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Spring-block model for a single-lane highway traffic
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Abstract

A simple one-dimensional spring-block chain with asymmetric interactions is considered to model an idealized single-lane highway
traffic. The main elements of the system are blocks (modeling cars), springs with unidirectional interactions (modeling distance
keeping interactions between neighbors), static and kinetic friction (modeling inertia of drivers and cars) and spatiotemporal disor-
der in the values of these friction forces (modeling differences in the driving attitudes). The traveling chain of cars correspond to the
dragged spring-block system. Our statistical analysis forthe spring-block chain predicts a non-trivial and rich complex behavior. As
a function of the disorder level in the system a dynamic phase-transition is observed. For low disorder levels uncorrelated slidings
of blocks are revealed while for high disorder levels correlated avalanches dominates.
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1. Introduction

Road traffic is a non-linear complex phenomenon which
strongly affects our everyday life. Within this phenomenon var-
ious forms of collective behavior may be detected. The simplest
possible form of traffic is the one on a single highway lane. The
motion of the queue in this simple form of traffic is primarily
governed by the leading car and the statistics of driving atti-
tudes. This simple situation becomes already quite complexif
the first car is moving slowly and the differences between the
driving attitudes are substantial. In such situations the queue
will evolve non-continuously in avalanches of different sizes,
and jams of different magnitude will continuously appear. Un-
fortunately, such situations are common in our everyday life, so
understanding and modeling it is important in order to optimize
our society.

Traffic studies tend to discover fundamental rules in different
kind of transport systems that are essential for our social and
economic efficiency. Accordingly, in this field many theoret-
ical models have been developed. The study of traffic begins
early in 1935 with the pioneering work of Greenshields [1]. In
1955 Lighthill and Whitham published the oldest and most pop-
ular macroscopic model based on the theory of fluid dynamics
[2]. After these early works, and motivated by the explosive
increase in road traffic, an avalanche of publications in leading
international journals began. These models can be classified
into four categories: microscopic models, macroscopic models,
cellular automata models and non-traditional models. Detailed
description and analysis of such traffic models can be found in
the work of Darbha et al. [3]. More recently, the nonlinear ef-
fects of small perturbations have encouraged the development
of stochastic models [4] for the highway traffic. A complete
review of these traffic studies can be found in the recent work
of Nagatani [5], or in Kerner’s book [6]. Despite of many stud-
ies in the field, due to the complexity of the problem, there are

Figure 1: Traffic with laminar flow structure (a) and traffic with jams (b).

several phenomena which are still not well understood.
In order to get familiar with the complexity of the traffic and

with the typical non-linear avalanche-like phenomena thatcan
easily occur in highway traffic let us imagine that we are driving
on a highway in the middle of a car queue. The traffic is normal
with a laminar flow structure shown in Figure 1a. Suddenly, the
driver of the car located in front of us sees something and slows
down a bit. To avoid collision, we should slow down only a bit,
we should only reduce the foot pressure on the gas pedal. But,
being concentrated to the car audio system instead we observe a
little later the event and consequently we are forced to stepthe
brakes. Seeing our braking lights, the driver behind us suddenly
brakes and stops at the lane. A small event caused thus a sub-
stantial change in the traffic flow pattern. A wave consisting of
cars with higher density forms and the laminar flow turns intoa
start-stop-start-stop motion of cars caused by temporary traffic
jams that appears and propagate as sketched in Figure 1b.

Such situations are investigated in the present work by means
of computer simulations. A simple spring-block type model
with asymmetric interactions is used to model the phenomenon
and the effect of parameters having major influences on the dy-
namics of the system will be investigated. For some model pa-
rameters interesting collective behavior is found and it issta-
tistically studied. Up to our knowledge real experimental data
describing the dynamics of cars in such idealized situationis
not available. Therefore, at this stage the study has to limit it-
self on pure modeling, and the test of the results rely simplyon
our everyday experience.
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Figure 2: Sketch of the spring-block chain considered here to model the ideal-
ized single lane highway traffic.

2. The spring-block model

A model family with broad interdisciplinary applications is
the spring-block type models. Previously we have used them
successfully to study complex systems which have shown self-
organization phenomena. This model family was introduced in
1967 by R. Burridge and L. Knopoff [7] to explain the empirical
law of Guttenberg and Richter [8] on the size distribution of
earthquakes.

This earthquake model consists of simple elements: blocks
that can slide with friction on a horizontal plane connectedin a
lattice-like topology by springs. In the one-dimensional version
of the model, the involved tectonic plates are modeled by two
surfaces and their relative motion is governed by the sliding
of the spring-block system on the lower surface. The upper
surface (to which each block is connected by spring) is dragged
with a constant velocity. Sliding of the blocks is realized by
avalanches, as they are following the motion of the upper plate.
These avalanches correspond to earthquakes and the energies
dissipated by friction shows power law type distribution asin
case of the Guttenberg-Richter law.

Subsequently, due to the spectacular development of com-
puters and computational methods, this simple model proved
to be very useful in describing many phenomena in different
areas of science. Most of the collective phenomena that oc-
curs on mezoscopic scale in solid materials can be modeled by
spring-block models. The model is almost always usable when
one has to deal with avalanches of different nature, complex
dynamics or structure formation by collective behavior. Re-
cently, this model has been applied successfully to explainthe
formation of structures obtained in drying granular materials in
contact with a surface [10], to study the fractures with curved
topologies in wet granular materials [11], to understand the
formation of self-organized nanostructures produced by capil-
lary effects [12, 13, 14], to study the magnetization processes
and Barkhausen noise [15] and to describe glass fragmentation
[16]. Based on the previous examples, one can conclude that
the spring-block type models are fully applicable to the study
of complex collective behavior in systems of different nature.

The spring-block model for idealized single lane highway
traffic can be imagined as a chain of blocks (see Figure 2),
modeling cars, connected by springs which represent some dis-
tance keeping interactions between them. This interactionrep-
resents the will of drivers to keep a certain distance from the car
ahead. Therefore, in order to be realistic, these springs cannot
be real, bi-directional mechanical springs because in caseof
traffic without accidents this distance keeping interaction acts
only on the car in the back. The front car is never pulled back
or pushed ahead by the car from behind unless there is a colli-

sion. Accordingly, the action-reaction principle is violated and,
in this sense, this spring-block system cannot be a considered
as a typical mechanical system.

Another important ingredient that has to be incorporated in
the model is the disorder in the system generated by the driv-
ing style of drivers. From our point of view, this should be the
drivers inertia which indicates how quickly the driver can react
to a certain event or how quickly can follow the velocity change
of the car ahead. This is introduced via friction forces between
the blocks and the plane on which they slide. These friction
forces are generated randomly and independently for each new
position of each of the blocks. As a first approximation we
consider a normal distribution with a fixed meanFm and stan-
dard deviationσ. As a result of this, the disorder introduced is
both spatial and temporal. Spatial disorder means differences
in driving styles while temporal disorder means fluctuations of
driving attitudes in time.

Moreover, in analogy with real mechanical systems static and
kinetic friction forces are considered denoted byFs andFk, re-
spectively. As in usual classical mechanics systems, the static
force is considered to be greater than the kinetic one, and for
simplicity in our model their ratio is kept constantf = Fk/Fs.
Here we have to note that for all the presented simulations
f = 0.8 has been used. Of course, this parameter is adjustable
one and its influence on the dynamics of the system is planned
to be investigated later.

Regarding the distribution of the friction forces one more
comment needs to be added: when the static friction forces are
randomly updated in each new position of blocks the kinetic
friction force is updated, too. As a result, both the kineticand
static friction forces acting on blocks will fluctuate in time and
in space.

The motion of the block queue is simulated in discrete simu-
lation steps. For each step it corresponds the same time length
dt = 1, fixing the unit for simulation time and the possibility to
handle easily the stochasticity in the equation of motions.Due
to this choice we do not have possibility to define a velocity for
the first block, and for us a given mean value of static friction
Fm and spring constantk implicitly corresponds to a fixed drag
velocity. Accordingly, the motion of the queue is governed by
the drag step (the movement of the first block) which is kept
constant in time. In each unit of time the first block moves
ahead in steps of lengthd0. In the present simulations for the
spring-block row a step limit ofdmax = 1 is imposed. This rep-
resents a kind of speed-limit for the units in the system. It is
important to realize that by changing the drag step value we do
not change the velocity of the first block. Instead of this we
consider either a finer (for smalld0 values) or a rough (for large
d0 values) approximation of the continuous dynamics.

The length unit in the simulation is defined by the length of
a single blockL = 1. In order to simulate the simplest dy-
namics without accidents, a minimum distance between blocks
dmin = 0.3 is imposed. This distance is considered to be also
the equilibrium lengthl0 of the asymmetric springs.

The motion of each block is governed by the total force act-
ing on it. The force unit in the model has been selected by con-
sidering that all springs have the spring-constantk = 1. Unit
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elastic force acts on the block from behind when the distance
between the two blocks is (dmin + 1) expressed in simulation
length units.

With this force unit we fix the mean value of the normal dis-
tribution for friction forcesFm = 4, and in the following theσ
parameter is considered to be the main parameter governing the
disorder in the system.

Therefore, in this study, the model will have two free param-
eters: the drag stepd0 of the first block and the disorder level
in the static/kinetic frictionσ. All other model parameters have
been fixed asdmin = 0.3, dmax = 1.0 andFm = 4.0 and they will
not be explicitly noted in our later discussion.

Blocks are labeled after their ordinal number in the row so
that the dragged block (the first in the queue) has label 1, the
next one label 2, and so on until the number of blocks in the
queueN. Their position will be noted byx(i), wherei = 1,N.

The simulation follows the typical steps of a simplified
molecular dynamics simulation summarized bellow.

(I) All blocks are visited and the spring forceFspring acting
on each block is calculated

F(i)
spring(t) = k

[

x(i−1)(t − 1)− x(i)(t − 1)− L − l0
]

. (1)

If the block is at rest (its previous displacement is 0) the spring
force is compared to the static friction. IfF(i)

spring(t) ≤ F(i)
s (t) the

static friction equals the spring force and the total force acting
on the block will be

F(i)
t = 0 , (2)

and the block will remain at rest in this step. On the contrary,
if F(i)

spring(t) < F(i)
s (t) the block will start to move and the kinetic

friction force is added to the spring force and

F(i)
t = F(i)

spring − F(i)
k . (3)

The total force is similarly calculated, when the block is not at
rest (its previous displacement differs from 0).

(II) All blocks are visited and, based on forcesF(i)
t calculated

in simulation step (1), their displacements∆x(i) are calculated.
The displacement of the first block is∆x(1) = d0 which rep-
resents the constant drag step of the first block. For the rest
of blocksi = 2,N the displacement is calculated by using the
equation of classical mechanics withdt = 1

∆x(i)(t) = ∆x(i)(t − 1)+ A F(i)(t) , (4)

whereA = 1/2m, m being the mass of a block. In our simula-
tions this constant is chosen to beA = 1 which fixes the mass
of blocks tom = 0.5 expressed in simulation units.

(III) For the calculated displacements the block step limit
dmax is applied which means, that all displacement values grater
thandmax are set to bedmax.

(IV) All blocks are visited following their ordinal numbers
and their new positions are calculated

x(i)(t) = x(i)(t − 1)+ ∆x(i)(t) . (5)

Here the only restriction is that the minimum distancedmin be-
tween blocks has to be respected.

Figure 3: Time evolution of a queue with 50 blocks.

(V) Quantities of interest for the selected block are detected
and stored for later analysis.

Steps (I)-(V) are repeated until enough data is collected for
the statistical analyses.

3. Results of modeling

The dynamics of the system is illustrated with a short queue
of 50 blocks in Figure 3. The first block is moving to right with
small drag stepd0 = 0.01. The snapshots are taken on the time
steps printed on images. It has to be noted that between time
steps 1000 and 1100 the propagation of an avalanche through
the whole system is observable.

From the viewpoint of a single block in the row it’s stop-time
distributiong(τ) is first measured. This stop-time distribution
describes the distribution of time intervals during which agiven
block is not moving. In other words, this distribution function
g(τ) determines the probability that the rest time of the block is
τ. Alternatively, the cumulative distribution functiong>(τ) may
be defined, which gives us the probability that the stop-timeof
a block is bigger thanτ. Based on the distribution function the
mean stop-time and the stop-time standard deviation may be
calculated.

First, let us investigate how the position of a block in the
queue is influencing its stop-time distribution. In Figure 4the
stop-time distributions of different blocks in the row are pre-
sented for a fixed small drag stepd0 = 0.01 and disorder in the
static friction forcesσ = 0.4. In these simulationsN = 1000
blocks have been used and the distribution function is con-
structed using the statistics of 100 000 stop-times. From this
results it can be learned that after a certain number of blocks
(transient distance), the cumulative stop-time distribution con-
verges to the same function. Therefore, in our later investiga-
tions a block after the transient distance has to be selectedin
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Figure 4: Stop-time distributions for different block positionsi. The plotted
results are obtained from a statistics of 100 000 stop-times.

order to be sure that the average single-block behavior is stud-
ied. The form of the single block stop-time distribution function
will be discussed later.

Another more illuminating analyses may be performed if one
looks at the stop-time averages and standard deviations. First,
their dependence on the drag step is investigated. The posi-
tion of the studied block is fixed at the middle of the queue
i = 500 and several disorder levelsσ = 0.1, 0.5, 1.0, 1.5, 2.0
are imposed. The results are plotted in Figure 5. As one may
observe, except for high drag step values the average stop-time
< τ > and the standard deviation of stop-times∆(τ) are scaled
with the drag step following a 1/d0 functional dependence. In
order to understand these scalings we have to remind ourself
again, that the drag step is not equivalent with a drag velocity,
and all this is a result of the fact that the simulation time-step
was fixed a priori todt = 1. This means that if one wants to get
close to a realistic, continuum dynamics, the drag step has to be
lowered to infinitesimally small values. Changing the drag step
is in fact equivalent to a change in the time-lengthdt of a simu-
lation step and thus influences only the real time of a simulation
step, and implicitly everything else which is measured in time
units. Therefore, this scaling suggests only that the simulations
are performed in the right continuum limit. Based on our re-
sults we find that this limit is reached if drag steps smaller than
0.1 are selected.

Concerning the dynamics of the studied system interesting
and non trivial results may be obtained if one looks at the in-
fluence of the friction force disorder levelσ on the stop-time
averages and standard deviations. In this sense a series of sim-
ulations have been performed for several drag step values be-
tween 0.01 and 0.1. The position of the studied block is fixed
at the middle of the queue (i = 500), and the averages and
standard deviations are calculated for 100 000 stop-times.The
simulation results are plotted on Figure 6.

On one hand, as it is expected based on our previous consid-
erations, the statistical behavior of the system for different and
small enough drag steps is the same. On the other hand, in case
of all curves, at a certain disorder level (σ ≃ 0.7) a maximum
in the stop-time average may be detected. This result shows us

Figure 5: Stop-time averages (bottom) and standard deviations (top) depending
on the drag step calculated for the 500th block in a queue of 1000 blocks. These
quantities are calculated from 100 000 stop-times.

Figure 6: Stop-time averages (bottom) and standard deviations (top) depending
on the disorder in static friction calculated for the 500th block in a queue of
1000 blocks. These quantities are calculated from 100 000 stop-times.
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that in our simple traffic system there is a ”worst” disorder level
in driving attitudes (modeled by friction forces) for whichthe
average stop-time of a block in the row is maximum. More-
over, in case of the stop-times standard deviation as a function
of the mean disorder in the friction force value, at this ”worst”
disorder level an inflection point may be detected.

Therefore, based on these observations we can conclude that
this simple spring-block system apparently exhibits two differ-
ent types of behavior as a function of the disorder level in the
system. At low disorder levels in the friction forces the average
stop-time scales with the disorder level. This scaling law dis-
appears however for higher disorder levels. Since this change
in the system dynamics appears for a certain disorder level,we
consider it as adisorder induced phase transition similar with
the one recently obtained in the spring-block model of magne-
tization phenomena [15]. This phase transition is a high order
phase transition, because a peak only in the derivative of the
stop-time’s standard deviation is detectable.

In order to take a closer look at the nature of this athermal
phase transition detected in our spring-block system stop-time
distributions of a single block are analyzed. Three disorder lev-
elsσ = 0.4, 0.6, 0.9 are selected which correspond to values
lower than, close to, and higher than the critical disorder level.

The distribution functions are constructed from 100 000 sim-
ulated stop-times and they are plotted in the left panel of Figure
7 for different drag steps ofd0 = 0.01, 0.05, 0.1. As it is imme-
diately observable, near the critical disorder level (central graph
on the left panel of Figure 7) there are two peaks with the same
magnitude in the stop-time distribution function best visible for
drag stepd0 = 0.01. At lower disorder levels (top graph on
left panel of Figure 7) the first peak disappears and the stop-
time distribution of long stop-times will be close to a normal
distribution. This may be explained if we suppose that in this
region the motion of blocks is independent to each other and
it is mainly influenced by friction forces generated randomly
from a normal distribution. On the contrary, at higher disorder
levels (bottom graph on left panel of Figure 7) the first peak,
which has an exponential nature, will have the most important
contribution to the stop-time distribution function suggesting
stops that are induced by collective effects. It is extremely im-
portant to note that these exponential curves falls into a single
one in case of different drag steps. Taking into account our pre-
vious results concerning the< τ >∼ 1/d0 scaling of average
stop-times, this observation gives us an evidence that thispart
of the stop-time distribution is not depending on the stop-time
averages and it is caused by an avalanche-like collective motion
of blocks.

The same data may be analyzed from another point of view
if the distribution of normalized stop-timesτ/ < τ > is con-
structed. This curves are plotted on the right panel of Figure 7.
It is immediately observable that the Gaussian parts of distribu-
tion functions fall into a single curve. This confirms our previ-
ous presumption that the block motions at small disorder levels
are mainly independent to each other which causes that the re-
sultant distribution of normalized stop-times to be the same.

Therefore, our simulation results show that the studied
spring-block system may exhibit non-trivial, critical behavior.

Figure 7: Stop-time distributions (top panel) and normalized stop-time distri-
butions (bottom panel) of a single block in the middle of a queue for different
disorder levels of the friction force.
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Through the detected disorder induced higher order phase tran-
sition the independent block motions will be organized to a
highly correlated avalanche-like collective motion of thequeue.

4. Conclusions

In summary, in the present paper a simple spring-block type
model with asymmetric interactions has been used to model the
simplest possible, idealized form of traffic which happens on
one single highway lane. The spring-block chain dragged by
constant steps of the leading block predicts non-trivial, complex
behavior even for this simple form of traffic. Our investigations
have been performed by a series of computer simulations which
targeted the analysis of the effect of parameters on the model
dynamics. As a result, it was concluded that at low disorder
levels in friction forces the dynamics is governed by uncorre-
lated sliding of the blocks. On the contrary, at higher disorder
levels the dynamics of the block sliding self-organizes into an
avalanche-like motion of blocks. The transition between these
domains is realized through a disorder induced phase transition
whose effects are detectable in stop-time averages and standard
deviations, too.
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