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Broken chaotic clocks of brain neurons and depression

A. Bershadskii
ICAR, P.O.B. 31155, Jerusalem 91000, Israel

Irregular spiking time-series obtained in vitro and in vivo from singular brain neurons of different
types of rats are analyzed by mapping to telegraph signals. Since the neural information is coded
in the length of the interspike intervals and their positions on the time axis, this mapping is the
most direct way to map a spike train into a signal which allows a proper application of the Fourier
transform methods. This analysis shows that healthy neurons firing has periodic and chaotic de-
terministic clocks while for the rats representing genetic animal model of human depression these
neuron clocks might be broken, that results in decoherence between the depressive neurons firing.
Since depression is usually accompanied by a narrowing of consciousness this specific decoherence
can be considered as a cause of the phenomenon of the consciousness narrowing as well. This sug-
gestion is also supported by observation of the large-scale chaotic coherence of the posterior piriform
and entorhinal cortices’ electrical activity at transition from anesthesia to the waking state with full
consciousness.

PACS numbers: 87.19.L, 87.19.ll, 87.19.lm

I. INTRODUCTION

All types of information, which is received by sen-
sory system, are encoded by nerve cells into sequences
of pulses of similar shape (spikes) before they are trans-
mitted to the brain. Brain neurons use such sequences
as main instrument for intercells connection. The infor-
mation is reflected in the time intervals between succes-
sive firings (interspike intervals of the action potential
train, see Fig. 1). There need be no loss of informa-
tion in principle when converting from dynamical am-
plitude information to spike trains [1] and the irregular
spike sequences are the foundation of neural information
processing. Although understanding of the origin of in-
terspike intervals irregularity has important implications
for elucidating the temporal components of the neuronal
code and for treatment of such mental disorders as de-
pression and schizophrenia, the problem is still very far
from its solution (see, for instance, Ref. [2] and references
therein).

The mighty Fourier transform method, for instance, is
practically non-applicable to the spike time trains. The
spikes are almost identical to each other and the neural
information is coded in the length of the interspike in-
tervals and the interspike intervals positions on the time
axis, therefore it is the most direct way to map the spike
train into a telegraph time signal, which has values -1
from one side of a spike and values +1 from another side
of the spike with a chosen time-scale resolution. An ex-
ample of such mapping is given in figure 1. While the
information coding is here the same as for the corre-
sponding spike train, the Fourier transform method is
quite applicable to analysis of the telegraph time-series.

On the other hand, recent dynamical models of neu-
ron activity revealed new and complex role of regimes of
a (deterministic) chaotic irregularity in the neuron spike
trains (see, for instance, [3]-[6]). Therefore, we have to
use all available mathematical tools in order to study the
experimental data on the deterministic chaos properties
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FIG. 1: Mapping of a spike train (figure 1b) into a telegraph
signal (figure 1a).

(and, especially, in order to separate between determin-
istic chaos and stochasticity in the experimental signals).

In present paper we have analyzed three types of exper-
imentally obtained spike trains: a) obtained in vitro from
a spontaneous activity in CA3 hippocampal slice culture
of a healthy Wistar/ST rat (the raw data and the de-
tail description of the experiment can be found online at
http://hippocampus.jp/data and in Refs. [7],[8]), b) ob-
tained in an electrophysiological in vivo experiment from
neurons belonging to red nucleus of a healthy (Sprague-
Dawley) rat’s brain (see Ref. [9] for more details of the
experiment and a preliminary discussion of the data), and
c) obtained in an electrophysiological in vivo experiment
from neurons belonging to red nucleus of a genetically
depressed (Flinders Sensitive Rat Line) rat’s brain (see
Ref. [9] for more details and a preliminary discussion of
the data).

In the in vitro experiment a) a functional imaging
technique with multicell loading of the calcium fluo-

http://arxiv.org/abs/1012.1611v1
http://hippocampus.jp/data
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FIG. 2: Autocorrelation function for the telegraph signal cor-
responding to the cell-21 (800 spikes). Insert in the Fig. 2
shows corresponding spectrum.

rophore was used in order to obtain the spike trains of
spontaneously active singular neurons in the absence
of external input [7],[8]. In the in vivo experiments
b) and c) the rats were anesthetized and the extracel-
lular recordings were processed from the singular cells [9].

Motivation to study the hippocampus and red nucleus
areas of brain in relation to the psychomotor aspects of
depression is based on the recently discovered evidences
of their deep involvement in this mental disorder. The
hippocampus is a significant part of a brain system re-
sponsible for behavioral inhibition and attention, spa-
tial memory, and navigation. It is also well known that
spatial memory and navigation of the rats is closely re-
lated to the rhythms of their moving activity. On the
other hand, the hippocampus of a human who has suf-
fered long-term clinical depression can be as much as 20%
smaller than the hippocampus of someone who has never
been depressed [10]. Inputs to the Red Nucleus arise from
motor areas of the brain and in particular the deep cere-
bellar nuclei (via superior cerebellar peduncle; crossed
projection) and the motor cortex (corticorubral; ipsilat-
eral projection). On the other hand it is known that
humans with deep depression have intrinsic locomotors
problems. Therefore, investigation of Red Nucleus for
genetically defined rat model of depression (these rats
partially resemble depressed humans because they ex-
hibit reduced appetite and psychomotor function) can
be useful for understanding the mental disorder origin.

II. NEURON CLOCK

In the in vitro experiment with spontaneous activ-
ity of the hippocampal pyramidal cells different levels
of activity were observed for different neurons [7],[8].
We take for our analysis the two most active neurons
(http://hippocampus.jp/data - Data-006, cell-21, with
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FIG. 3: Spectrum of the telegraph signal corresponding to the
cell-21 in log-log scales. The dashed straight line indicates a
power law: E(f) ∼ f−1.7.
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FIG. 4: As in Fig. 3 but for cell-25.

800 spikes in the time-series; and cell-25, with 692 spikes).
The spike trains were mapped to telegraph signals as it is
described above (see also [11]). Figure 2 shows autocor-
relation function for the telegraph signal corresponding
to the cell-21 (800 spikes). Insert in the Fig. 2 shows
corresponding spectrum. Both the correlation function
and the spectrum provide clear indication of a strong
periodic component in the signal (the oscillations in the
correlation function and the peak in the spectrum). The
periodic component can be seen at frequency f0 ≃ 0.3Hz.
Figure 3 shows the spectrum in log-log scales. One can
see that at high frequencies the spectrum exhibits a scal-
ing behavior (power law: E(f) ∼ f−1.7, as indicated by
the dashed straight line). The real power law can be more
pronounced but under the experimental conditions indi-
vidual spikes emitted at firing rates higher than 5Hz were
experimentally inseparable [7],[8]. Figure 4 shows spec-
trum of the telegraph signal corresponding to the spike
train obtained for the cell-25 (692 spikes). The spectrum
is rather similar to the spectrum shown in Fig. 3 (for

http://hippocampus.jp/data
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FIG. 5: X-component fluctuations of a chaotic solution of the
Rössler system Eq. (1) (a = 0.15, b = 0.20, c = 10.0).

cell-21). The more broad peak in Fig. 4 can be related
to the poorer statistics for the cell-25 in comparison with
cell-21. The spectra were calculated using the maximum
entropy method (because it provides an optimal spectral
resolution even for small data sets [12]).

III. THRESHOLD EFFECT

Now let us speculate about physics which could result
in the spectra observed in Figs. 3 and 4. And let us recall
some basic electrochemical properties of neuron. Nerve
cells are surrounded by a membrane that allows some
ions to pass through while it blocks the passage of other
ions. When a neuron is not sending a signal it is said to
be ”at rest”. At rest there are relatively more sodium
ions onside the neuron and more potassium ions inside
that neuron. The resting value of the membrane electro-
chemical potential P (the voltage difference across the
neural membrane) of a neuron is about -70mV. If some
event (a stimulus) causes the resting potential to move
toward 0mV and the depolarization reaches about -55mV
(a ”normal” threshold) a neuron will fire an action poten-
tial. The action potential is an explosive release of charge
between neuron and its surroundings that is created by
a depolarizing current. If the neuron does not reach this
critical threshold level, then no action potential will fire.
Also, when the threshold level is reached, an action po-
tential of a fixed size will always fire (for any given neu-
ron the size of the action potential is always the same).
Depending on different types of voltage-dependent ion
channels, different types of action potentials are gener-
ated in different cells types and the qualitative estimates
of the potentials and time periods can be varied. Recent
reconstructions of a driver of the membrane potential us-
ing the neuron spike trains indicate the Rössler oscillator
as the most probable (and simple) candidate (see, for in-
stance, Refs. [11],[13]-[18]). Figure 5 shows as example
the x-component fluctuations of a chaotic solution of the
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FIG. 6: Z-component fluctuations of a chaotic solution of the
Rössler system.
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FIG. 7: Spectrum of the telegraph signal corresponding to
the spike train generated by the x-component fluctuations
overcoming the threshold x = 7. The dashed straight line
indicates a power law: E(f) ∼ f−1.7.

Rössler system [19]

dx

dt
= −y − z;

dy

dt
= x+ ay;

dz

dt
= b+ xz − cz (1)

where a, b and c are parameters). At certain values of
the parameters a,b and c the z-component of the Rössler
system is a spiky time series [20],[21]: Fig. 6. It can
be shown that the Rössler system and the well known
Hindmarsh-Rose model [22] of neurons are subsystems of
the same differential model with a spiky component [21].
Previously the ’spiky’ component of such models was in-
terpreted and studied as a simulation of a neuronal out-
put. For the spontaneous neuron firing (without external
stimulus), however, we suggest to reverse the approach
and consider the spiky variable as the main component of
the electrical input (which naturally should have a ’spiky’
character, see above) to the neuron under consideration.
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For each neuron the height of the spikes, which the neu-
ron generates, is about the same. However, the heights
of the spikes generated by different neurons are differ-
ent. Also the signals coming from different neurons to
the neuron under consideration have to go through the
electrochemical passes with different properties. There-
fore, the spiky z-time-series (Fig. 6) can naturally rep-
resent a multineuron signal, which can be considered as
a spontaneous input for the neuron under consideration.
If we use the usual interpretation of the x-component
as a driver of the membrane potential P (x) and the y-
component as that taking into account the transport of
ions across the membrane through the ion channels [22],
then the position of the input (the component z) in the
first equation of the system Eq. (1) has a good phys-
ical background (cf. Ref. [22]). Then, the quadratic
nonlinearity in the third equation of the system Eq. (1)
can be interpreted as a simple (in the Taylor expansion
terms) feedback of the neuron to the main component
of the neuronal input. This model with the strong non-
linear feedback can be relevant to the most active neu-
rons of a spontaneously active brain (see below results of
an in vitro experiment with a spontaneous brain activ-
ity). The details of the function P (x) is not significant
for the threshold firing process, what really matters is
that the membrane potential function P (x) reaches its
firing value when (and only when) its argument x crosses
certain threshold from below. In this simple model the
driving variable x may overcome its threshold value (Fig.
5) due to the deterministic (chaotic) spontaneous stimu-
lus. Let us consider an output spike signal resulting from
overcoming a threshold value x = 7, for instance. Fig. 7
shows spectrum of the telegraph signal corresponding to
the spike signal.
One can compare Fig. 7 with Figs. 3 and 4 to see very

good reproduction of the main spectral properties.
In order to understand what is going on here we show

in figure 8 spectrum of the x-component itself.
The semi-log scales are used in these figures in order to

indicate exponential decay in the spectra (in the semi-log
scales this decay corresponds to a straight line):

E(f) ∼ e−f/fe (2)

While the peak in the spectrum corresponds to the funda-
mental frequency, f0, of the Rössler chaotic attractor, the
rate of the exponentional decay (the slope of the straight
line in Fig. 8 provides us with and additional charac-
teristic frequency fe. Thus Rössler chaotic attractor has
two clocks: periodic with frequency f0 and chaotic with
frequency fe. If one compares Fig. 8 and Fig. 7 one
can see that the periodic clock survived the threshold
crossing (with a period doubling, of course, because the
only even threshold crossings in Fig. 5 result in the spike
generation). The chaotic clock, however, did not survive
the threshold crossing: the exponential decay in Fig. 8
has been transformed into a scaling (power law) decay
in Fig. 7, which has no characteristic frequency (scale
invariance). It should be noted that for a wide class of
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FIG. 8: Spectrum of the x-component fluctuations shown in
Fig. 5. We used the semi-log axes in order to indicate expo-
nential decay of the spectrum.
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FIG. 9: Spectrum of the telegraph signal corresponding to a
healthy red nucleus cell. The data is shown in the semi-log
scales in order to indicate the exponential decay Eq. 2 (the
straight line).
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FIG. 10: As in Fig. 9 but for another healthy cell.
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FIG. 11: Spectrum of the telegraph signal corresponding to
a genetically depressed red nucleus cell. The data is shown
in the log-log scales in order to indicate the power law decay
Eq. 4 (the straight line).

deterministic systems a broad-band spectrum with expo-

nential decay is a generic feature of their chaotic solu-
tions Refs. [12],[23]-[25]. It is shown in Ref. [23] that the
characteristic frequency

fe =
∑

i

λ+
i (3)

where λ+
i are positive Lyapunov exponents of the chaotic

system.

IV. CHAOS VS. STOCHASTICITY IN NEURON

FIRING

Both stochastic and deterministic processes can result
in the broad-band part of the spectrum, but the decay in
the spectral power is different for the two cases. An expo-
nential decay with respect to frequency refers to chaotic
time series while a power-law decay indicates that the
spectrum is stochastic.
Figure 9 shows a power spectrum obtained by the fast

Fourier transform method applied to a telegraph signal
mapped from a spike train measured in the red nucleus
of a healthy rat (we can use the fast Fourier transform
here due to sufficiently large number of spikes in the spike
train: 2170). The spike train corresponds to a singular
neuron firing. Figure 10 shows analogous spectrum ob-
tained from another healthy red nucleus’s neuron (2139
spikes). The semi-log scales are used in these figures
in order to indicate exponential decay in the spectra:
Eq. 2 (in the semi-log scales this decay corresponds to a
straight line). The characteristic frequency fe ≃ 1.1Hz in
the both cases. Figure 11 shows a power spectrum ob-
tained by the fast Fourier transform method applied to a
telegraph signal mapped from a spike train (2022 spikes)
measured in the red nucleus of a genetically depressive
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FIG. 12: As in Fig. 11 but for another genetically depressed
red nucleus cell.

(the ”Flinders” line) rat. The spike train corresponds
to a singular neuron firing. Figure 12 shows analogous
spectrum obtained from another genetically depressive
red nucleus’s neuron (2048 spikes). The log-log scales
are used in these figures in order to indicate a power-
law decay in the spectra (in the log-log scales this decay
corresponds to a straight line):

E(f) ∼ f−α (4)

In this (scaling) situation there is no characteristic time
scale. The scaling exponent α ≃ 1.5±0.1 and ≃ 1.4±0.1
for these two cases.

V. CHAOTIC NEURAL COHERENCE AND

DEPRESSION

In order to work together the brain neurons have to
make adjustment of their rhythms. The main problem
for this adjustment is the very noisy environment of the
brain neurons. If their work was based on pure peri-
odic inner clocks this adjustment would be impossible
due to the noise. The nature, however, has another op-
tion. This option is a chaotic clock. In chaotic attrac-
tors certain characteristic frequencies can be embedded
by broad-band spectra, that makes them much more sta-
ble to the noise perturbations [26].
In the light of presented results one can conclude that

for the considered cases the healthy neurons firing has de-
terministic clocks (periodic and chaotic), while the genet-
ically depressive red nucleus’s neurons exhibited a pure
stochastic firing and it seems that their background de-
terministic clocks were broken. The existence of the back-
ground clocks can be utilized by the healthy neurons for
synchronization of their activity [3],[7],[8],[27]-[29].
In order to compare coherent properties of the healthy

and the depressive neuron pairs we will use cross-spectral
analysis. The cross spectrum E1,2(f) of two processes
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FIG. 13: Comparison of coherency in firing for the healthy
(solid curve) and for the genetically depressed (doted curve)
neuron pairs in a low-frequency domain (the in vivo experi-
ments).

x1(t) and x2(t) is defined by the Fourier transformation of
the cross-correlation function normalized by the product
of square root of the univariate power spectra E1(f) and
E2(f):

E1,2(f) =

∑

τ 〈x1(t)x2(t− τ)〉 exp(−i2πfτ)

2π
√

E1(f)E2(f)
(5)

the bracket 〈...〉 denotes the expectation value. The cross
spectrum can be decomposed into the phase spectrum
φ1,2(f) and the coherency C1,2(f):

E1,2(f) = C1,2(f)e
−iφ1,2(f) (6)

Because of the normalization of the cross spectrum the
coherency is ranging from C1,2(f) = 0, i.e. no linear
relationship between x1(t) and x2(t) at f , to C1,2(f) = 1,
i.e. perfect linear relationship.
Figure 13 shows comparison of coherency in firing for

the healthy (solid curve) and for the genetically depressed
(doted curve) neuron pairs in a low-frequency domain
(the in vivo experiments). Despite of the deep anesthesia
the healthy neurons exhibit bands of rather high (> 0.5)
coherency in the low-frequency domain, while the depres-
sive neurons activity is rather decoherent in this domain.

VI. LONG-RANGE CHAOTIC COHERENCE

The chaotic coherence can involve a large number of
the healthy neurons and may be the entire brain. The
multi-second oscillations, for instance, are known to be
synchronized nearly brain-wide [30],[31]. In the case of
depression, however, the chaotic neuron clocks can be
broken in a significant part of the brain neurons. That
can result in certain decoherence in different parts of
the brain. Since depression is usually accompanied by
a narrowing of consciousness (and a distorted sense of
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FIG. 14: Spectrum of local field potentials for the posterior
piriform (adapted from Ref. [32]). The data is shown in the
semi-log scales in order to indicate the exponential decay Eq.
(2) (the straight line).

time) this specific decoherence could be considered as a
cause of the phenomenon of the consciousness narrowing
as well. The coherence is important for attention,
sensorimotor processing, etc.. In humans, in particular,
being low in attentional flexibility magnified the effects
of private self-focused attention so typical for depressive
persons.

In order to support the possibility of the extended
chaotic coherence we will use analysis of simultaneously
recorded local field potentials from three sites along
the olfactory-entorhinal axis (the anterior piriform,
posterior piriform, and entorhinal cortices: aPIR, pPIR
and Ent C) reported in a recent paper [32]. The
measurements reported in the Ref. [32] were performed
in lightly anesthetized healthy rats (the Long-Evans rats
with electrode bundles implanted in their anterior and
posterior cortices, and with vertical, silicon probes in
their entorhinal cortices), which were emerged from the
anesthesia to the waking state with full consciousness.
Since the measured local field potentials time series
are not spiky ones one does not need in the special
data mappings in this case. The authors of the Ref.
[32] discovered a new form of coherent neural activity
across the three widely separated brain sites, which they
named Synchronous Frequency Bursts (SFBs). The
high-energy bursts of spontaneous momentary synchrony
were observed across widely separated olfactory and
entorhinal sites (which have also different architecture:
the 6 layers of the entorhinal cortex vs. the three layers
of the piriform cortices). Moreover, a significant rate of
the SFBs simultaneous occurrences was also observed
across the different functional processing systems: motor
and olfactory ones.

The stereotypical duration of the SFBs was about
250 ms and the power spectra taken across the events
were exponentially decaying. Figure 14 shows a typical
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FIG. 15: Coherency calculated for the SFBs in the posterior
piriform and entorhinal cortices (adapted from Ref. [32]).

spectrum for the posterior piriform area. The straight
line is drawn in this figure in order to indicate the
exponential decay Eq. (2) in the semi-log scales (cf.
Figs. 9 and 10 for the singular neuron firing). The
exponential decay indicates a chaotic nature of these
bursts (see above). The decay rate Te = 1/fe ≃ 0.1s is
significantly smaller than that observed for the singular
neurons (Figs. 9 and 10). Taking into account Eq. (3)
one can conclude that the chaotic mixing in the phase
space (determined by the Lyapunov’s exponents) is
much more active for the multineuron activity than for
the singular neuron firing (that seems quite natural).
This more active mixing shifts the spectrum into more
high frequency range. Moreover, one can expect that
expansion (globalization) of the chaotic coherence on the
larger brain areas will shift the coherent chaotic activity
even into the higher frequency ranges (cf. below).

The authors of the Ref. [32] computed coherence
across SFBs in a pair of brain regions. Figure 15 shows
the coherency calculated for the SFBs in the posterior
piriform and entorhinal cortices (which are separated in
brain space by about 8mm). One can compare this figure
with the Fig. 13 (where the coherency was calculated
for a pair of neighboring neurons). In this case the fre-
quency bands of high coherency can be observed as well.
The coherent frequency-range is shifted considerably in
the high frequency direction for the multineuron case
(see above for a reason of this shift). Actually, ”the
main purpose of SFBs might be to coordinate multiple
frequency bands across different processing subsystems”
[32]. Such coordination provides a sufficient level of
coherence for the work of these separated subsystems
with speed and efficiency impossible in the case of
transmission of a specific behavioral content. This can
be considered as the main advantage of the chaotic
coherence. The hardware for these effective ’manage-
ment’ can be provided (at least partially) by recently
discovered in the cortex and hippocampus interneuronal
networks with long-range axonal connections [33],[34]

and for the high frequency γ-range (30-90Hz) oscillations
”via neurons (and glia) inter-connected by electrical
synapses called gap junctions which physically fuse and
electrically couple neighboring cells.”[35].

The authors of the Ref. [32] observed also that the
SFBs occurrence is a function of level of consciousness.
They found ”that the SFBs occurred far more often
under light anesthesia than deeper anesthetic states,
and were especially prevalent as the animals regained
consciousness”. They did not observe the SFBs after
the rats regained full alertness, but as they comment
this can be a technical problem of inferring the specific
signal from the highly complex local field potential of
the awake state. Therefore, one cannot rule out the
possibility that the phenomenon is still in a full swing
also in the fully consciousness state (at least at certain
conditions).

Finally, it should be noted that the transitional states
of consciousness (emerging and decaying) have a very
interesting relationship to associative human creativity
(H. Poincare called these states as semi-somnolent condi-
tions, see Ref. [36], Chapter: Mathematical discovery).
The very creative and unexpected associative ideas
that come in these states can have the above described
long-range chaotic coherence as their direct physical
background. Moreover, the same mechanism can also be
in work at full consciousness (see previous paragraph).
In this case, however, its results are considered as ones
coming from the ’clear sky’ and we tend to interpret
them (may be wrongly) as a result of a prolonged period
of unconscious work. In the full consciousness state
these results are more often turn out to be adequate
ones, unlike of those obtained in the transitional states
[36]).

”A new result has value, if any, when, by establish-
ing connections between elements that are known but
until then dispersed and apparently unrelated to one an-
other, order is immediately created where chaos seemed
to reign” [36].
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