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Individual dynamical units that are coupled via an interaction network can synchronize sponta-
neously without central regulation. The propensity to synchronize depends on structural properties
of the interaction network. Certain network properties such as heterogeneity and diameter have
been studied extensively, however sometimes with conflicting conclusions. This indicates that be-
side global structural measures of the network also the local and mesoscale configurations of network
nodes play a role that cannot be neglected. By constructing a graphical interpretation of Jacobi’s
signature criterion, we show that synchronization in phase oscillators can only be achieved if the
network obeys necessary topological conditions. These analytical results thus identify instabilities
that occur in subgraphs on the mesoscale. We then formulate and numerically confirm a conjecture
that extends the stability conditions to large scale structures. Finally, we show that the proposed ap-
proach can be extended to an adaptive oscillator network, in which the coupling topology co-evolves
with the dynamics of the coupled units.

Spontaneous synchronization of dynamically interact-
ing units plays an important role in many different fields
including biology, ecology, and engineering [1, 2]. The
paradigmatic model proposed by Kuramoto [3] opened
the field for detailed studies of the interplay between the
structure of the interaction network and collective phe-
nomena [4–7]. These studies have revealed the influence
of various topological measures – such as the clustering
coefficient, the diameter, and the degree or weight distri-
bution – on the propensity to synchronize [8–10]. How-
ever, recent results [2, 11, 12] indicate that beside global
topological measures also details of the exact local config-
uration can crucially affect synchronization. This high-
lights synchronization of phase oscillators as a promising
example in which it may be possible to understand the in-
terplay between local, global, and mesoscale constraints
on stability, that severely limit the operation of complex
technical and institutional systems [13, 14].

In this paper we apply Jacobi’s signature criterion
(JSC), to find necessary conditions for the stability of
phase-locked solutions in undirected networks of non-
identical phase oscillators. These conditions pertain to
subgraphs that contain multiple nodes but are smaller
than the entire network, thus imposing constraints on
the mesoscale. By observing a regularity in the analyt-
ical conditions we then formulate a conjecture stating
that for synchronization a spanning tree has to exist in
which all interactions are reinforcing. Such conditions
obtained from the JSC are complementary to statistical
analysis of synchronization as they provide analytical in-
sights pinpointing the sources of instabilities hindering

synchronization.

The JSC (also known as Sylvester criterion) states
that the number of negative eigenvalues of a matrix J

equals the number of changes of sign in the sequence
1, D1, . . . , Dr, where Dq := det (Jik), i, k = 1, . . . , q, is
the principal minor of order q and r is the rank of J [15].
In a stable system the sequence has to alternate in every
step, i.e., the q-th order principal minor Dq has to have
the sign of (−1)q.

Stability analysis by means of JSC is well-known in
control theory [15] and has been applied to problems of
different fields from fluid- and thermodynamics to off-
shore engineering [16–18]. The applicability of JSC is
presently limited mostly to systems with few degrees of
freedom, as the criterion is formulated in terms of de-
terminants. Numerical computation of determinants is
typically accomplished by computing products of eigen-
values or singular values [19] and is thus more costly than
numerical stability analysis of the system. The analyt-
ical evaluation of the criterion is impeded by the com-
binatorial growth of the number of terms. Dealing with
this growth is the central difficulty in the present paper,
which we address by proposing a convenient graphical
notation.

http://arxiv.org/abs/1012.0722v1
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STABILITY IN NETWORKS OF

PHASE-OSCILLATOR

Following [20] we consider a system of N phase oscil-
lators i whose time evolution is given by

ẋi = ωi +
∑

j 6=i

Aij sin(xj − xi) , ∀i ∈ 1 . . .N . (1)

Here, xi, ωi respectively, denote the phase and the intrin-
sic frequency of node i and A ∈ R

N×N is a weight matrix
of an undirected, weighted interaction network. Two os-
cillators i, j are thus connected if Aij = Aji 6= 0. The
model can exhibit phase-locked states, which correspond
to steady states of the governing system of equations.
The local stability of such states is determined by the
eigenvalues of the Jacobian matrix J ∈ R

N×N defined by
Jik = ∂ẋi/∂xk. If all eigenvalues of J are negative then
the state under consideration is asymptotically stable.

In the present system the Jacobian J is symmetric and
thus admits analysis by the JSC. For obtaining a suffi-
cient condition for stability we have to demand that the
sign of the minors changes in every step of the sequence.
This is impracticable for most larger systems because a)
large determinants have to be evaluated and b) a large
number of conditions have to be checked. However, be-
cause the sign must alternate in every step demanding
sgn (Dq) = −1q for some q already yields a necessary
condition for stability. We note that this condition per-
tains to a specific subgraph of size q.

The stability condition that is found by considering a
principal minor of given order q depends on the order-
ing of variables, i.e. the ordering of rows and columns in
the Jacobian. The number of necessary conditions that is
obtained can therefore be increased by considering differ-
ent orderings [21]. By considering all possible reorderings
one finds a condition constraining every subgraphs of size
q that is present in the network. For distinguishing mi-
nors relying on different orderings of the variables, we
define S = {s1, . . . , sq} as a set of q indices and Dq,S as
the determinant of the submatrix of J, which is spanned
by the variables xs1 , . . . , xsq . Therewith, the necessary
conditions for stability read

sgn (Dq,S) = (−1)q, ∀S, q = 1, . . . , r. (2)

GRAPHICAL NOTATION

Considering necessary conditions, avoids the difficulty
(b), mentioned above, which leaves us to deal with dif-
ficulty (a) arising from the combinatorial explosion of
terms that are needed to write out the conditions for in-
creasing q. For instance in the common notation more
than 700 terms are necessary for expressing the minors
of order 6. Although we cannot circumvent this problem

For q = 4, S = {i, j, k, l}

2 := JijJjlJlkJki + JijJjkJklJli

+JikJkjJjlJli

i j

k l

| · | := J2
ikJ

2
jl + J2

ijJ
2
kl + J2

ilJ
2
jk

FIG. 1. Examples for the graphical notation. Symbols de-
note the sum over all non-equivalent possibilities to build the
depicted subgraph with the q vertices ∈ S. Plotted are two ex-
ample terms and their algebraic and topological equivalents.

completely, progress can be made by employing a graph-
ical notation that captures basic intuition and allows for
expressing the principal minors more precisely.

For arriving at the graphical notation consider that
the Leibniz formula for determinants [22] implies that
(i) a minor Dq,S is a sum over q! elementary products
Ji1j1 · . . . · Jiqjq ; and (ii) in each of these products every
index si ∈ S occurs exactly twice. Let us now interpret
the Jacobian J as the weight matrix of an undirected,
weighted graph G. A Jacobian element Jij then corre-
sponds to the weight of an edge connecting vertices i and
j. We can now relate products of the Jacobian elements
to subgraphs of G spanned by the respective edges. For
instance JijJjk is interpreted as path i-j-k, JijJjkJki as
a closed path from i to j to k and back to i.

Based on the above, we associate every subgraph in G
with the value found by multiplying the weights of the
corresponding edges. This enables us to express the mi-
nors of J as sums over subgraphs. Because of property
(i), each term of a minor Dq,S corresponds to a subgraph
with q edges. Because of property (ii), these subgraphs
are composed of sets of cycles in G: Every index si ∈ S
occurs either with multiplicity two on a diagonal element
of J, or, with multiplicity one, on two off-diagonal el-
ements of J. In the former case, the respective factor
corresponds to a self-loop of G, i.e., to a cycle of length
n = 1; in the latter case, there is a set of factors Jij i 6= j
corresponding to a closed path of edges, i.e., a cycle of
length n > 1.

In summary, properties (i) and (ii) imply that all mi-
nors Dq,S of a matrix J can be decomposed into cycles of
G. This sets the stage for the graphical notation which
consists of a basis of symbols and a summation conven-
tion. The basis of symbols is given by ×, |,△,2,D, . . .
denoting cycles of length n = 1, 2, 3, 4, 5, . . .. The sum-
mation convention stipulates that in a minor Dq,S , ev-
ery product of symbols denote the sum over all non-
equivalent possibilities to build the depicted subgraph
with the q vertices s1, . . . , sq (cf. Fig. 1).

With these conventions the first 6 principal minors can
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be written as

D1 = × (3a)

D2 = × · × − | (3b)

D3 = × · × · × − × · |+ 2△ (3c)

D4 = × · × · × · × − × · × · |+ | · |+ 2× ·△ − 22 (3d)

D5 = × ·D4 − 2△ · |+ 2D (3e)

D6 = × ·D5 − | · | · |+ 4△ ·△+ 22 · | − 27 (3f)

The Eqs. (3) allow us to infer the general formation rule
for minors:

Dq =
∑

all combinations of symbols with
∑

n = q,

(4)
where symbols with n > 2 appear with a factor 2 that
reflects the two possible orientations in which the corre-
sponding subgraphs can be paced out. Symbols with an
even (odd) number of edges carry a negative (positive)
sign related to the sign of the respective index permuta-
tion in the Leibniz formula for determinants.

ZERO ROW SUM

Because of fundamental conservation laws many sys-
tems, including the standard Kuramoto model, have Ja-
cobians with zero row sum, such that Jii = −

∑

j 6=i Jij .
Using this relation we can remove all occurrences of el-
ements Jii from the Jacobian and its minors. In the
topological reading this substitution changes the corre-
sponding networks by replacing a self-loop at a vertex i
by the negative sum over all edges of G that connect to
i.

The simplification of the minors due to the zero row
sum condition can be understood using the example of
Fig. 2. Replacing the self-loops, the first term of every
minorDq,S , ×

q, turns out to be (−1)q times the sum over
all subgraphs meeting the following conditions: First, the
subgraph contains exactly q edges. Second, there is at
least one edge connecting to every vertex ∈ S. Third,
every edge connects to at least one vertex ∈ S. And
fourth, no vertex /∈ S has more than one edge connected
to it. By means of elementary combinatorics it can be
verified that all other terms of Dq,S cancel exactly those
subgraphs in ×q that contain cycles. This enables us to
express the minors in another way. Defining Φq,S as the
sum over all acyclic subgraphs of G that contain q edges
and all vertices ∈ S we can write

Dq,S = (−1)qΦq,S . (5)

We remark that Kirchhoff’s Theorem [23], which has pre-
viously been used for the analysis of dynamical systems
[24, 25], appears as the special case of Eq. (5) where
q = N − 1.
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FIG. 2. Symbolic calculation of a determinant using the
graphical notation. Consider the minor D4,S of the graph
G sketched above. If S is chosen to be the set of vertices
plotted in grey, the terms of Eq. (3d) can be written as
× · × · × · × = A + B + C + 2D, − × · × ·| = −(B + 2C),
| · | = C, 2 × ·△ = −2D and −22 = 0. It thus follows that
D4,S ≡ Φ4,S = A is the the sum over all acyclic subgraphs of
G that contain q edges and all vertices ∈ S.

TOPOLOGICAL STABILITY CONDITIONS

Let us shortly summarize what we obtained so far. The
topological reading of determinants maps a symmetric,
Jacobian J with zero row sum onto a graph G, whose
weight matrix is given by the off-diagonal part of J. The
minors of J can then be interpreted as sums over values
associated with subgraphs of G. Combining the Eqs. (2)
and (5), the algebraic stability constraints on the minors
of J translate into

Φq,S > 0, ∀S, q = 1, . . . , r. (6)

We emphasize that the graph G is not an abstract con-
struction, but combines information about the physical
interaction topology and the dynamical units. For ex-
ample, if a graph G has disconnected components, there
is a reordering of the variables xi, such that J is block
diagonal. This implies that the spectra of different topo-
logical components of G decouple and can thus be treated
independently.
From Eq. (6) we can immediately read off a weak suffi-

cient condition for stability: Because Φq,S is a sum over
products of the Jij , a Jacobian with Jij ≥ 0 ∀i, j is a so-
lution to Eq. (6) irrespective of the specific structure of G
[26]. By contrast, if Jij < 0 for some i, j, the existence of
solutions of Eq. (6) is dependent on the topology. In the
following we investigate which combinations of negative
Jij in a graph G lead to the violation of at least one of
the Eqs. (6). For this purpose we first explore the restric-
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FIG. 3. Necessary stability condition for trees. (a,b) If G
is a tree, ΦN−1,S has only one term, G itself (vertex indices
/∈ S are marked red). The condition ΦN−1,S > 0 then allows
for an even number of negative edges in G. If the number of
negative edges is > 0 (e.g. 2), we can find a pair of vertices
i, j connected by a negative edge and choose S = {k|k 6= i, j}
such that ΦN−2,S = ΦN−1,S/Jij < 0 (c). It follows that if G
is a tree, stability requires that all edges are positive.

tions that Eq. (6) imposes on simple topological building
blocks. Thereafter, we piece the results for the different
example topologies together to formulate a conjecture for
stability conditions in large networks.

In Fig. 3 we illustrate, that if G a tree, Jij ≥ 0 ∀i, j is
not only a sufficient but also a necessary condition for sta-
bility. The reasoning in the figure translates one-to-one
to any tree-like subgraph of a general graph G. More pre-
cisely: If G possesses edge induced subgraphs, which are
trees, stability requires that all edges belonging to these
subgraphs correspond to positive entries of the Jacobian.
In other words stability requires that edges correspond-
ing to negative entries can only appear in cyclic parts of
the network.

In Fig. 4, we summarize results for different cyclic ex-
ample graphs. The figures show that stability restricts
the maximum number of edges corresponding to negative
elements, as well as their position, and their strength.
In the example networks the maximum number of these
negative edges that can be reconciled with stability is
one less than the number of independent cycles. Further
the negative edges must be placed such that the graph
that is obtained by removing the negative edges is still
connected.

The results from the examples considered so far can be
summarized by saying that stability of the synchronized
state requires that a spanning tree must exist in which
every edge corresponds to a positive element of the Ja-
cobian. We conjecture that this result holds also in the
general case, so that stability in any network requires
that the graph G must have a spanning tree of positive
edges, i.e., if all negative edges are removed from G, the
remaining graph must still be connected.

In order to check the conjecture stated above numeri-
cally, we generated ensembles of 108 connected graphs of
size N = 25 and fixed mean degree 〈k〉. In each graph, we
assigned a negative weight α to all but N − 1 randomly
chosen edges. The remaining edges were assigned weight
1. We then checked for each graph, whether the graph
had a positive spanning tree and calculated the largest
non-trivial eigenvalue λ of the corresponding Jacobian.

a b c

FIG. 4. Necessary stability conditions for cyclic example
topologies. (a) If G is a cycle, it can have at most one neg-
ative edge whose strength |α| is bounded by a cycle length
dependent relation (cf. Fig 5). (b) If G is composed of two
cycles that share one vertex, each of these cycles can have
at most one negative edge of bounded strength. (c) If G is
composed of two cycles that share a sequence of edges, every
unbranched sequence of edges (red, violet, blue), can at most
have one negative edge, while the total number of negative
edges may not exceed 2. Removing the maximum number of
negative links from the example topologies reveals that the
permissible graph is still connected (lower panels).

Let C be a cycle of length N , which includes N − 1
positive edges c1, . . . , cN−1 and one negative edge α.
Then stability requires that

|α| <
c1 · c2 · . . . · cN−1∑

all distinct products of (N − 2) factors ci
, (7)

i.e. for N=3, |α| < c1c2
c1+c2

, for N=4, |α| < c1c2c3
c1c2+c1c3+c2c3

and so forth.

FIG. 5. Stability sets a cycle-length dependent upper bound
on the strength of a negative edge in a cycle. Note, that
inserting an additional positive edge cN in an cycle of length
N decreases the upper bound on |α| irrespective of the value
of cN . In this sense, one can say that the longer the cycle the
more restrictive the stability condition.

The procedure was repeated for different values of α.

Among the 109 generated test graphs, more than 98%
did not contain a positive spanning tree. Of these net-
works none were found to be stable which corroborates
the conjecture. Among the graphs that did contain a
positive spanning tree (ca. 107), stability depended on
the specific topology and the value of |α| (cf. Fig. 6).
As expected from Fig. 5, the fraction of networks that
are stable although they obey the necessary condition
decreases with increasing |α|.

ADAPTIVE COUPLING

Above we assumed that the system under considera-
tion is described by a Jacobian that is symmetric and
has zero row sums. We now consider an example where
the zero row sum criterion is only met in certain net-
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FIG. 6. Numerical test of the hypothesized stability condi-
tion. The fraction of matrices J that have a positive largest
eigenvalue although the corresponding graph G possesses a
positive spanning tree is plotted against |α|. The continuous
transition from 0 to 1 confirms that the upper bound on |α|
depends on the exact position of the negative edge.

works. For this purpose we turn to adaptive networks
(AN), in which the topology of the network coevolves
with the dynamics of oscillators [27–29].
We consider a system ofN phase oscillators that evolve

according to Eq. (1), while the coupling strength Aij

evolves according to

d

dt
Aij = cos(xj − xi)− b ·Aij . (8)

The first term in Eq. (8) states that the more similar
the phases of two vertices the stronger reinforced is their
connection, the second term guarantees convergence. In
a stationary, phase-locked state state Aij = cos(xj−xi)/b
and all oscillators oscillate with a common frequency Ω =
1

N

∑

i ωi. The stability of this state is governed by a
symmetric Jacobian. Defining oij := 1

b
cos2(xj − xi),

mi := −
∑

j 6=i oij , sji := sin(xj − xi) it can be written in
the form

J =

















−b 0 0 s21 s12 0
0 −b 0 s31 0 s13
0 0 −b 0 s32 s23
s21 s31 0 m1 o12 o13
s12 0 s32 o12 m2 o23
0 s13 s23 o13 o23 m3

















(9)

which is shown here for N = 3. The marked partitioning
separates two blocks on the diagonal. The upper one is
a diagonal submatrix of size L × L, L := N(N − 1)/2,
the lower one is a N ×N symmetric submatrix with zero
row sum, which we denote as j.
Let us start our analysis by focusing on the upper left

block of J. In the chosen ordering of variables the first L
minors Dq satisfy the stability condition Eq. (2) iff b >
0. Concerning the minors of order q > L, the following
conventions prove advantageous: We define DL+n,S as
the determinant of the submatrix of J, which is spanned
by all variables Aij and the n variables xsi . Further,
D0+n,S denotes the determinant of the submatrix of j,
which is solely spanned by the n variables xsi .

We find that

DL+n,S = (−1)LbL−n · F (D0+n,S) , (10)

where F is the linear mapping F : oij → cos(2(xj − xi)).
As the submatrix j is symmetric and has a zero row sum,
its minors, D0+n,S , can be rewritten using Eq. (5)

DL+n,S = (−1)L+nbL−nF (Φn,S) , (11)

where Φn,S refers to subgraphs of the graph G defined
by the off-diagonal entries of j. Stability requires that
sgn (DL+n,S) = sgn

(

(−1)L+n
)

. As the necessary stabil-
ity condition b > 0 determines bL−n to be positive, it
follows that in a stable system

F (Φn,S) > 0, ∀S, n = 1 . . . r. (12)

Comparison with Eq. 6 reveals that the stability condi-
tions are related by the mapping F . The implications
of this relationship between the stability of adaptive and
non-adaptive networks will be discussed in detail in a
seperate publication.

CONCLUSIONS

In the present paper we analyzed necessary conditions
for local asymptotic stability of stationary and phase-
locked states in networks of phase oscillators. Using a
graphical interpretation of Jacobi’s signature criterion we
first formulated conditions for the stability of small sub-
graphs and then generalized these in a conjecture stating
that stability requires the existence of a spanning tree in
which every edge corresponds to a positive element of the
Jacobian matrix.
Our results provide an analytical angle that is com-

plementary to statistical analysis of network synchroniz-
ability. Where statistical approaches reveal global fea-
tures impinging on the propensity to synchronize, our
approach can pinpoint specific defects precluding syn-
chronization. We note that such defects can occur all
scales, corresponding to the violation of the signature
criterion in subgraphs of different size. This highlights
synchronization of phase oscillators as a simple but in-
triguing example in which instabilities can arise from lo-
cal, global or mesoscale structures. In the future the
approach proposed here may provide a basis for further
investigation of these instabilities.
In real-world systems testing the conditions identified

here requires information on the stationary phase pro-
file. This limits the applicability of our approach for
synchronizing systems which do not synchronize natu-
rally. However, we note that even in such systems it may
be possible to stabilize an existing unstable phase-locked
state, e.g. by delayed-feedback control [30]. Based on the
observed phase profile in the stabilized state one can then
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the identified conditions to search for structures that pre-
clude synchronization when the controller is turned off.
A more direct application of the present results is possi-
ble in networks with designed phase profiles [31]. Given
a coupling topology and a desired phase profile it is of-
ten relatively easy to find a set of natural frequencies for
which the phase profile is stationary, but not necessarily
stable. Here the necessary stability conditions provide
constrains on the stable profiles that may be realized in
a given coupling topology.

Finally, the present results demonstrate the applica-
bility of Jacobi’s signature criterion to large networks.
In principle the criterion can be applied to all systems in
which the Jacobian is a Hermitian matrix. In the present
paper we additionally assumed that the Jacobian has zero
row sums. An example of the application of Jacobi’s sig-
nature criterion in a large system where the zero row
sum condition is violated is presented in [21]. However,
in this work the authors considered only the first few mi-
nors of the Jacobian because of the combinatorial growth
of expressions. We hope that future authors will find the
graphical notation proposed here useful for mitigating
this difficulty.
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