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The dimensionality of turbulence in fluid layers determines their properties. We study electro-
magnetically driven flows in finite depth fluid layers and show that eddy viscosity, which appears as
a result of three-dimensional motions, leads to increased bottom damping. The anomaly coefficient,
which characterizes the deviation of damping from the one derived using a quasi-two-dimensional
model, can be used as a measure of the flow dimensionality. Experiments in turbulent layers show
that when the anomaly coefficient becomes high, the turbulent inverse energy cascade is suppressed.
In the opposite limit turbulence can self-organize into a coherent flow.

PACS numbers: 47.27.Rc, 47.55.Hd, 42.68.Bz

Fluid layers represent a broad class of flows whose
depths are much smaller than their horizontal extents,
for example, planetary atmospheres and oceans. A dis-
covery of the upscale energy transfer in two-dimensional
(2D) turbulence [1] gave new insight into the energy bal-
ance in turbulent layers. The inverse cascade transfers
energy from smaller to larger scales thus allowing for tur-
bulence self-organization. This is in contrast with three-
dimensional (3D) turbulence where energy is nonlinearly
transferred towards small scales (direct cascade).

Real physical layers differ from the ideal 2D model
since they have finite depths and non-zero dissipation.
The effect of the layer thickness on turbulence driven by
2D forcing has been studied in 3D numerical simulations
[2, 3]. It has been shown that in “turbulence in more
than two and less than three dimensions”, the injected
energy flux splits into the direct and inverse parts. At
ratios of the layer depth h over the forcing scale lf above
h/lf ∼ 0.5 the inverse energy cascade is greatly reduced.
When the inverse energy flux is suppressed, the energy
injected into the flow is transferred towards small scales
by the direct cascade, developing the Kolmogorov k−5/3

spectrum at k > kf . This result illustrates that 2D and
3D turbulence may coexist.

2D/3D effects have been studied in electromagnetically
driven flows using two main schemes to force the fluid mo-
tion. In liquid metals placed in the vertical homogeneous
magnetic field the flow is forced by applying spatially
varying electric field which generates J × B forces. In
such magnetohydrodynamic (MHD) flows 2D properties
are enforced by the magnetic field and the 3D behav-
ior is restricted to a very thin Hartmann layer [4]. The
deviations from 2D in such flows may be due to the fi-
nite resistivity in very thick layers [5, 6]. Another class
of experiments employs spatially periodic magnetic field
crossed with the constant horizontal electric current to
produce interacting vortices [7–9]. In this case the thick-
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ness of the Hartmann layer exceeds the layer depth and
2D/3D effects are determined by the factors which are
different from those in MHD flows, for example, by a
density stratification.

The 3D effects are closely related to the energy dissi-
pation in the layers. This connection however is not fully
understood in experiments. The measured flow damp-
ing rates are often compared with those derived from a
quasi-2D model [10, 11] which assumes no vertical mo-
tions within the layer. In thin layers, the agreement is
usually within a factor of 2 [8, 12]. However in some
experiments a much better agreement with the quasi-2D
model was observed [13]. This contradicts recent claims
about the intrinsic three-dimensionality of the flows in
thin layers of electrolytes [14, 15]. There is a need to
clarify this.

Physical three-dimensionality of the flow is determined
by the amount of 3D motion in the layer. This motion
may naturally develop in the layer, as in [3], but it can
also be injected into the flow by non-2D forcing or it
can be generated by the shear-driven instabilities in the
boundary layer. In this case, the critical layer thickness
cannot be used as a practical criterion of the 2D/3D tran-
sition since it will vary depending on the source of 3D
motion. The transition from 2D to 3D, which marks a
fundamental change in the energy transfer, needs to be
characterized quantitatively, in other words, it is neces-
sary to find a measure of the flow dimensionality which
would help to predict turbulence behavior.

In this Letter we show that eddy viscosity increases
damping in finite-depth fluid layers compared with the
quasi-2D model prediction. This increase can be used
as the measure of the flow dimensionality which allows
to evaluate the likelihood of the inverse energy cascade
and of turbulence self-organization. We also show that
the increased degree of three-dimensionality leads to the
suppression of the turbulent cascades.

In these experiments turbulence is generated via the in-
teraction of a large number of electromagnetically driven
vortices [9, 16, 17]. The electric current flowing through a
conducting fluid layer interacts with the spatially variable
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vertical magnetic field produced by arrays of magnets
placed under the bottom. In this paper we use a 30× 30
array of magnetic dipoles (8 mm apart) for the turbu-
lence studies requiring large statistics. For the studies of
vertical motions, a 6× 6 array of larger magnets (25 mm
separation) is used. The flow is visualized using seeding
particles, which are suspended in the fluid, illuminated
using a horizontal laser slab and filmed from above. Par-
ticle image velocimetry (PIV) is used to derive turbulent
velocity fields. The flow is generated either in a single
layer of electrolyte (Na2SO4 water solution), or in two
immiscible layers of fluids (electrically neutral heavier liq-
uid at the bottom, electrolyte on top). Shortly after the
current is switched on, J×B driven vortices interact with
each other forming complex turbulent motion character-
ized by a broad wave number spectrum. The steady state
is reached within tens of seconds.

To study vertical motions in single electrolyte layers,
vertical laser slabs are used to illuminate the flow in the
y − z plane. Streaks of the seeding particles within the
slab are filmed with the exposure time of 1 s. Quantita-
tive measurements of the horizontal and vertical veloci-
ties are performed using defocusing PIV technique. This
technique, was first described in [18], but had never been
used in turbulence studies. It allows measurements of 3D
velocity components of seeding particles using a single
video camera with a multiple pinhole mask (three pin-
holes constituting a triangle are used here). A schematic
of the method is shown in Fig. 1. An image of a particle
placed in the reference plane at z =0 (where the parti-
cle is in focus) corresponds to a single dot in the image
plane. As the particle moves vertically away from the
reference plane, the light passes through each pinhole in
the mask and reaches three different positions on the im-
age plane. The distances between the triangle vertices
in the image plane are used to decode z-positions of the
particles. The xy-components of velocity are determined
using a PIV/PTV hybrid algorithm to match particle
pairs from frame to frame. This process is illustrated in
Fig. 1. The technique allows to resolve vertical veloci-
ties above < Vz >RMS≥ 0.5 mm/s. The imaged area in
this experiment is 5 × 5 cm2. On average about 50 par-
ticles (triangles) are tracked in two consecutive frames.
Derived velocities are then averaged over about 100 of
the frame pairs to generate converged statistics of the
mean-square-root velocities < Vx,y,z >RMS .

Figures 2(a-c) show particle streaks and corresponding
vertical velocity profiles Vz(z) for different layer depths.
To keep forcing approximately constant, the electric cur-
rent is increased proportionally to the layer thickness
(constant current density). To obtain better vertical spa-
tial resolution, a 6 × 6 array of larger magnets is used.
For the layers thicknesses of up to 30 mm, a range of
h/lf = 0.2−1.2 is achieved. Particle streaks show reason-
ably 2D motion in a thin (5 mm) layer, Fig. 2(a). Vertical
velocity is small over most of the layer thickness and is
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FIG. 1: Schematic of the defocusing particle image velocime-
try technique.

close to the resolution of the technique, < Vz >RMS∼ 0.5
mm/s. As the layer thickness is increased, 3D motions
develop. The corresponding vertical velocities increase
up to ∼ 4 mm/s, Figs. 2(b,c). Fig. 2(d) shows the ra-
tio of vertical to horizontal velocities as a function of
the normalized layer thickness. In single layers this ra-
tio increases approximately linearly with h/lf reaching
over < Vz > / < Vx,y > = 0.3 at h/lf = 0.8. In
stratified double layers this ratio is substantially smaller,
< Vz > / < Vx,y > ≤ 0.08 (solid squares in Fig. 2(d)),
suggesting that the flow in a double layer configuration
is much closer to 2D.

In the absence of 3D motions, the flow in the layer
is damped due to molecular viscosity. A decay of hori-
zontal velocity Vx,y(z, t) in the quasi-2D flow due to the
bottom friction is described by the diffusive type equa-
tion ∂Vx,y/∂t = ν∂2Vx,y/∂z

2, which together with the
boundary conditions Vx,y(z = 0, t) = 0 and ∂Vx,y(z =
h, t)/∂z = 0 gives the characteristic inverse time of the
energy decay, e.g. [10]:

αL = νπ2/2h2. (1)

Here ν is the kinematic viscosity.
The onset of 3D turbulent eddies in thicker layers

should lead to a vertical flux of horizontal momentum
and faster dissipation of the flow. Such a flux is related
to the mean vertical velocity gradient ∂Vx,y/∂z [19]:

< Ṽx,yṼz >= −K∂Vx,y
∂z

. (2)

Here K is the eddy (turbulent) viscosity coefficient. By
assuming that fluctuations of vertical and horizontal ve-
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FIG. 2: Particle streaks filmed with an exposure time of
1 s (top panels) and the distribution of the vertical velocity
fluctuations (rms) over the layer thickness (bottom panels) in
single layers: (a) h = 5 mm; (b) h = 15 mm; (c) h = 20
mm. (d) Ratio of rms vertical to the rms horizontal veloc-
ity as a function of the normalized layer thickness h/lf in
a single (open circles) and in a double (solid squares) layer
configurations. (e) αt/αL versus h/lf .

locities are well correlated, we can estimate the eddy
viscosity coefficient using the defocusing PIV data as
K ≈< Ṽx,y >< Ṽz > (∂Vx,y/∂z)

−1. Then the damp-
ing rate can be estimated using the contribution of both
molecular and the eddy viscosities, αt = (ν +K)π2/2h2.
The ratio of thus calculated damping rate to the linear
damping αL (1) is shown in Fig. 2(e).

The damping should become anomalous (αt/αL > 1)
above some critical layer thickness of h/lf ≈ 0.3. Accord-
ing to Fig. 2(e) this anomaly should increase linearly with
the increase in h/lf .

Direct measurements of damping were performed to
test that eddy viscosity increases the dissipation above
its quasi-2D value (1) in layers thicker than h/lf > 0.2.
The flow is forced by a 30× 30 magnet array . The bot-
tom drag is derived from the energy decay of the steady
flow. After forcing is switched off, the mean flow energy
exponentially decays in time with a characteristic time
constant α, as shown in Fig. 3(a). We compare the en-
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FIG. 3: (a) Decay of the flow energy in a single layer, h =
10 mm; (b) Energy damping rate normalized by the viscous
quasi-2D damping rate aD = α/αL, as a function of h/lf .
Open circles refer to single layers, solid squares were obtained
in the double layer configurations. (c) The damping anomaly
coefficient aD versus h/lf for the case of a strong large-scale
vortex (100 mm diameter, V max

x,y = 16 mm/s).

ergy damping rate measured in a single layer of different
depths with the linear damping rate. Fig. 3(b) shows
the anomaly coefficient aD = α/αL as a function of the
normalized layer thickness h/lf . In the thinnest layer
(h ≈ 1.7 mm, h/lf ≈ 0.21) the damping rate coincides
with the linear damping rate (1). However for thicker
layers the damping anomaly is higher, such that aD in-
creases linearly with h reaching aD = 6 at h/lf = 1.25.

Measurements of the damping show that the anomaly
coefficient aD in Fig. 3(b) agrees very well with the
anomaly estimated using the eddy viscosity derived from
(2), Fig. 2(e). In the double layer experiments however,
aD is substantially lower, as shown by the solid squares in
Fig. 3(b). This is not surprising in the light of the result
of Fig. 2(d) (solid squares) which shows substantially less
3D motion in double layers.

The above results are related to low forcing levels,
when 3D eddies are generated due to the finite layer
thickness, as in [3]. However, electromagnetic forcing,
which is maximum near the bottom in the single layer
experiments (magnets underneath the fluid cell), may
inject 3D eddies into the flow from the bottom bound-
ary layer at higher forcing levels. Figure 3(c) shows the
damping anomaly coefficient aD measured in the flow
driven by a single strong large magnetic dipole. A single
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FIG. 4: Third-order structure functions measured in a thin
layer, h = 3 mm (solid squares), and in a thick layer h = 10
mm (open diamonds). The forcing scale lf ≈ 8 mm.

large-scale vortex is produced, whose diameter is about
100 mm and the maximum horizontal velocity is about
16 mm/s. As the layer thickness is increased from 2 to
10 mm (h/lf = 0.02 − 0.1) while keeping the current
density constant, the anomaly coefficient increases up to
aD = 3.6 due to the increase in the vertical velocity fluc-
tuations. Thus, turbulent bottom drag may occur in rel-
atively thin layers at stronger forcing.

Now we test if the increased three-dimensionality, as
characterized by aD, leads to the suppression of the in-
verse energy cascade. The inverse energy cascade can be
detected by measuring the third-order structure function
S3 and by using the Kolmogorov flux relation which pre-
dicts linear dependence of S3 on the separation distance
l, S3 = εl. Here ε is the energy flux in k-space. It has
been shown that in thin stratified layers S3 is positive
and it is a linear function of l, as expected for 2D turbu-
lence [9]. Figure 4 shows third-order structure functions
measured in a single layer of electrolyte for two layer
depths, h = 3 and 10 mm. In the 3 mm layer, S3 is a
positive linear function of l, while in the 10 mm layer
S3 is much smaller, indicating very low energy flux in
the inverse energy cascade. The damping anomaly in the
3 mm layer is aD ≈ 2, while for the 10 mm layer it is
high, aD ≈ 5. Since in this experiment, the forcing is
2D and it is relatively weak (no secondary instabilities in
the boundary layer), this result is in agreement with nu-
merical simulations [3] which show strong suppression of
the inverse energy cascade above h/lf ≥ 0.5. The 3 mm
layer corresponds to h/lf ≈ 0.38, while for the 10 mm
layer h/lf ≈ 1.25. We do not observe however any sig-
natures of the direct energy cascade range, Ek ∝ k−5/3

at k > kf in the 10 mm layer. Instead, the spectrum is
much steeper than the usual k−3 enstrophy range. This
is probably due to the fact that the Reynolds number

in this experiment is not sufficient to sustain 3D direct
turbulent cascade.

Summarizing, we demonstrate for the first time that
increased three-dimensionality of flows in layers can be
characterized by the anomalous damping coefficient aD.
We show that the increase in aD correlates with the sup-
pression of the inverse energy cascade. On the other
hand, a strong reduction in aD, which can be achieved in
the double layer configuration, correlates well with the
observation of the inverse energy cascade and spectral
condensation of turbulence into a flow coherent over the
entire domain [7, 9, 16].
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