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Proton size anomaly
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A measurement of the Lamb shift in muonic hydrogen yields a charge radius of the proton that
is smaller than the CODATA value by about 5 standard deviations. We explore the possibility that
new scalar, pseudoscalar, vector, axial-vector, and tensor flavor-conserving nonuniversal interactions
may be responsible for the discrepancy. We consider exotic particles that among leptons, couple
preferentially to muons, and mediate an attractive nucleon-muon interaction. We find that the many
constraints from low energy data disfavor new spin-0, spin-1 and spin-2 particles as an explanation.

Lamb shift. The success of quantum electrodynam-
ics (QED) is apparent in the explanation of the Lamb
shift [1] which is the observation that the 2S1/2 state of
hydrogen is higher than the 2P1/2 state by about 1 GHz.1

Precision measurements in atomic spectra have tested
bound-state QED to the extent that the charge distribu-
tion of the proton needs to be taken into account [2]. The
root-mean-square charge radius of the proton compiled
by CODATA from the spectroscopy of atomic hydrogen
and electron-proton scattering is [3]

√

〈

r2p
〉

= 0.8768± 0.0069 fm . (1)

It has been a long-held goal to measure the correspond-
ing Lamb shift in muonic hydrogen which is even more
sensitive to the structure of the proton due to its smaller
Bohr radius (αmµ)

−1, (where α ∼ 1/137 is the electro-
magnetic fine structure constant and mµ ≃ 105 MeV).
Recently, the 2P3/2 → 2S1/2 Lamb shift in muonic hy-
drogen was measured to be [4],

∆ẼLS ≡ E(2P3/2)−E(2S1/2) = 206.2949±0.0032meV ,
(2)

while the predicted value is [2, 5]

∆ẼLS = 209.9779(49)− 5.2262
〈

r2p
〉

+ 0.0347
〈

r2p
〉3/2

,
(3)

1 The dominant contributions to the Lamb shift arise from vac-
uum polarization and the vertex charge form factor of the lep-
ton. Vacuum polarization contributes negatively to ∆ELS ≡

E(2S1/2) − E(2P1/2) since more of the lepton’s bare charge is
revealed for the S state (than the P state) due to its greater
overlap with the nucleus. On the other hand, the vertex charge
form factor is related to the zitterbewegung of the lepton which
causes the effective Coulomb potential to be smeared out and less
attractive. The effect is greater for the S state, so that the contri-
bution to ∆ELS is positive. The latter contribution is dominant
for ordinary hydrogen but plays a minor role in muonic hydrogen
because of the smaller Compton wavelength of the muon. Con-
sequently, ∆ELS is positive in ordinary hydrogen and negative
in muonic hydrogen.

where radii are in fm and energy in meV, and the number
in parenthesis indicates the 1σ uncertainty of the last two
decimal places of the given number. (Note that ∆ẼLS is
defined to be positive.) Equations (2) and (3) yield the
order of magnitude more precise result [4],

√

〈

r2p
〉

= 0.84184± 0.00067 fm , (4)

which is smaller than the CODATA value by about 5σ.
A partial resolution of the discrepancy may be found in
a correlation between

〈

r2p
〉

and the r3p-dependent third
Zemach moment (since they contribute to the Lamb shift
with opposite signs) and perhaps unreliable extractions
of these from electron-proton scattering data [6]. Never-
theless, a 4σ difference remains. The possibility that the
4% difference is a hint of a new gauge interaction with a
natural scale αmµ has been entertained in Ref. [7].
In this Letter, we postulate the existence of a new in-

teraction between muons and nucleons, and study its na-
ture, bearing in mind the many experimental constraints.
The interaction must be attractive since ∆ẼLS measured
in muonic hydrogen is larger than expected, signaling
that the 2S1/2 state is subject to a stronger attraction
than electromagnetic.
Scalar and spin-2 boson exchanges produce an attrac-

tive potential, giving positive contributions to ∆ẼLS .
Pseudoscalar boson exchange is a derivative interaction
involving the spins and velocities of the lepton and the
nucleus, which becomes insignificant in the nonrelativis-
tic limit, and irrelevant to the Lamb shift. A boson with
both scalar and pseudoscalar couplings violates CP con-
servation. Such a scenario faces strong constraints from
electric dipole moment measurements of leptons and nu-
cleons, and is disfavored [8]. Vector boson exchange (like
photon exchange) can produce an attractive potential if
the quantum numbers associated with the lepton and the
nucleus are opposite in sign, such as in the gauged B−3L
interaction. Then Lamb shift phenomenology is like that
of scalar exchange. Axial-vector exchange couples the
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spins of the lepton and the nucleus in the nonrelativis-
tic limit. It affects the hyperfine structure, but not the
Lamb shift.
Suppose the interaction between fermions f and χ is

given by CS,V,T
f f̄ fχ, where S, V, T denote scalar, vector

and tensor χ, respectively, and f can be a muon µ or
a nucleon n; we assume isospin is conserved. Through-
out, we take the couplings C to be real and positive. In
the nonrelativistic limit, the muon-nucleon interaction is
given by the Yukawa-type potential,

∆V (r) = −αχ
e−mχr

r
, (5)

where αχ = CS,V,T
µ CS,V,T

n /(4π) andmχ is the mass of the
particle χ. Physical systems in which tensor interactions
(by which we mean spin-2 exchange) are governed by
a Yukawa potential allow the identification, CT

f ≡ CS
f .

This will be valid for all our constraints except those that
involve the anomalous magnetic moment of the muon
aµ ≡ (gµ − 2)/2. The correction to the muonic Lamb
shift is [9]

δ(∆ẼLS) = αχmχ

mχ

αmr

2
(

1 +
mχ

αmr

)4
, (6)

wheremr is the reduced mass of the muon-proton system,
and its use is numerically important as mr is smaller
than mµ by more than 10%. The green shaded region in
Fig. 1 shows the 95% C. L. region that accommodates the
difference between Eqs. (1) and (4). We do not consider
mχ > 10 GeV since the required αχ becomes larger than
20α, in the nonperturbative regime.
Upsilon decay. For scalar χ in the mass range

2mµ− 9.3 GeV, the nonobservance of radiative decays of
the Υ(2S) and Υ(3S) resonances: Υ → γχ, χ → µ+µ−,
strongly constrains the Υ−χ coupling [10], which we ex-
pect to be no smaller than CS

n ; for a Higgs-like χ, the cou-
pling is naturally O(mb/mn)×CS

n , while for a universal
interaction, it should be O(CS

n ). We conservatively take
the Υ− χ coupling to be CS

n . In obvious notation [11],

BF (Υ → γχ)

BF (Υ → µ+µ−)
=

(CS
n )

2

4πα

(

1−
m2

χ

m2
Υ

)

. (7)

Under our assumption that the branching fraction of χ→
µ+µ− is unity, the 90% C. L. upper limit on CS

n ranges
from (0.94 − 9.4) · 10−3 [10], where the lower end of the
range corresponds to smaller mχ. The values of αχ/α
needed to explain the muonic Lamb shift constrain CS

µ to
lie above O(1), O(10) and O(100) for mχ ∼ 2mµ, 1 GeV
and 9 GeV, respectively, couplings which are too large.
A vector χ can mediate leptonic decays of spin-1

quarkonia. Since the only lepton that χ couples to is
the muon, one expects nonuniversality in leptonic decays.
For Υ(1S) decays, Rτµ ≡ Γττ/Γµµ = 1.005 ± 0.013 ±
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FIG. 1. The 95% C. L. range of αχ/α required to reproduce
the muonic Lamb shift is indicated by the green shaded re-
gion. The black solid, red dashed and blue dot-dashed lines
are the upper limits for vector, scalar and spin-2 particles,
respectively, from a combination of n−208Pb scattering data
and the anomalous magnetic moment of the muon. The black
dotted curve is the upper bound obtained from atomic X-ray
transitions. All bounds are at the 95% C. L.

0.022 [12], whereas the SM expectation is 0.992 [13]. The
inclusion of χ modifies the SM value of Rτµ by a factor,

[(

1± αχ

αQb

)

− (mχ/mΥ)
2

]2
[

1− (mχ/mΥ)
2
]

−2

, (8)

where the + (−) sign corresponds to destructive (con-
structive) interference and Qb is the electric charge of
the b quark. For mχ

<∼ 1 GeV, a conservative 95% C. L.
(one-sided) upper bound on αχ/α (assuming the SM and
χ contributions destructively interfere) is 8.8× 10−3. In
the range 1 GeV <∼ mχ < mΥ, the upper bound becomes
even more stringent, falling monotonically with mχ. The
mass of a vector χ is restricted to be less than about
230 MeV in order to explain the muonic Lamb shift.
Henceforth, we only consider mχ < 2mµ.
Neutron scattering. Very precise neutron scatter-

ing experiments on heavy nuclei in the keV regime have
been performed to study the electric polarizability of the
neutron. The goal is to measure interference effects be-
tween the nuclear potential and the r−4 potential pro-
duced by electric polarizability. One can then see that a
Yukawa potential ∓A (CS,V

n )2 e−mχr/(4πr) may also be
probed by such experiments; the minus and plus signs ap-
ply to scalar/tensor and vector interactions, respectively.
Stringent bounds are obtainable because the p-wave am-
plitude due to the short range strong interaction depends
linearly on energy and differs markedly from that due to
the new longer range interaction. A n−208Pb scatter-
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ing experiment [14] in the neutron energy range 1 to 26
keV measured the differential cross section (under the as-
sumption that the scattering amplitude can be expanded
in s and p waves) to be

dσ

dΩ
=
σ0
4π

(1 + ωE cos θ) , (9)

with
√

σ0/4π ≃ 10 fm and ω = (1.91±0.42)·10−3 keV−1.
The measured values are in line with expectations so that
the Yukawa potential contribution ought to be subdom-
inant. Denoting the strong interaction contribution to
ω by ωs, and the contribution of the new interaction by
∆ω, clearly, ω = ωs +∆ω with [15]

∆ω = ∓ 16

m4
χ

(CS,V,T
n )2

4π

Am2
n

√

σ0/4π
, (10)

in the Born approximation (not valid formχ
<∼ 0.1 MeV),

and mn is the neutron mass and A is the atomic mass
number. For scalar/tensor exchange, it is possible that a
cancellation between ωs and ∆ω produces the experimen-
tal result. However, this cannot be the case for a vector
χ. A conservative 95% C. L. (one-sided) upper limit can
be obtained by requiring that ∆ω ≤ 2.6× 10−3 keV, i.e.,

CV
n ≤ (mχ/206)

2 , (11)

with mχ in MeV. It is the shaded region of Fig. 2.
While reliable bounds for a scalar/tensor χ are not

extractable from the differential cross section, the total
cross section measured between 10 eV and 10 keV [16, 17]
may be employed with confidence. The energy depen-
dence of the n−208Pb cross section for neutron energies
below 10 keV can be parameterized by

σ(k) = σ(0) + σ2k
2 +O(k4) , (12)

where k = 2.1968×10−4
√
EA/(A+1) is the wave vector

of the incoming neutron (with k in fm−1 and E in eV).
The cross section in the limit of vanishing momentum
transfer σ(0) is directly related to the scattering length,
and σ2 gives the effective range of the potential. The
O(k) contribution to σ(k) arises from the electric field
of the nuclear charge distribution and is negligible. The
measured values σ(0) = 12.40± 0.02 b and σ2 = −448±
3 b fm2 give a 95% C. L. bound on CS,T

n [17] that is
almost identical to Eq. (11) in the mass range of interest
(and is not shown separately in Fig. 2), but without the
ambiguity from the cancellation mentioned above.
Muon anomalous magnetic moment. We now

consider the independent constraint on Cµ from aµ. In
fact, since the experimental value of aµ is above the
SM expectation by more than three standard deviations:
∆aµ ≡ aexpµ − athµ = (29± 9)× 10−10 [18], the new inter-
action may explain this difference. From Ref. [19],

∆aµ =
(CS,V

µ )
2

8π2

∫ 1

0

2x2 − βx3

x2 + (m2
χ/m

2
µ)(1 − x)

dx , (13)
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FIG. 2. The curves are 95% C. L. upper bounds on the muonic
couplings CS

µ , C
V
µ CT

µ from ∆aµ. The green shading marks

the values of the nucleon coupling CS,V,T
n excluded by n−208Pb

scattering at the 95% C. L.

where β = 1 for a scalar and β = 2 for a vector. For a ten-
sor interaction, we trivially modify the result of Ref. [20].
In the limit mχ ≪ mµ,

CS
µ = 4π

√

∆aµ/3 <∼ 4.8× 10−4 , (14)

CV
µ = 4π

√

∆aµ/2 <∼ 5.9× 10−4 , (15)

CT
µ = 4π

√

3∆aµ/20 <∼ 3.2× 10−4 , (16)

where the one-sided upper bounds are at the 95% C. L.
From Fig. 2 it is evident that Eqs. (14)-(16) apply for
mχ

<∼ 10 MeV.
The bound in Eq. (11) can be combined with those in

Eqs. (14)-(16) to give the following 95% C. L. constraints
for mχ

<∼ 10 MeV:

αχ/α <∼ (mχ/2847)
2 scalar , (17)

αχ/α <∼ (mχ/2573)
2 vector , (18)

αχ/α <∼ (mχ/3477)
2 tensor , (19)

with mχ in MeV. A similar (numerical) procedure can be
applied for the entire range of mχ to obtain the upper
bounds shown in Fig. 1. We see that a vector χ with mass
between 25 MeV (with αχ ≃ 10−4α) and 210 MeV (with
αχ ∼ 10−2α) is a viable candidate. While a scalar χ with
mass between 70 MeV and 210 MeV (with αχ ∼ (10−3−
10−2)α) is marginally allowed, a spin-2 χ is excluded.
Muonic atom transitions. Measurements of the

muonic 3D5/2 − 2P3/2 X-ray transition in 24Mg and 28Si
atoms directly constrain αχ for scalar, vector and tensor
particles [21]. For the Yukawa form of Eq. (5) with the
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coupling enhanced by a factor of A, the shift in the dif-
ference in energy levels from the QED expectation is [21],

∆E

E
=

2αχA

5αZ
[9f(2)− 4f(3)] , (20)

where f(j) = [1 + jmχ/(2αZmµ)]
−2j , Z is the

atomic number, and j is the principle quantum num-
ber of the muonic state. The measured value ob-
tained by averaging the results for 24Mg and 28Si,
∆E/E = (0.2± 3.1) · 10−6 [21], gives the 95% C. L.
bound (dotted curve) in Fig. 1. No additional area of the
relevant parameter space is excluded by this constraint.
J/ψ decay. For mχ < 2mµ, the decay of scalar

χ→ µ+µ− is kinematically forbidden so that a constraint
from the nonobservance of the decay J/ψ → γχ, with χ
invisible [22], may be employed to exclude the marginally
allowed region with 70 MeV < mχ < 210 MeV; prelim-
inary data also exist for the decay Υ(3S) → γχ [23].
A trivial modification of Eq. (7) applies to J/ψ de-
cay. The 90% C. L. upper limit on BF (J/ψ → γχ) is
∼ 4.5×10−6 [22], which when combined with BF (J/ψ →
µ+µ−) = (5.93±0.06)·10−2 [24], givesCS

n < 0.029. Then,
the muonic Lamb shift dictates that CS

µ be larger than
3.4× 10−3 which is excluded at the 95% C. L. by aµ; see
Fig. 2. Thus, scalars are also disfavored.
Pion decay. The 90% C. L. experimental upper limit

on the decay π0 → γχ, where χ is a vector particle, is
(3.3− 1.9) · 10−5 for mχ ranging from 0 to 120 MeV [25].
Equivalently, CV

n < 4.5×10−4(1−m2
χ/m

2
π)

−3/2 [26], and

the corresponding values of CV
µ required to explain the

muonic Lamb shift are excluded by aµ. This leaves mχ

between 120 MeV and 210 MeV.
Eta decay. For vector χ, the 90% C. L. experimental

upper limit on invisible decays, BF (η → χχ)/BF (η →
γγ) < 1.65 × 10−3 [27], translates into CV

n
<∼ 0.05 [28].

The corresponding CV
µ for 120 < mχ < 210 MeV is ex-

cluded by aµ, so that vector χ is also ruled out.
Conclusions. We have found that new spin-0,

spin-1 or spin-2 particles that mediate flavor-conserving
nonuniversal interactions are excluded by several low en-
ergy constraints as an explanation of the proton radius
anomaly. We assumed that among leptons, the new par-
ticles couple only to the muon so as to avoid the large
number of constraints involving the interaction of the
electron with exotica. We also supposed that the cou-
pling of the new particle to nucleons represents the min-
imal hadronic coupling, and employed it to mesons.
There are ways to relax some of the bounds at the ex-

pense of introducing complication. For example, since
the contributions of scalars and pseudoscalars to aµ are
opposite in sign, allowing both a scalar boson and a
pseudoscalar boson with appropriately tuned couplings
can lead to a cancellation that permits a rather large
muonic coupling. Then, although the hadronic couplings
are highly restricted, the muonic Lamb shift can be ac-

commodated. Another possibility is that the new inter-
action violates isospin or CP , so that additional freedom
is garnered.

In response to I. Rabi’s gibe about the existence of the
muon, “Who ordered that?” we declare, “The proton!”
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