
⎣ ⎦

L L , 0> , 

and for the second one 

 
13 1 3 13 1 31

32 3 2 20 2 32 3 2
13 1 3 32 3 2 32 3 2 13 1 3

( ) 0 ( )
( ) 0 [ ( ) ( ) ] ( )

( ) ( ) [ ( ) ( ) ]

M m
m c M m

m m M

r a y y r a y y
S r a y y a y r a y y

r a y y r a y y r a y y a y y

−
− λ − λ −⎡ ⎤

⎢ ⎥= − λ − + λ λ −
⎢ ⎥λ − λ − − λ − − λ −⎣ ⎦

A y , 

  
13 1 3 13 1 31

32 3 2 20 2 32 3 2
13 1 3 32 3 2 32 3 2 13 1 3

( ) 0 ( )
( ) 0 [ ( ) ( )] ( )

( ) ( ) [ ( ) ( )]

m M
M c m M

M M m

r a y y r a y y
S r a y y a y r a y y

r a y y r a y y r a y y a y y

−
− λ − λ −⎡ ⎤

⎢ ⎥= − λ − + λ λ −
⎢ ⎥λ − λ − − λ − − λ −⎣ ⎦

A y , 

  =C I , 1
cS−=G I , m M= =L L I , 0> . 

Clearly, in both cases the matrices mA  and MA  are cooperative and for the chosen gains mL , ML  the conditions of 

assumption 2 are satisfied. Theorem 1 can be applied here due to the matrix C  structure in both scenarios. 

 For both scenarios the control algorithms are chosen as follows 

  1 1 1 ,1( , ) ( ( ( ) ) )ru t y k y y t= υ − ρ − , 2 2 2 ,2 20 2( , ) ( ( ( ) ) ( ) )ru t y k y y t a y= υ − ρ − + ρ , { if 0;( ) 0 otherwise ,
u uu >υ =  

where ,1 ,2( ) [ ( ) ( ) ]Tr r rt y t y t=y  is the reference signal to be tracked by the state components 1x  and 2x ; 0k >  the 
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control gain. 
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Fig. 10. The results of simulation for the first scenario (with noise): the output y  and its reference dy  ((a), (b)); oθ  for 

{ , }o m M∈  ((c), (d)); the fault indicating signals s  and d  ((e), (g)). 

 

 The following values of parameters are used for simulation: 

  4
13 32 1.329 10a a −= = × , 4

20 1.772 10a −= × , 0.0154cS = , 31.329 10k −= × , 3= , [0.44 0.04 0.24]Tm =x ,  

 [0.56 0.16 0.36]TM =x , 200T = , ( ) [ 0.5(1 0.07 ( ) ) 0.1(1 0.5 ( ) ) ]Tr t t t= + μ + μy , { 0 if mod / 2;( ) 1 otherwise.
t T Tt ≤μ =  

The initial conditions for the system (28) are chosen as ( 0 ) 0.5( )m M= +x x x .  

 For the first scenario during the simulation, it is assumed that there are no faults for the first 200 sec, next the fault 

5
1 8 10−θ = ×  appears at the time instant 1 200t =  sec, the fault 5

2 6 10−θ = ×  appears at 2 300t =  sec (that is 25% and 

20% from the maximal control amplitude). The corresponding trajectories are shown in Fig. 9 for the case without noise 

(the output curves are plotted in Fig. 9,a and b, the graphics of θ , mθ , Mθ  are presented in Fig. 9,c and d, the scaled 

indicating signals is , id , 1, 2i =  are shown in Fig. 9,e and g, the signals iz  are not presented since they are zero dur-

ing all time of the simulation). The fault detection delays are 0.35 sec and 0.45 sec respectively based on the signals 1s  

and 2s  only. The same trajectories for the case of a stochastic noise presence 3| ( ) | 4.5 10t −≤ ×v  are plotted in Fig. 10. 

As it can be seen from the figures 9 and 10, the faults indicating signals (26) are less sensitive to the measurement 

noise. In this example, based on id , 1, 2i =  it is possible to detect faults even in the case of rather noisy measurements. 

 For the second scenario it is assumed that 0.75mr = , 1.25Mr =  and the first two faults appear at similar time in-
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stants. Additionally, the third fault 5
3 9 10−θ = ×  appears at 3 300t =  sec. The indicating signals are plotted in Fig. 11 

(Fig. 11,a and b represent the case without noise, and Fig. 11, c and d for noisy measurements). Again we note better 

robustness properties of the signals id , 1,3i =  comparing them with is , 1,3i = . The signals iz , 1,3i =  stay zero con-

firming validity of the indicators  id , 1,3i = . In this scenario, the fault detection delays are 0.52 sec, 0.55 sec and 7.61 

sec respectively. 

 The simulation results confirm good fault detection ability of the proposed adaptive set observers. 
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Fig. 11. The results of simulation for the second scenario: the fault indicating signals s  and d  without noise ((a), (b)) 

and with a measurement noise ((c), (d)). 

 

  7. Conclusion 

 The basic problem studied by this paper is adaptive observers design for joint parameter and state estimation of 

nonlinear continuous time systems. Based on a guaranteed LPV approximation, the problem of set observers design for 

the nonlinear system is reformulated in terms of adaptive observers design problem for LPV ones. The exponential 

complexity usual for set-membership parameter estimation in nonlinear continuous-time systems is avoided. The com-

plexity of the proposed observer is similar to the Kalman filter and the dimension of the set adaptive observer equations 

increases proportionally to the parameter θ  and to the state x  dimensions (the full adaptive set observer dimension is 

2 (2 )n n q q+ × + ). This setting  makes possible application of observers for higher dimension uncertain systems.  

 It is shown that under standard cooperativity assumption imposed on the observer equations, the adaptation loop 

may be cooperative or competitive depending on additional circumstances. Both competitive and cooperative cases are 

analyzed and applicability conditions for the adaptive observers are proposed. Moreover, the proposed applicability 

conditions of the adaptive set observers (presented in Assumption 2) are less restrictive than those corresponding to the 

conventional adaptive observers (formulated in Assumption 1). Thus, the adaptive set observers can be applied in the 

cases when the solution of the parameter dependent Lyapunov equation from Assumption 1 is not feasible.  

 The results of the developed techniques suggest that in the presence of small uncertainties (small deviations of the 

parameters and the state from their nominal/majorant values) the introduction of adaptive technology may not provide 

significant improvement in the state estimation. However, if the set of admissible values for the model parameters is 

largely deviated or under noisy conditions, then the adaptive set observers proposed here could be superior to the al-
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ready existing solutions. 

 Finally, it was shown how set adaptive observers can be used to solve the problem of parametric fault detection. 
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