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An asymptotic equivalence between two frame
perturbation theorems

B. A. Bailey

Abstract In this paper, two stability results regarding exponeriteines are com-
pared. The theorems, (one proven herein, and the othér ing&¢h give a con-
stant such that if sypy ||&nll < C, and (€¢)) 4 is a frame forLo[—r, 9,
then(e{-ntén) 4 is a frame forLo[— 1, 9. These two constants are shown to be
asymptotically equivalent for large valuesaf

1 The perturbation theorems

We define a frame for a separable Hilbert spec® be a sequenddn), C H such
that for some G A< B,

APIF|2 < ST f) [P < B2 feH.
n

The besiA? andB? satisfying the inequality above are said to be the frame tsun
for the frame. If(e,)n is an orthonormal basis fét, the synthesis operatbe, = f,

is bounded, linear, and onto, iff,), is a frame. Equivalently,fn), is a frame iff
the operatoL* is an isomorphic embedding, (séé [2]). In this casandB are the
best constants such that

AT <L flf <BJIfYl, feH.

The simplest stability result regarding exponential frarfee L,[— 1, 1] is the theo-
rem below, which follows immediately frorh|[4, Theorem 13,60].
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2 B. A. Bailey

Theorem 1. Let (th)nez C R be a sequence such thdih)nez := (A=€"") __isa

21 )neZ
frame for Lp[— 1, 71] with frame bounds Aand B. If (Tn)nez € R and (fp)nez i=

(%re”"x) ~z, IS a sequence such that
1 A
S —t =In{1+4+= 1
supta -t < 5n (145, @

then the sequendd)ncz is also a frame for b[— 1, 7).

The following theorem is a very natural generalization oéd@ten{1 to higher di-
mensions.

Theorem 2. Let (t)ken C RY be a sequence such thé)yey == (We«%w)kei\l
is a frame for L[, m? with frame bounds Aand . If (tx)kew € R? and
(fidkert = (€™ oy Is @ sequence such that
1 A
sup||tk — tk||e < —1In (1+—), (2
Sup I s < 5

then the sequenddy )y is also a frame for b[—rt, 11]9.

The proof of Theorerml?2 relies on the following lemma:

Lemma 1. Chooseg(ty)kery C RY such that{hy)yen == ((277—§(1/2e<('>7tk>)keN satisfies
n
‘ > adi
=1

If (Tk)keny € RY, and (fi ey = (We‘“‘“@)kew then for all rs> 1 and any
finite sequencéay )k, we have

-8B n 2 1/2 ; I N c
Lo[-mmd — (kzllaH) , forall (a1 cC.

S

> a(he—fu)

k=r

md(sup ||t

<B(e o -1) (ki al?) J
=r

This lemma is a slight generalization of Lemma 5.3, provefiljnusing simple
estimates. Lemnid 1 is proven similarly. Now for the proof b&dreni 2.

L2[7T[!T[]d

Proof. Define & = suf.y || Tk — tk/|». Lemmal shows that the mdm, = f, is
bounded and linear, and that

IL-L|| <B(e™®-1):=pA
for some 0< 3 < 1. This implies

L f —L*f|| <BA, when |f| =1 (3)



An asymptotic equivalence between two frame perturbatieorems 3
Rearranging, we have

A(L-B)<|T*f|l, when |f|=1.

By the previous remarks regarding framef)cr is a frame forp[— 1, 719,

TheoreniB, proven i [3], is a more delicate frame pertudnatésult with a more
complex proof:

Theorem 3. Let (t ke C RY be a sequence such th ) ey := ((2n—l)(i/26<('>’tk>)keN
is a frame for lp[— 17, 71 with frame bounds Aand B. For d > 1, define

SinT[X)d
)

. sinmxy d
Dq4(x) := (1—cosnx+smnx+ Inx ) —( —

and let ) be the unique number such th@t< x4 < 1/4 and Dy(xq) = ’g. If
(Tiken € RY and (fi)xen == ((Zléd/ze'«')m)keN is a sequence such that

sup|| Tk — tileo < Xg (4)
keN

then the sequenddy)cn is also a frame for b[— 11, 9.

2 An asymptotic equivalence

It is natural to ask how the constamasand% In (1jL ’g) are related. Such a rela-
tionship is given in the following theorem.

Theorem 4. If x4 is the unique number satisfyify< x4 < 1/4 and Dy(Xq) = %,
then ) R
min(l+g) _
S ne)l
or(1+8)d2
We prove the theorem with a sequence of propositions.

Proposition 1. Let d be a positive integer. If

f(x) := 1—cogx) + sin(x) +singx),

g(x) := singx),
then
1) )+ ( X) >0, xe(0,mm/4),
2) dg(x) <0, xe (0 m/4),
3 f(x)> x€ (0,4) forsome 0<A <1/4.
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The proof of Propositioh]1 involves only elementary calsudind is omitted.

Proposition 2. The following statements hold:
1) For d > 0, D4(x) and Dj(x) are positive or(0,1/4).
2) For all d > 0, D)j(x) is positive on(0,4).

Proof. NoteDy(x) = f(mx)9 — g(mx)¢ is positive. This expression yields
Dy (x)/(dm) = f(rx)* ' (1x) — g(1x)* g/ (7¢) > 0 on (0,1/4)
by Propositioii L. Differentiating again, we obtain
DG(x)/(dr) = (d — 1) [f ()" 2(F'(10)% — g(m)* (g (70))?] +
+ [F(m) " () — g(m) " 1g"(m)] on (0,1/4).
If g’(mx) < 0 for somex € (0,1/4), then the second bracketted term is positive.

If g”(mx) > O for somex € (0,1/4), then the second bracketted term is positive if
f”(mx) — g”(mx) > 0, but

f(1x) — g (11x) = m2(cog(11x) — sin(Tx))

is positive on(0,1/4).
To show the first bracketted term is positive, it suffices tovsthat

f'(mx)? > g (1x)? = (F (1) + ¢ (1) (' (7X) — ¢ (70)) > O

on (0,4). Noting f’(mx) — g/ (mx) = m(cog 1x) + sin(7x)) > 0, it suffices to show
that f/(7x) + g'(1x) > 0, but this is true by Propositidn 1.

Note that Proposition] 2 implieg; is unique.

Corollary 1. We havdimg_,,Xxq = 0.

Proof. Fix n> 0 with 1/n < A, then limy_, Dg(1/n) = o (sincef increasing im-

pIies 0< —cog1/n) +sin(mt/n) + sind7t/n)). For sufficiently larged, Dg(1/n) >
£.But§ = Dg(xg) < Dg(1/n), soxg < 1/n by PropositiofiP.

Proposition 3. Definewy = =;In (1+ §). We have

Jm (- Dot = g5 [ (1+ 5]
J@mgog(%)z n(1+g),
|@m3D’ (%) = n(1+ g).

Proof. 1) For the first equality, note that
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Da(@y) = | (L+h(x)"/* — g/

5
b0 5)

whereh(x) = — cog(X) +sin(x) +sing(x), g(x) = singx), andc = 1+ 4. L'Hospital's
rule implies that

im (1+h())"©% = ¢ and limg(x)"®/* = 1.

x—0
Looking at the first equality in the line above, another aggilon of L'Hospital's
rule yields
(14 h())n©/x _ ¢ %=1 In(1+h(x)—x
=cln(c) | = )

li — . 6
X'L'B X X X2 (6)

Observing thah(x) = x+x?/3+0(x3)), we see that

(X
Ty L 1
lim 22— =
x—0 X 3

L'Hospital’s rule applied to the second term on the right thaite of equatior{6)
gives

(1+h(x)"©*—¢c  —cIn(c)

Lm) X 6 O
In a similar fashion,
In(c)/x _ g™
im 9L o) tim [ﬂ _ M] . ®)
x—0 X x—0 X X

Observing thag(x) = 1 —x2/6+ O(x*), we see that

lim _ 1
x>0 x 3
L'Hospital’s rule applied to the second term on the right thaite of equatior{8)
gives
g9 -1 In(c)

J(ILT?J X T 6 ©

Combining equation§{5){7), and (9), we obtain

fm (- Dotew) =g [ (1+5)]

2) For the second equality we have, (after simplification),
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(1+h(@))(m(c>)/(%)) _g($)(ln(c))/(T) /(ln(c))]
Len() o)

In light of the previous work, this yields

1
aDﬁ(wu) =n

im }Dg(wd) = n(1+ é)

I
d—o0

3) To derive the third equality, note thét+ h(1xq))4 = § + g(1mxq)? yields

1., £ +9(ma)? g(mxg)?
§Daxa) = Bl+h(rrxd) h (1xg) — o0 g(nxd)]- (10)

Also, the first inequality in propostidd 3 yields that, forffaziently larged (also
large enough so thay < A andwy < A), thatDg(wy) < g = Dq(xq). This implies
wy < Xg sinceDy is increasing or{0,1/4). But Dy is also convex ori0,A), so we
can conclude that

Djy(e) < Di(xa)- (11)

Combining this with equatio (10), we obtain

d
ED&(%HM (x4

. (1+h(nxd)

W (o) ) < n(g+g(m<d)d) < n(1+g).

The limit asd — = of the left hand side of the above inequalitw'élJr %), o]
(A a\ A
b (5 a0 (1 5).
Combining this with equatio (10), we obtain
L, A
im §Da(x) = 71(1+ ).

Now we complete the proof of Theordrh 4.
For larged, the mean value theorem implies

Dg(Xd) —Dg(wn)
B — =Dy(&), &€ (wux),
so that

xd—wd:%_Dd(wd)

Dy(&) -

For larged, convexity ofD4 on (0,A) implies
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d(§ - Da(e) d( 4 — D)
T o d(xg— ) < 2
Dy (xa) 3D} ()

Applying Propositio B proves the theorem.
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