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Abstract

It is shown that gauge field-dependent fermion Dirac operators

from lattice QCD form an ergodic operator family in the probabilistic

sense, provided the gauge field is an ergodic random field. As a con-

sequence, the integrated density of states of such Dirac operators in

the thermodynamic limit exists and is almost surely independent of

the chosen gauge field configuration.
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1 Introduction

The Standard Model of Elementary Particles is one of the biggest achieve-
ments of theoretical physics during the second half of the 20th century. It
provides a common conceptual basis for all elementary forces except gravity.
The part which describes the strong nuclear force is called Quantum Chromo-
dynamics (QCD). The associated Lagrangian density has a clear and simple
appearance that fits on a single line,

L(x) = −
1

4
Fµν(x)F µν(x) + ψ(x)(iD(A) −m)ψ(x), (1)

with D(A) ∶= γµ(∂µ + iAµ) being the Dirac operator of the fermion field
ψ(x), ψ(x), which depends on the gauge field A ∶= (Aµ(x))µ,x, and Fµν(x) =
∂µAν(x) − ∂νAµ(x) − [Aµ(x),Aν(x)] being the field tensor. In spite of its
structural simplicity, concrete quantitative predictions are difficult to derive
from (1), and one often resorts either to calculations in perturbation theory
or numerical simulations on a discretized (Euclidean, after Wick rotation)
space-time, known as lattice QCD (LQCD, see [8] for an overview).

Several basic properties of QCD, such as the spontaneous breaking of
chiral symmetry or the phenomenon of quark confinement, manifest them-
selves in the regime of low energies, where perturbation theory in the QCD
coupling constant cannot be applied. Spontaneous chiral symmetry breaking
is signaled by the formation of a non-vanishing chiral condensate ⟨ψψ⟩. In
a seminal paper [1], Banks and Casher formulated a link between the value
of the condensate and the spectral properties of the Dirac operator D in
the deep infra-red. Since the gauge field A does not appear explicitly in the
observable, it acts as a background field which nonetheless determines the
spectral properties in a non-trivial way.

The idea that the distribution of the low-lying eigenvalues of the fermion
Dirac operator is very close to the one of the corresponding (i.e., respecting
symmetries) random matrix ensemble was put forward in [11, 16, 14] and
affirmed by numerous numerical studies, e.g. [6, 2], for a review see for
example [15]. In fact, these distributions agree to an accuracy that would,
perhaps, allow to replace the derivation of average spectral properties of
the fermion Dirac operator by sampling gauge field configurations with the
random matrix eigenvalue distribution. The robustness of this phenomenon
over a broad range of parameter values, like the underlying gauge group
or the system’s temperature (in the Boltzmann weight) is also remarkable
and encourages us to formulate our ultimate goal as to establish a rigorous
mathematical link between these distributions beyond numerical evidence.

The present paper is a first modest step towards this goal, namely to
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fit the formulation of the model in LQCD into the mathematical framework
of ergodic operator families which has been built up over the past three
decades or so to study random Schrödinger operators and, especially, the
Anderson model. In contrast to random Schrödinger operators, however, the
randomness in LQCD models lies on the lattice bonds - not on the lattice
sites - and corresponds to a random magnetic field, rather than an alloy or
a quenched glass.

As the main result of this paper we prove that Dirac operators of LQCD
which depend on the gauge field indeed constitute ergodic operator families
in the probabilistic sense, provided the gauge field itself is ergodic, i.e., has
sufficient rapidly decaying correlations (see Section 1.1.2 for a precise for-
mulation). This, in turn, is a fair assumption in many physical situations,
e.g., at high temperature or if the gauge field is massive (which is believed
to be true for non-abelian gauge fields). As a consequence of our result the
integrated density of states exists in the thermodynamic limit and is almost
surely independent of the chosen gauge field configuration.

Many observables can be expressed in terms of derivatives of the QCD
partition function with respect to source terms. For example, the chiral
condensate is given by [15]

⟨ψψ⟩ = − lim
m→0

lim
V→∞

1

V
∂m logZQCD, (2)

with the partition function

ZQCD = ∫ ∏
x∈V,µ=1,...,d

dAµ det [iD(A) +m]e−SY M(A). (3)

Here, the integration of the fermionic variables yields the fermion determi-
nant det[iD(A) +m], and SYM(A) is the Euclidean Yang-Mills action.

It is customary to use the quenched approximation in numerical simula-
tions, which amounts to setting the fermion determinant is equal to one. This
reduces the numerical effort significantly and corresponds to the physical case
of infinitely heavy sea quarks.

The discretization of the Dirac operator is also subtle, because the naive
discretization leads to the occurrence of fermion doublers, which have no
physical meaning. There are several ways to work around this problem.
Wilson proposed to add a term that vanishes in the continuum limit and
suppresses the doublers on the lattice [17]. Another method is to introduce
staggered fermions - the lattice is divided up in sub-lattices where different
staggered phases live, that are interpreted as physical phases [7, 13]. We
are mainly interested in those two cases, where the Dirac operator still has
nearest-neighbour interaction. This is not the case for another elegant solu-
tion, the overlap operator proposed in [9].
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1.1 Introduction of the Model

Now we come to the precise description of the mathematical setting. We
consider the lattice Zd, d ≥ 2, with fermion fields supported on the sites and
gauge fields supported on the bonds of the lattice. We take only the one
particle case into account. Then the matter fields are complex vectors and
the configuration of all matter fields is supposed to be an element of the
Hilbert space H = ℓ2(Zd,Ck) of square summable Zd-sequences in Ck. H

is equipped with the usual scalar product

⟨ϕ,ψ⟩ = ∑
x∈Zd

d∑
i=1

ϕ̄i(x)ψi(x), ϕ,ψ ∈H . (4)

We will consider operators on H , that also depend on the configuration
of gauge fields on the bonds of Zd. The set of bonds in the lattice Zd is
denoted by

B ∶= Z
d × {1, . . . , d}. (5)

The bond (x,µ) ∈ B is the one connecting x and x + êµ, with êµ the unit
vector in Zd pointing in direction µ. We give the bond (x,µ) the orientation
from x to x + êµ.

The gauge fields associated to the bonds are elements of a compact Lie
group G, the gauge group. We assume G to be either SO(N), SU(N), or
U(N) to be explicit and since these are the relevant physical cases. The
gauge field on the bond b = (x,µ) is denoted by Ux,µ or Ub.

It turns out to be necessary to consider the direction of a bond, the gauge
field for going from x + êµ to x is Ux+êµ,−µ and we set Ux+êµ,−µ = Ux,µ

−1.
A gauge field configuration is the collection {Ub}b∈B. As mentioned before,

this gauge field configuration is randomly generated. To specify the under-
lying probability space we will need the notion of a plaquette, a collection of
four bonds that form a plane square in Zd,

p(x;µ, ν) ∶= {(x,µ), (x + êµ, ν), (x + êν , µ), (x, ν)}, (6)

with µ ≠ ν. We need the product of the gauge fields along a plaquette
p = p(x;µ, ν),

Up ∶= Ux;µ,ν ∶= U−1x,ν U
−1
x+êν ,µ Ux+êµ,ν Ux,µ, (7)

where the orientation of the bonds leads to the inverse gauge fields. Thus we
have Ux;µ,ν = U−1x;ν,µ and define a plaquette as positively orientated if µ < ν.

The set of all positively orientated plaquettes is denoted by

P ∶= {p(x;µ, ν) ∣ x ∈ Zd, µ, ν ∈ {1, . . . , d}, µ < ν}. (8)
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1.1.1 The Probability Space

We start by specifying the probability space for a single bond. Since G is a
compact Lie group, G is equipped with a natural measure, the Haar measure
µH . Because of the compactness of G, the Haar measure µH is normalized
and we obtain the probability space (G,F1, µH), with F1 being the σ-algebra
of Borel sets of the topological space G. A priori, we let the gauge field Ub on
a single bond be a random variable that is uniformly distributed with respect
to the Haar measure µH of G.

The gauge field configuration U = {Ub}b∈B can be regarded as an element
of the product space GB. GB is compact in the product topology by Ty-
chonov’s Theorem. The probability space for gauge field configurations is
now constructed by means of cylinder sets as in [3]. A cylinder set is subset
of GB of the form

M = {U ∈ GB ∣ Ub1 ∈ A1, . . . , Ubn ∈ An} (9)

with A1, . . . ,An ∈ F1 and b1, . . . , bn ∈ B. The set of all cylinder sets is denoted
Z . We take as a σ-algebra for GB the σ-algebra F generated by the system
of all cylinder sets. The probability-measure P̃ on GB is then defined to be
the product measure, setting for every cylinder set

P̃({U ∈ GB ∣ Ub1 ∈ A1, . . . , Ubn ∈ An}) = n∏
i=1

µH(Ai). (10)

Now, we modify the measure P̃ by a weight function that represents the
gauge action. Formally, the measure P is defined as

dP(U) = Z−1e−S(U) dP̃(U) (11)

with Z being a normalization factor. We assume the gauge action to be of
the following form:

S(U) = β∑
p∈P

ReTr(1 −Up) (12)

with β > 0 and Up the plaquette variable as defined in (7). This action on
discrete space-time is the Wilson action used in lattice QCD calculations.
Note that the gauge action is invariant under translations. Denoting by T ℓ

the translation in Zd by ℓ ∈ Zd, i.e. T ℓx ∶= x − ℓ, and defining the translation
of a gauge field by ℓ ∈ Zd to be

T ℓUx,µ ∶= UT ℓx,µ = Ux−ℓ,µ, (13)

for any Ux,µ ∈ G and (x,µ) ∈ B, we have

S(U) = S(T ℓU) (14)



Bach+Kurig, 08-October-2010 6

for all gauge field configurations U ∈ GB and all ℓ ∈ Zd.
In the following, we use the Gibbs formalism to establish the existence of P

and its uniqueness for small β, following [4]. To this end, we fix a finite subset
Λ of B and a gauge field configuration η ∈ GB that represents the boundary
condition, which fixes the gauge field outside of Λ. The corresponding local
specifications are

dµη
Λ,β(U) = (Zη

Λ,β
)−1 exp [ − β ∑

p∩Λ≠∅

ReTr(1 −Up)] ∏
b∈Λ

dµH(Ub) (15)

where

Z
η
Λ,β = ∫

GΛ
exp [ − β ∑

p∩Λ≠∅

ReTr(1 −Up)] ∏
b∈Λ

dµH(Ub). (16)

It is known (see for example [12, 4]) that, for sufficiently small β > 0, these
measures weakly converge, as Λ↱ B, to a unique Gibbs measure, since GB is
compact, the action is continuous in the gauge fields, and for all b ∈ B there
is a constant c′ < ∞, such that

∑
p∈P∶b∈p

∥ReTr(1 −Up)∥∞ ≤ c′. (17)

Furthermore, the Gibbs measure is independent of the boundary condition
η. In our case, we have

∑
p∈P∶b∈p

∥ReTr(1 −Up)∥∞ ≤ 2(d − 1) ⋅ 2N, (18)

uniformly in b ∈ B, since any bond b ∈ B is element of 2(d − 1) plaquettes.
Dobrushin’s uniqueness criterion ensures the uniqueness of the Gibbs

measure for translation invariant interactions, provided

0 < ∑
p∈P∶b0∈p

(∣p∣ − 1) ∥ReTr(1 −Up)∥∞ < β−1, (19)

for one bond (and, hence, for all bonds) b0 ∈ B, see for example [12]. In our
case, the criterion is fulfilled for all

0 < β < 1

12N(d − 1)
. (20)

Thus the Gibbs measure P exists and is unique, for sufficiently small β > 0.
We note in passing, that the translations are measure preserving trans-

formations with respect to P̃ and P, that means for all A ∈ F , ℓ ∈ Zd

P̃(T ℓA) = P̃(A) and P(T ℓA) = P(A). (21)

Put differently, P and P̃ are stationary w.r.t. the group Zd of translations.
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1.1.2 Ergodic Probability Measures

A stationary probability measure P is called ergodic iff, for all A,A′ ∈ F ,

1

(2L + 1)d ∑
l∈Zd, ∥l∥∞≤L

P (A ∩ T lA′)→ P (A)P (A′), asL →∞, (22)

with ∥l∥∞ = max{∣l1∣, . . . , ∣ld∣}.
A random variable f ∶ (GB,F) → (R,B) is called invariant iff f(T ℓU) =

f(U), for all ℓ ∈ Zd and almost all U ∈ GB. The importance of the notion
of ergodicity lies in the fact that any invariant random variable is P -almost
surely constant.

In the following, we show that the measure P is ergodic, provided (20)
holds true. First, we specify the decay of correlations. We define a metric
d ∶ B × B → R+0 on B by setting d(b, b) ∶= 0 and

d(b, b′) ∶= (23)

min{n ∣ ∃{p1, . . . , pn} ⊂ P ∶ b ∈ p1, p1 ∩ p2 ≠ ∅, . . . , pn−1 ∩ pn ≠ ∅, b′ ∈ pn},

for b, b′ ∈ B, b ≠ b′. I.e. d(b, b′) is the minimal number of plaquettes to connect
b and b′.

If p = (x;µ, ν), p̃ = (x̃; µ̃, ν̃), and p∩p̃ ≠ ∅ then ∥x−x̃∥∞ ≤ 1. Therefore, the
minimal number of plaquettes connecting b = (x,µ) ∈ B and b′ = (y, ν) ∈ B is
at least ∥x−y∥∞. Observing that, for all x ∈ Zd, µ, ν, τ ∈ {1, . . . , d}, ν ≠ µ ≠ τ ,

p(x;µ, ν) ∩ p(x + êµ;µ, ν) ≠ ∅
p(x;µ, ν) ∩ p(x − êµ;µ, ν) ≠ ∅

p(x;µ, ν) ∩ p(x;µ, τ) ≠ ∅, (24)

we obtain, with b = (x,µ), b′ = (y, ν) ∈ B as above, that

∥x − y∥∞ ≤ d(b, b′) ≤ ∥x − y∥1 + d, (25)

with ∥x − y∥1 = ∑d
i=1 ∣xi − yi∣.

A modified version of the metric d called d̃ ∶= ln( c
β
)d is obtained by multi-

plying d with ln( c
β
), where c > β.

Now, we take two cylinder sets A,A′ ∈ F and show that condition (22)
is fulfilled for A and A′. Since the sigma-algebra F is generated by Z , (22)
extends to all F . There are two finite sets ΛA,ΛA′ ⊂ B and Ab,A

′
b′ ∈ F1 for

all b ∈ ΛA, b′ ∈ ΛA′ such that

A = ⨉
b∈ΛA

Ab × GB/ΛA, A′ = ⨉
b′∈ΛA′

A′b′ × G
B/ΛA′ (26)
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Now choose χA,ǫ, χA′,ǫ ∈ C(GB, [0,1]) such that χA,ǫ, χA′,ǫ depend only on the
variables Ub with b ∈ ΛA or b ∈ ΛA′ , respectively, χA,ǫ(U) = 1, χA′,ǫ(U ′) = 1,
for all U ∈ A, U ′ ∈ A′, and

P{U ∈ AC ∣ χA,ǫ(U) > 0} < ǫ , P{U ′ ∈ A′C ∣ χA′,ǫ(U ′) > 0} < ǫ. (27)

Then χA,ǫ, χA′,ǫ are continuous functions that differ from the characteristic
function of A, A′ only on an set of measure less than ǫ.

Now, we use a result of [5] summarized in [12]. It states that, if γ < 1,
where γ is a constant depending on the interaction, one gets for any two
bonds i, j ∈ B that

∣∫
GB
χA,ǫ χA′,ǫ dP − ∫

GB
χA,ǫ dP ∫

GB
χA′,ǫ dP ∣

≤ 1

4
e−d̃(i,j)(1 − γ)−1 ∆i(χA,ǫ) ∆j(χA′,ǫ), (28)

where
∆j(f) ∶=∑

i∈B

ed̃(i,j) sup { ∣f(U) − f(U ′)∣ ∣ Ub = U ′b, b ≠ i } (29)

and
γ = sup

j
∑

i∈B,i≠j

ed̃(i,j)ρij . (30)

In our case ρij for i ≠ j, can be estimated as

ρij ≤ ∑
p∈P∶i,j∈p

∥βReTr(1 −Up)∥ ≤ 2Nβ 1[d(i, j) = 1], (31)

such that we get γ ≤ 3 ⋅ 2(d − 1)2Nβ ⋅ c
β
,and γ < 1 corresponds to

c < 1

12N(d − 1) , (32)

arriving at Condition (20). We denote the distance of A and A′ by

dist(A,A′) ∶=min{d(i, j)∣i ∈ ΛA, j ∈ ΛA′} (33)

and the diameter of A by

DA ∶=max{d(i, j)∣i, j ∈ ΛA}. (34)

If i ∈ ΛA then

∆i(χA,ǫ) ≤ ∑
k∈B

ed̃(i,k)1[k ∈ ΛA] ≤ ∣ΛA∣( c
β
)DA

(35)
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and analogously ∆j(χA′,ǫ) ≤ ∣ΛA′ ∣( cβ )DA′ , provided j ∈ ΛA′. Inserting this into

Equation (28), and choosing i ∈ ΛA and j ∈ ΛA′ such that d(i, j) = dist(A,A′),
we estimate

∣∫
GB
χA,ǫ χA′,ǫ dP −∫

GB
χA,ǫ dP ∫

GB
χA′,ǫ dP ∣

≤ 1

4
(β
c
)
dist(A,A′)−(DA+DA′) ∣ΛA∣ ∣ΛA′ ∣

1 − 12N(d − 1)c, (36)

for all 0 < β < c < (12N(d − 1))−1. In the limit ǫ → 0, we obtain

∣P(A ∪A′) − P(A)P(A′)∣ ≤ CA,A′(β
c
)
dist(A,A′)

, (37)

where

CA,A′ =
1

4

1

1 − 12N(d − 1)c ∣ΛA∣∣ΛA′∣( c
β
)
DA+DA′

(38)

is independent of the distance of A and A′.
The exponential decay of correlations implies at once,

1

(2L + 1)d ∑
ℓ∈Zd, ∥ℓ∥∞≤L

∣ P(A ∩ T ℓA′) − P(A) P(A′) ∣

≤ 1

(2L + 1)d ∑
ℓ∈Zd, ∥ℓ∥∞≤L

CA,A′(β
c
)
dist(A,T ℓA′)

≤ 1

(2L + 1)d
L∑

m=0

2d(2m + 1)d−1CA,A′(β
c
)
m−dist(A,A′)−2(DA+DA′)

≤ 2dCA,A′

2L + 1
(β
c
)
−dist(A,A′)−2(DA+DA′) 1

1 − β/c
L→∞Ð→ 0, (39)

where we used that d(k,T ℓk) ≤ d(i, k) + d(i, j) + d(T ℓk, j) and thus

dist(A,T ℓA′) = min{d(i, j)∣i ∈ ΛA, j ∈ T ℓΛA′}
≥ min{d(k,T ℓk)∣k ∈ ΛA′} −max{d(i, k)∣i ∈ ΛA, k ∈ ΛA′}
−max{d(T ℓk, j)∣k ∈ ΛA′, j ∈ T ℓΛA′}

≥ ∥ℓ∥∞ −DA − 2DA′ − dist(A,A′). (40)

The validity of (22) on cylinder sets extends to the sigma-algebra F gen-
erated by the cylinder sets Z by a monotone class argument. Thus Condition
(20) for the uniqueness of P ensures its ergodicity, too.
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1.1.3 Ergodic Families of Wilson Dirac Operators

We specify the considered operators. The dependence of those operators DU

on the gauge field configuration is emphasized by the index U . We consider
the corresponding family of operators {DU}U∈GB .

Let {DU}U∈GB be a family of bounded, self-adjoint operators on H =
ℓ2(Zd;Ck). We call this family stationary if it depends on the gauge field
configuration U ∈ GB in such a way that translations act transitively, i.e.,

τ ℓDUτ
−ℓ =DT ℓU (41)

for all U ∈ GB and ℓ ∈ Zd, where τ ℓ denotes the corresponding translation on
H , i.e., [τ ℓφ](x) = φ(x − ℓ), (42)

for any φ ∈ H , x ∈ Zd. A stationary family {DU}U∈GB is called ergodic if
the underlying probability measure P on GB is stationary and ergodic. The
crucial fact about ergodic families {DU}U∈GB is the independence of their
spectra on U , P-almost surely. [10].

We assume that DU includes only nearest-neighbour interaction, i.e., for
φ ∈H , x ∈ Zd, [DUφ](x) depends only on the values of φ(x), φ(y) for those
y with ∣x − y∣ = 1 and the gauge fields Ux,µ, Ux,−µ for µ ∈ {1, . . . , d}, where we
use the notation Ux,−µ ∶= Ux−êµ,µ.

There are various examples for such operators of physical interest. As
mentioned in the introduction, we are mainly interested in the Wilson Dirac
operator and the staggered fermions operator. For simplicity, we concentrate
our attention to the Wilson Dirac operator in this paper.

In lattice gauge theories the Wilson Dirac operator D is used [8], which
is a discretized version of the QCD-Dirac operator DQCD = γµ(∂µ + iAµ)+m
with gauge fields Aµ. The corresponding matter fields are defined on the
hypercubic lattice Z4 and are assumed to have a Dirac structure labeled
by Dirac indices α ∈ {1,2,3,4}, as well as a colour structure with labels
c ∈ {1, . . . ,Nc}. The Dirac structure is represented by the 4 × 4 Euclidean
Dirac matrices {γµ}µ=1,...,4. A customary explicit representation is

γ1,2,3 = ( 0 −iσ1,2,3
iσ1,2,3 0

) , γ4 = ( 0 11 0
) (43)

with σ1,2,3 being the Pauli matrices. The Dirac matrices form a Clifford-
Algebra since they fulfill {γµ, γν} = 2δµν . Introducing γ5 ∶= γ1γ2γ3γ4, i.e.,

γ5 = ( 1 0
0 −1 ), (44)
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we observe that {γµ, γ5} = 0.
The gauge group is G = SU(Nc) and acting on the colour structure.

Therefore, k = 4 ⋅Nc, and φ = {φα,c}α=1,...,4, c=1...,Nc ∈ ℓ2(Z4,Ck). The Wilson
Dirac operator D is defined by

[Dφ]α,c(x) ∶= 4∑
β=1

{(γ5)α,βφβ,c(x)
−κ

4∑
µ=1

∑
σ=±1

Nc∑
f=1

((rγ5)α,β − σ(γ5γµ)α,β) (Ux,σµ)c,f φβ,f(x + σêµ)}, (45)
in short,

[Dφ](x) = γ5[φ(x) − κ 4∑
µ=1

∑
σ=±1

(r − σγµ)Ux,σµ φ(x + σêµ)] . (46)

The parameter r ∈ (0,1] is the Wilson parameter and κ > 0 the hopping
parameter.

Displaying the dependence of D on the gauge field configuration U by
writing DU , we observe that DU fulfills condition (41) for any U ∈ SU(Nc)B
and any φ ∈H , x ∈ Zd,

[τ ℓDUτ
−ℓφ](x) = [DUτ

−ℓφ](x − ℓ)
= [τ−ℓφ](x − ℓ) − κ 4∑

µ=1

∑
σ=±1

(r + γσµ)Ux−ℓ,σµ [τ−ℓφ](x − ℓ + σêµ)
= φ(x) − κ 4∑

µ=1

∑
σ=±1

(r + γσµ)Ux−ℓ,σµ φ(x + σêµ)
= [DT ℓUφ](x) (47)

and hence we have
τ ℓDUτ

−ℓ = DT ℓU , (48)

for all ℓ ∈ Zd and U ∈ SU(Nc)B. Thus, if P is ergodic, so is {DU}U∈SU(Nc)B ,
and its spectrum is P-almost surely constant.

1.2 Introduction of the Integrated Density of States

In the following we study the integrated density of states of {DU}U∈GB , which
represents the number of eigenstates per unit volume. For the precise defi-
nition of the integrated density of states, we restrict our analysis to a finite
subset Λ ⊂ Zd. Besides, this also allows us to relate our analysis to numerical
simulation.
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The boundary of Λ, denoted ∂Λ, is defined as

∂Λ ∶= {y ∈ Λ ∣ ∃ x ∈ ΛC , ∣x − y∣ = 1} ⊆ Λ. (49)

Furthermore we use the canonical orthonormal basis EH ∶= {ŝ(x,i)}x∈Zd,i∈{1,...,k}

of H where the Zd-sequence ŝ(x,i) is set to be

ŝ(x,i)(y) ∶= ⎧⎪⎪⎨⎪⎪⎩
êi, x = y
0, x ≠ y

(50)

with êi ∈ Ck the unit vector in direction i.
Since DU contains only nearest-neighbour hopping, the value of DU ŝ(x,i)

does not change, if we replace DU by a restriction of DU to Λ, for any point
x in Λ/∂Λ. Only the boundary ∂Λ needs further specification. We present
two customary choices for this, namely, Dirichlet boundary conditions and
periodic boundary conditions.

1.2.1 Dirichlet Boundary Conditions

First, we restrict the operators to the finite subset Λ ⊂ Zd by means of the
projection

P
(dir)
Λ ∶H →H

(dir)
Λ , [P (dir)Λ ϕ](x) ∶= ⎧⎪⎪⎨⎪⎪⎩

ϕ(x), x ∈ Λ,
0, x ∉ Λ,

(51)

with
H
(dir)
Λ = ℓ2(Λ,Ck) ⊂H (52)

being the Hilbert space of sequences vanishing outside Λ. Note that

PT ℓΛ = τ ℓPΛτ
−ℓ. (53)

Then we define

D
(dir)
U,Λ = P

(dir)
Λ DUP

(dir)
Λ ∶H (dir)

Λ →H
(dir)
Λ . (54)

Note that, since H
(dir)
Λ is finite-dimensional, D

(dir)
U,Λ can be represented

by a matrix of size (k∣Λ∣)× (k∣Λ∣), where ∣Λ∣ denotes the number of elements

in Λ. Since DU is self-adjoint, so is D
(dir)
U,Λ . The number of eigenvalues of

D
(dir)
U,Λ smaller than some E ∈ R, counting multiplicity, is denoted by

N
(dir)
Λ,U (E) ∶= Tr {1[D(dir)U,Λ < E]}. (55)
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The integrated density of states of D
(dir)
U,Λ is defined as the number of eigen-

values smaller than E per unit volume,

ρ
(dir)
Λ,U (E) ∶= 1

∣Λ∣N (dir)Λ,U (E). (56)

Clearly, N
(dir)
Λ,U (E) depends only on the gauge fields on the bonds connecting

points in Λ. Note that probabilistic statements about N
(dir)

T ℓΛ,U
(E) do not

depend on ℓ ∈ Zd, since P and DU are stationary.

1.2.2 Periodic Boundary Conditions

Another way to restrict DU to a finite set Λ ⊂ Zd is to require periodic
boundary conditions, which is often used in numerical simulations. In order
to define periodic boundary conditions we assume Λ to be a cube of side
length L. Without loss of generality we may assume that Λ = {1,2, . . . ,L}d.

We define the Wilson Dirac operator on ℓ2(Λ(per);Ck) with periodic boun-
dary conditions by

[D(per)U φ](x) ∶= γ5[φ(x) − κ 4∑
µ=1

∑
σ=±1

(r − σγµ)Ux,σµ φ(x + σêµ)] , (57)

where Λ(per) ∶= (Z/LZ)d and x + σêµ is determined only modulo multiples of
L in all directions. Similarly

Ux,−µ = U−1x−êµ,µ
, (58)

where x − êµ is also defined modulo L. Thus D
(per)
U ∶H (per)

Λ →H
(per)
Λ , with

H
(per)
Λ ∶= ℓ2(Λ(per);Ck), (59)

only depends on the values of Ufor bonds b ∈ Λ × {1, . . . , d}, i.e., on
UΛ ∶= {Ux,µ}x∈Λ,µ=1,...,d. (60)

Since H
(per)
Λ is finite-dimensional, we can transcribe the definition of the in-

tegrated density of states to periodic boundary conditions. We set N
(per)
Λ,U (E)

to be the number of eigenvalues, counting multiplicity, of D
(per)
U,Λ smaller than

E ∈ R and define the integrated density of states in the periodic case as

ρ
(per)
U,Λ (E) ∶= 1

∣Λ∣N (per)Λ,U (E). (61)
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2 Main Theorem

Our aim is the definition of the integrated density of states for {DU}U∈Ω. A
natural way is to let Λ be a cube of side length L and investigate the case
L →∞, the thermodynamic limit. As it turns out, the boundary conditions
imposed is immaterial.

Theorem 2.1. Let (GB,F ,P) be the probability space defined in Section 1.1
and choose 0 < β < 1

12N(d−1) (such that P is ergodic). Let {DU}U∈GB be the

family of Wilson Dirac operators on H . Let (Ωn)n∈N be a sequence in Zd of
nested cubes, Ωn ⊆ Ωn+1, with Ωn ↱ Zd.

(i) Then the limits

ρ
(dir)
U (E) ∶= lim

n→∞

1

∣Ωn∣N
(dir)
Ωn,U
(E) (62)

and

ρ
(per)
U (E) ∶= lim

n→∞

1

∣Ωn∣N
(per)
Ωn,U
(E) (63)

exist for all E ∈ R, P-almost surely, and are independent of the sequence(Ωn)n∈N.
(ii) Furthermore, for all E ∈ R, the integrated density of states ρ(E), de-

fined by
ρ
(dir)
U (E) = ρ(per)U (E) =∶ ρ(E), (64)

is independent of the chosen boundary condition and of U ∈ GB, P-
almost surely.

3 Proof

3.1 An Estimate on Eigenvalues

Suppose, we take two disjoint sets Ω1,Ω2 ⊂ Zd and an operator DU , that
fulfills the requirements of Theorem 2.1. We can restrict DU to Ω1, Ω2 and
Ω1 ∪ Ω2 as in (54) by means of the projections PΩ1

, PΩ2
and PΩ1∪Ω2

. Then
we can determine the number of eigenvalues below some E ∈ R for all three
restrictions, denoted by NU,Ω1

(E), NU,Ω2
(E) and NU,Ω1∪Ω2

(E), respectively.
If dist(Ω1,Ω2) ≥ 2, we know that NU,Ω1∪Ω2

(E) = NU,Ω1
(E) +NU,Ω2

(E), since
the operator DU links only neighbouring sites. Our first goal is the derivation
of an upper bound on the difference ofNU,Ω1

(E)+NU,Ω2
(E) andNU,Ω1∪Ω2

(E).
To this end, we start with a general observation for finite matrices.
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Let A,B be complex, self-adjoint (M ×M)-matrices. The rank of B
is denoted by b, and the interesting case is b ≪ M . Since A and B are
self-adjoint, so is A + B, and all three matrices A,B and A + B have M
real eigenvalues counting multiplicity. Due to the fact that rank(B) = b, B
has (M − b) eigenvalues equal to zero, and b eigenvalues different from zero.
Furthermore, we denote by NA ∈ N0 the number of negative eigenvalues of A,
by NB, N−B, NA+B the number of negative eigenvalues of B, −B, and A+B,
respectively.

Lemma 3.1. Let A, B be self-adjoint M ×M-matrices. The difference of the
number NA of negative eigenvalues of A and the number NA+B of negative
eigenvalues of A +B is at most rank(B),

∣NA −NA+B ∣ ≤ rank(B). (65)

Note, that the bound (65) is independent of ∥B∥.
Proof. First, we show that NA+B − NA ≤ rank(B). Let us assume that
NA+B > NA + rank(B). Then the min-max principle ensures the existence
of a subspace X ⊆ CM , with dimension dim(X) = NA+ rank(B)+1 such that

sup
φ∈X,∥φ∥=1

⟨φ∣(A +B)φ⟩ < 0. (66)

In particular we have

sup
φ∈X∩ker(B),∥φ∥=1

⟨φ∣(A +B)φ⟩ = sup
φ∈X∩ker(B),∥φ∥=1

⟨φ∣Aφ⟩ < 0. (67)

Using the min-max principle again, we obtain NA ≥ dim(X ∩ ker(B)) ≥
dim(X) − rank(B) = NA + 1. Therefore we have that NA+B −NA ≤ rank(B).

Now, we set A′ ∶= A + B, B′ ∶= B and get analogously NA′+B′ − N ′A ≤
rank(B′) that is NA −NA+B ≤ rank(B).
Lemma 3.2. Let (GB,F ,P) be the probability space defined in section 1.1.1
and choose 0 < β < 1

12N(d−1) such that P is ergodic. Let {DU}U∈GB be the

family of Wilson Dirac operators on H . Furthermore let Ω1, . . . ,ΩJ ⊂ Zd be
disjoint, finite sets and Ω ∶= ⋃J

j=1Ωj their union.

(i) Then we have, for any U ∈ GB and all E ∈ R,

1

∣Ω∣ ∣N (dir)U,Ω (E) −
J∑
j=1

N
(dir)
U,Ωj
(E)∣ ≤ k

∑J
j=1 ∣∂Ωj ∣
∣Ω∣ . (68)
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(ii) If in addition the sets Ω1, . . . ,ΩJ are cubes, such that Ω is also a cube,
then

1

∣Ω∣ ∣N (per)U,Ω (E) −
J∑
j=1

N
(per)
U,Ωj
(E)∣ ≤ 3k

∑J
j=1 ∣∂Ωj ∣
∣Ω∣ , (69)

for any U ∈ GB and all E ∈ R.
Proof. We remark that it is enough to prove the case E = 0, because we
can replace DU by DU − E. We start with the case of Dirichlet boundary
conditions and define (k∣Ω∣ × k∣Ω∣)-matrices A and C by

A ∶=D(dir)U,Ω , C ∶=
J∑
j=1

PΩj
APΩj

∶ H
(dir)
Ω →H

(dir)
Ω . (70)

The matrices are chosen in such a way that we get with counting multiplicity

N
(dir)
U,Ω (0) = Tr {1[A ≥ 0]} (71)

and
J∑
j=1

N
(dir)
U,Ωj
(0) = Tr {1[C ≥ 0]}. (72)

Now, we set the matrix B ∶= A−C to be the difference of A and C. The rank
of B can be estimated as follows

rank(B) ≤ k J∑
j=1

∣∂Ωj ∣, (73)

using that B = ∑j≠l PΩj
APΩl

. By Lemma 3.1, we obtain

1

∣Ω∣ ∣NU,Ω(0) − J∑
j=1

NU,Ωj
(0)∣ ≤ k ∑J

j=1 ∣∂Ωj ∣
∣Ω∣ , (74)

and (i) is proven.
To prove (ii), we use that, for any cube Λ, we have that

rank [D(per)U,Λ −D
(dir)
U,Λ
] ≤ k ∣∂Λ∣ (75)

Therefore, (i) and another application of Lemma 3.1 yield (69),

1

∣Ω∣ ∣N (per)U,Ω (E) −
J∑
j=1

N
(per)
U,Ωj
(E)∣ ≤ 1

∣Ω∣( ∣N (per)U,Ω (E) −N (dir)U,Ω (E)∣
+ ∣N (dir)U,Ω (E) −

J∑
j=1

N
(dir)
U,Ωj
(E)∣ + ∣ J∑

j=1

(N (dir)U,Ωj
(E) −N (per)U,Ωj

(E))∣ )
≤ 3k

∑J
j=1 ∣∂Ωj ∣
∣Ω∣ . (76)
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Lemma 3.2 is an estimate on the change of the integrated density of states
as the subset of Zd is broken up into smaller pieces. The estimate is, indeed,
precise enough to prove the existence of a limit in the sense of Theorem 2.1
as is done in the next sections.

3.2 Existence of the Integrated Density of States for a

Special Sequence

In this section it is shown that a limit for the integrated density of states
exists almost surely for a sequence of growing cubes in Zd.

To this end, we define the following sequence of growing cubes,

Λn ∶= {−l02n−1 + 1, . . . , l02n−1}d , (77)

with l0 ∈ N to be fixed later. Note that Λn has side length l02n.
The virtue of the sequence (Λn)n∈N is, that Λn+1 splits into 2d disjoint

cubes, each of size ∣Λn∣, in a natural way. More precisely, there are z1, . . . , z2d ∈
Zd such that, for

Πn ∶= {T z1, . . . , T z
2d} (78)

being the set of associated translations,

Λn+1 = ⋃
T ∈Πn

TΛn. (79)

In order to clarify the notation, we also introduce the sets Πl
n for l > n

that consist of the translations needed to compose Λl of translations of Λn,

Πl
n ∶= {Tn . . . Tl−1 ∶ Tn ∈ Πn, . . . , Tl−1 ∈ Πl−1}. (80)

Thus, Πn = Πn+1
n and we have

Λl = ⋃
T ∈Πl

n

TΛn, (81)

see Figure 1. Next, we study the integrated density of states of Λn, as n
grows. We omit the dependence of N

(dir)
Λn,U
(E) and N

(per)
Λn,U
(E) on E and the

gauge field configuration U and write

N (dir)[Λn] ∶= N
(dir)
Λn,U
(E) and N (per)[Λn] ∶= N

(per)
Λn,U
(E) (82)

instead.



Bach+Kurig, 08-October-2010 18

Λn

mΛ

Figure 1: Λm and Λn in Z2, with m = n + 2. The dotted lines indicate the
translates of Λn whose union gives Λm.

Lemma 3.3. For any l0 ∈ N, the sequences ( 1
∣Λn∣

N (dir)[Λn])n∈N and

( 1
∣Λn∣

N (per)[Λn])n∈N converge, P-almost surely.

lim
n→∞

1

∣Λn∣N (dir)[Λn]→ ρ
(dir)
l0

, lim
n→∞

1

∣Λn∣N (per)[Λn]→ ρ
(per)
l0

. (83)

Furthermore

lim
n→∞

1

∣Λn∣ ∣N (dir)[Λn] −N (per)[Λn]∣ = 0, (84)

P-almost surely, and ρl0 ∶= ρ
(dir)
l0
= ρ(per)l0

.

Proof. We show that ( 1
∣Λn∣

N (dir)[Λn])n∈N is a Cauchy sequence and in the

proof we denote N (dir)[Λn] =∶ N[Λn]. The proof for periodic boundary con-
ditions is completely analogous.

Assume that m > n. By applying (81), one can split Λm into 2d(m−n)

cubes of size ∣Λn∣,
Λm = ⋃

T ∈Πm
n

TΛn. (85)

The mean integrated density of states for these translations of Λn is

1

2d(m−n)
∑

T ∈Πm
n

1

∣Λn∣N[TΛn] = 1

∣Λm∣ ∑T ∈Πm
n

N[TΛn]. (86)
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mΛ

Λn

Figure 2: Both sets Λn and Λm are split up in smaller cubes of the same size
as Λn0

. For Λm only part of the splitting is sketched.

Thus we can estimate

∣ 1

∣Λm∣N[Λm] − 1

∣Λn∣N[Λn]∣ (87)

≤ 1

∣Λm∣
RRRRRRRRRRRN[Λm] − ∑

T ∈Πm
n

N[TΛn]
RRRRRRRRRRR +
RRRRRRRRRRR

1

∣Λm∣ ∑T ∈Πm
n

N[TΛn] − 1

∣Λn∣N[Λn]
RRRRRRRRRRR .

Lemma 3.2 directly gives us an upper bound for the first term on the right
side of (87), since we have

1

∣Λm∣
RRRRRRRRRRRN[Λm] − ∑

T ∈Πm
n

N[TΛn]
RRRRRRRRRRR ≤ k

2d(m−n)∣∂Λn∣∣Λm∣
≤ k 2d(m−n)

2d(l02n)d−1(l02m)d =
2dk

l0
2−n, (88)

independently of the gauge field configuration.
The second term on the right side of (87) is the difference of the integrated

density of states for a cube Λn and its spatial mean over 2d(m−n) translated
disjoint cubes of the same size. As we do not know, yet, whether this term is
small with high probability, provided n is large enough, we split Λn and its
translates into smaller cubes of size ∣Λn0

∣ for some n0 < n ∈ N, as indicated in
Figure 2.
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We estimate

RRRRRRRRRRR
1

∣Λm∣ ∑T ∈Πm
n

N[TΛn] − 1

∣Λn∣N[Λn]
RRRRRRRRRRR

≤ 1

∣Λm∣ ∑T ∈Πm
n

RRRRRRRRRRRR
N[T Λn] − ∑

T ′∈Πn
n0

N[T ′TΛn0
]
RRRRRRRRRRRR

+
RRRRRRRRRRRR

1

∣Λm∣ ∑T ∈Πm
n0

N[TΛn0
] − 1

∣Λn∣ ∑T ∈Πn
n0

N[TΛn0
]
RRRRRRRRRRRR

+
1

∣Λn∣
RRRRRRRRRRRR
∑

T ∈Πn
n0

N[TΛn0
] −N[Λn]

RRRRRRRRRRRR
, (89)

using that any T ∈ Πm
n0

is given as a product T = T ′T ′′, for unique T ′ ∈ Πm
n

and T ′′ ∈ Πn
n0
. Then Lemma 3.2 yields again an upper bound for the first and

the third term on the right side of (89), and analogously to (88), we obtain
that

1

∣Λm∣ ∑T ∈Πm
n

RRRRRRRRRRRR
N[TΛn] − ∑

T ′∈Πn
n0

N[T ′TΛn0
]
RRRRRRRRRRRR
≤ 2dk

l0
2−n0 (90)

and
1

∣Λn∣
RRRRRRRRRRRR
∑

T ∈Πn
n0

N[TΛn0
] −N[Λn]

RRRRRRRRRRRR
≤ 2dk

l0
2−n0. (91)

Thus Equations (88), (89), (90), and (91) yield

∣ 1

∣Λm∣N[Λm] − 1

∣Λn∣N[Λn]∣ (92)

≤ 4dk

l0
(2−n + 2−n0) + ∣ 1

∣Λm∣ ∑T ∈Πm
n0

N[TΛn0
] − 1

∣Λn∣ ∑T ∈Πn
n0

N[TΛn0
]∣.

We can choose n0 and then n > n0 so large that 4dk
l0
(2−n + 2−n0) is arbitrarily

small. To estimate the remaining term, we view {Zx(U)}x∈Zd, with

Zx(U) ∶= N[T 2n0 l0xΛn0
] = N (dir)

T 2
n0 l0xΛn0

,U
(E), (93)

to be an invariant family of random variables. By Birkhoff’s Ergodic Theo-
rem, the mean of these random variables converges P-almost surely. Hence,

( 1

∣Λm∣ ∑T ∈Πm
n0

N[TΛn0
])
∞

m=n0+1

(94)
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is a Cauchy sequence, P-almost surely.
As noted above, we can replace N[#] by N (per)[#] and repeat the proof

for periodic boundary conditions with exactly the same arguments, since all
sets are cubes and Lemma 3.2(ii) applies.

Equation (84) is similarly proven as Lemma 3.2(ii),

1

∣Λn∣ ∣N (dir)[Λn] −N (per)[Λn]∣ ≤ k∣∂Λn∣∣Λn∣ → 0, n→∞ . (95)

Note that, while the preceding lemma holds for all l0 ∈ N0, this does not
imply the independence of the integrated density of states of the choice of l0.
It turns out, however, that not only the independence holds true, but that
furthermore the size of the cubes in the sequence is immaterial, as long as it
is monotonically growing.

3.3 Proof of Main Theorem 2.1

The proof is similar to the one of Lemma 3.3. We choose l0, n0 ∈ N arbitrary,
but fixed. Given Ωk, there is an m ∈ N such that Ωk ⊆ Λm. We define

Σk ∶= {T ∈ Πm
n0
∣ TΛn0

⊆ Ωk},
Ω̃k ∶= ⋃

T ∈Σk

TΛn0
⊆ Ωk (96)

Note that Ω̃k is a rectangular box, whose smallest side length is at most
two times smaller than its largest side length and all side lengths are multiples
of l02n0. Moreover

∣Ωk∣ − ∣Ω̃k∣ = ∣Ωk/Ω̃k∣ ≤ ∣∂Ωk∣ ⋅ ∣Λn0
∣ (97)

Now, we estimate for k > n0, Ωk ⊇ Λn0

∣ 1

∣Λk∣N[Λk] − 1

∣Ωk∣N[Ωk]∣ ≤
RRRRRRRRRRRRR
1

∣Λk∣N[Λk] − 1

∣Λk∣ ∑T ∈Πk
n0

N[TΛn0
]
RRRRRRRRRRRRR

+
RRRRRRRRRRRRR
1

∣Λk∣ ∑T ∈Πk
n0

N[TΛn0
] − 1

∣Ω̃k∣ ∑T ∈Σk

N[TΛn0
]
RRRRRRRRRRRRR

+ ∣ 1

∣Ω̃k∣ ∑T ∈Σk

N[TΛn0
] − 1

∣Ω̃k∣N[Ω̃k]∣
+ ∣ 1

∣Ω̃k∣N[Ω̃k] − 1

∣Ωk∣N[Ωk]∣ . (98)
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In the first and third term we can apply Lemma 3.2 directly to get upper
bounds. The second term converges P-almost surely to zero, by Birkhoff’s er-
godic theorem. For the last term we estimate the difference of the integrated
density of states of Ω̃k and Ωk,

∣ 1

∣Ω̃k∣N[Ω̃k] − 1

∣Ωk∣N[Ωk]∣ = ∣∣Ω̃k∣ ⋅N[Ωk] − ∣Ωk∣ ⋅N[Ω̃k]∣
∣Ω̃k∣ ⋅ ∣Ωk∣ . (99)

First, we estimate

∣∣Ωk∣ ⋅N[Ω̃k] − ∣Ω̃k∣ ⋅N[Ωk]∣
= ∣∣Ωk∣(N[Ω̃k] −N[Ωk]) + (∣Ωk∣ − ∣Ω̃k∣)N[Ωk]∣
≤ ∣Ωk∣∣N[Ωk] −N[Ω̃k]∣ + (∣Ωk∣ − ∣Ω̃k∣)N[Ωk]. (100)

Then we observe that

∣N[Ωk] −N[Ω̃k]∣ ≤ k∣∂Ω̃k∣ + (2d + 1)k(∣Ωk∣ − ∣Ω̃k∣) (101)

holds true because of the following estimate using Lemma 3.2

∣N[Ωk] −N[Ω̃k]∣ −
RRRRRRRRRRRR
∑

x∈Ωk/Ω̃k

N[{x}]
RRRRRRRRRRRR

≤
RRRRRRRRRRRR
N[Ωk] − (N[Ω̃k] + ∑

x∈Ωk/Ω̃k

N[{x}])
RRRRRRRRRRRR

≤ k(∣∂Ω̃k∣ + 2d(∣Ωk∣ − ∣Ω̃k∣)). (102)

Thus we get

∣ 1

∣Ω̃k∣N[Ω̃k] − 1

∣Ωk∣N[Ωk]∣
≤ 1

∣Ω̃k∣ ∣N[Ωk] −N[Ω̃k]∣ + 1

∣Ωk∣N[Ωk](∣Ωk∣ − ∣Ω̃k∣)
∣Ω̃k∣

≤ k∣∂Ω̃k ∣
∣Ω̃k∣ +

(2d + 2)k(∣Ωk ∣ − ∣Ω̃k∣)
∣Ω̃k∣

n→∞Ð→ 0, (103)

by using Equations (100), (101) and the fact that 1
∣Ωk ∣

N[Ωk] ≤ k. Altogether
we have proven

lim
k→∞
∣ 1

∣Λk∣N[Λk] − 1

∣Ωk∣N[Ωk]∣ = 0, (104)
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P-almost surely. The periodic case is again proven completely analogously.
Recall that Lemma 3.3 gives the existence of the limit

ρU(E) ∶= lim
n→∞

1

∣Λn∣N
(dir)
Λn,U
(E) = lim

n→∞

1

∣Λn∣N
(per)
Λn,U
(E) (105)

with (Λn)n∈N as in (77), P-almost surely. Equation (104) ensures the indepen-
dence of this limit of the chosen sequence (Ωk)k∈N. Furthermore, Lemma 3.3
implies that the limit for periodic boundary conditions is the same.

Since the integrated density of states is invariant under translations, it is
P-almost surely constant, and (ii) follows. This finishes the proof of Theorem
2.1.
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