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Is the scaling, λ ∝ Rm1/2, for the growth rate of small-scale dynamo instability at low magnetic
Prandtl numbers and large magnetic Reynolds numbers, Rm, valid in the vicinity of the threshold?
Our analysis and even numerical solution [1] of the dynamo equations for a Gaussian white-noise
velocity field (the Kazantsev-Kraichnan model) imply that the answer is negative. Contrary to the
claim in [1], there are two different asymptotics for the dynamo growth rate: in the vicinity of the
threshold and far from the threshold.

PACS numbers: 47.65.Md

Let us discuss the asymptotic behaviour of the growth
rate of magnetic fluctuations with a zero mean field
for small magnetic Prandtl numbers in a homoge-
neous, isotropic, non-helical, incompressible and Gaus-
sian white-noise velocity field (the Kazantsev-Kraichnan
model). The equation for the longitudinal correlation
function, W (r) = 〈br(x) br(y)〉 of the magnetic field
reads:

18 r2 W ′′ + 96 rW ′ +
(

104− 27λ r2/3
)

W = 0 , (1)

(see [2]), where br is the component of magnetic field b

in the direction r = x − y, W ′ = dW (r)/dr, λ is the
growth rate of small-scale dynamo instability, and ve-
locity fluctuations have Kolmogorov scaling from viscous
scale to integral scale. Equation (1) is written in dimen-
sionless variables: length and velocity are measured in
units of ℓ0 and u0, where u0 is the characteristic tur-
bulent velocity in the integral scale ℓ0. The solution of

Eq. (1) is W (r) = C r−13/6Kα

(

√

27λ/2 r1/3
)

(see [2]),

where Kα(y) is the real part of the modified Bessel func-
tion (Macdonald function) with α = (i/2)

√
39. This

solution is chosen to be finite at large r, with positively
defined spectrum, and it has the following asymptotics:
W (r) = A1 r

−13/6 cos (ln r + ϕ0) at scales λ
1/2 r1/3 ≪ 1

(see [3]), and W (r) = A2 r
−7/3 exp

(

−
√

27λ/2 r1/3
)

at

scales λ1/2 r1/3 ≫ 1 (see [4]).
For ℓ ≥ ℓη the scaling for the growth rate of small-

scale dynamo instability which is far from the thresh-
old, is λ ∼ uη/ℓη ∼ (u0/ℓ0)Rm

1/2 (see [5]), where

ℓη = ℓ0/Rm
3/4 is the resistive scale, uη = (ε ℓη)

1/3

is the characteristic turbulent velocity at the resistive
scale, u0 = (ε ℓ0)

1/3, ε = u3

0/ℓ0 is the dissipation rate
of turbulent kinetic energy, Rm = u0 ℓ0/η ≫ 1 is the
magnetic Reynolds number and η is the magnetic diffu-
sion due to electrical conductivity of the fluid. For the
scaling λ ∝ Rm

1/2, the condition λ1/2 r1/3 ≫ 1 implies
r ≫ Rm

−3/4.
However, the scaling, λ ∝ Rm

1/2, is not valid in the
vicinity of the threshold of the dynamo instability. In-
deed, in the vicinity of the threshold when λ → 0, there
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FIG. 1: The growth rate of small-scale dynamo instability
versus ln (Rm/Rmcr) in the vicinity of the instability thresh-
old: solid line corresponds to the scaling λ = β ln (Rm/Rmcr)
and squares are the results of the numerical solution of the
dynamo equations for the Kazantsev-Kraichnan model of ve-
locity field with zero kinetic helicity taken from Fig. 1 in [1].

is only one range of the solution of Eq. (1), λ1/2 r1/3 ≪ 1,
which determines the growth rate of the small-scale dy-
namo instability, λ = β ln (Rm/Rmcr) (see [3]), where
β = 4/3 is the exponent of the turbulent diffusivity scal-
ing, D(ℓ) ∝ ℓβ. In Fig. 1 we plot the growth rate of
small-scale dynamo instability versus ln (Rm/Rmcr) in
the vicinity of the threshold, which demonstrates per-
fect agreement between the scaling λ = β ln (Rm/Rmcr)
(solid line) and the numerical solution [1] of the dynamo
equations for the Kazantsev-Kraichnan model (squares).
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