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An asymptotic equivalence between two frame
perturbation theorems

B. A. Bailey

Abstract In this paper, two stability results regarding exponentialframes are com-
pared. The theorems, (one proven herein, and the other in [3]), each give a con-
stant such that if supn∈Z ‖εn‖∞ < C, and (ei〈·,tn〉)n∈Zd is a frame forL2[−π ,π ]d,
then(ei〈·,tn+εn〉)n∈Zd is a frame forL2[−π ,π ]d. These two constants are shown to be
asymptotically equivalent for large values ofd.

1 The perturbation theorems

We define a frame for a separable Hilbert spaceH to be a sequence( fn)n ⊂ H such
that for some 0< A≤ B,

A2‖ f‖2 ≤ ∑
n
|〈 f , fn〉|2 ≤ B2‖ f‖2, f ∈ H.

The bestA2 andB2 satisfying the inequality above are said to be the frame bounds
for the frame. If(en)n is an orthonormal basis forH, the synthesis operatorLen = fn
is bounded, linear, and onto, iff( fn)n is a frame. Equivalently,( fn)n is a frame iff
the operatorL∗ is an isomorphic embedding, (see [2]). In this case,A andB are the
best constants such that

A‖ f‖ ≤ ‖L∗ f‖ ≤ B‖ f‖, f ∈ H.

The simplest stability result regarding exponential frames forL2[−π ,π ] is the theo-
rem below, which follows immediately from [4, Theorem 13, p 160].
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2 B. A. Bailey

Theorem 1. Let (tn)n∈Z ⊂ R be a sequence such that(hn)n∈Z :=
(

1√
2π eitnx

)

n∈Z is a

frame for L2[−π ,π ] with frame bounds A2 and B2. If (τn)n∈Z ⊂ R and ( fn)n∈Z :=
(

1√
2π

eiτnx
)

n∈Z is a sequence such that

sup
n∈Z

|τn− tn|<
1
π

ln

(

1+
A
B

)

, (1)

then the sequence( fn)n∈Z is also a frame for L2[−π ,π ].

The following theorem is a very natural generalization of Theorem 1 to higher di-
mensions.

Theorem 2. Let(tk)k∈N ⊂Rd be a sequence such that(hk)k∈N :=
( 1
(2π)d/2 e〈(·),tk〉

)

k∈N
is a frame for L2[−π ,π ]d with frame bounds A2 and B2. If (τk)k∈N ⊂ Rd and
( fk)k∈N :=

( 1
(2π)d/2 ei〈(·),τk〉

)

k∈N is a sequence such that

sup
k∈N

‖τk− tk‖∞ <
1

πd
ln

(

1+
A
B

)

, (2)

then the sequence( fk)k∈N is also a frame for L2[−π ,π ]d.

The proof of Theorem 2 relies on the following lemma:

Lemma 1. Choose(tk)k∈N ⊂ Rd such that(hk)k∈N :=
(

1
(2π)d/2 e〈(·),tk〉

)

k∈N satisfies

∥

∥

∥

n

∑
k=1

akhk

∥

∥

∥

L2[−π ,π ]d
≤ B

( n

∑
k=1

|ak|2
)1/2

, for all (ak)
n
k=1 ⊂ C.

If (τk)k∈N ⊂ Rd, and ( fk)k∈N :=
(

1
(2π)d/2 ei〈(·),τk〉

)

k∈N, then for all r,s≥ 1 and any

finite sequence(ak)k, we have

w

w

w

w

w

s

∑
k=r

ak(hk− fk)

w

w

w

w

w

L2[−π ,π ]d
≤ B

(

e
πd
(

sup
r≤k≤s

‖τk−tk‖∞
)

−1
)( s

∑
k=r

|ak|2
)

1
2
.

This lemma is a slight generalization of Lemma 5.3, proven in[1] using simple
estimates. Lemma 1 is proven similarly. Now for the proof of Theorem 2.

Proof. Define δ = supk∈N ‖τk − tk‖∞. Lemma 1 shows that the map̃Len = fn is
bounded and linear, and that

‖L− L̃‖ ≤ B
(

eπdδ −1
)

:= βA

for some 0≤ β < 1. This implies

‖L∗ f − L̃∗ f‖ ≤ βA, when ‖ f‖= 1. (3)
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Rearranging, we have

A(1−β )≤ ‖L̃∗ f‖, when ‖ f‖= 1.

By the previous remarks regarding frames,( fk)k∈N is a frame forL2[−π ,π ]d.

Theorem 3, proven in [3], is a more delicate frame perturbation result with a more
complex proof:

Theorem 3. Let(tk)k∈N ⊂R
d be a sequence such that(hk)k∈N :=

(

1
(2π)d/2 e〈(·),tk〉

)

k∈N
is a frame for L2[−π ,π ]d with frame bounds A2 and B2. For d ≥ 1, define

Dd(x) :=
(

1− cosπx+ sinπx+
sinπx

πx

)d
−
(sinπx

πx

)d
,

and let xd be the unique number such that0 < xd ≤ 1/4 and Dd(xd) =
A
B . If

(τk)k∈N ⊂ Rd and( fk)k∈N :=
( 1
(2π)d/2 ei〈(·),τk〉

)

k∈N is a sequence such that

sup
k∈N

‖τk− tk‖∞ < xd, (4)

then the sequence( fk)k∈N is also a frame for L2[−π ,π ]d.

2 An asymptotic equivalence

It is natural to ask how the constantsxd and 1
πd ln

(

1+ A
B

)

are related. Such a rela-
tionship is given in the following theorem.

Theorem 4. If xd is the unique number satisfying0 < xd < 1/4 and Dd(xd) =
A
B,

then

lim
d→∞

xd − 1
πd ln

(

1+ A
B

)

[

ln
(

1+ A
B

)]2

6π
(

1+ B
A

)

d2

= 1.

We prove the theorem with a sequence of propositions.

Proposition 1. Let d be a positive integer. If

f (x) := 1− cos(x)+ sin(x)+ sinc(x),

g(x) := sinc(x),

then

1) f ′(x)+g′(x)> 0, x∈ (0,π/4),

2) g′(x)< 0, x∈ (0,π/4),

3) f ′′(x)> 0, x∈ (0,∆) for some 0< ∆ < 1/4.
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The proof of Proposition 1 involves only elementary calculus and is omitted.

Proposition 2. The following statements hold:
1) For d> 0, Dd(x) and D′

d(x) are positive on(0,1/4).
2) For all d > 0, D′′

d(x) is positive on(0,∆).

Proof. NoteDd(x) = f (πx)d −g(πx)d is positive. This expression yields

D′
d(x)/(dπ) = f (πx)d−1 f ′(πx)−g(πx)d−1g′(πx)> 0 on (0,1/4)

by Proposition 1. Differentiating again, we obtain

D′′
d(x)/(dπ2) = (d−1)

[

f (πx)d−2( f ′(πx))2−g(πx)d−2(g′(πx))2]+

+ [ f (πx)d−1 f ′′(πx)−g(πx)d−1g′′(πx)] on (0,1/4).

If g′′(πx) ≤ 0 for somex ∈ (0,1/4), then the second bracketted term is positive.
If g′′(πx) > 0 for somex ∈ (0,1/4), then the second bracketted term is positive if
f ′′(πx)−g′′(πx)> 0, but

f ′′(πx)−g′′(πx) = π2(cos(πx)− sin(πx))

is positive on(0,1/4).
To show the first bracketted term is positive, it suffices to show that

f ′(πx)2 > g′(πx)2 = ( f ′(πx)+g′(πx))( f ′(πx)−g′(πx))> 0

on (0,∆). Noting f ′(πx)−g′(πx) = π(cos(πx)+ sin(πx)) > 0, it suffices to show
that f ′(πx)+g′(πx)> 0, but this is true by Proposition 1.

Note that Proposition 2 impliesxd is unique.

Corollary 1. We havelimd→∞ xd = 0.

Proof. Fix n> 0 with 1/n< ∆ , then limd→∞ Dd(1/n) = ∞ (since f increasing im-
plies 0<−cos(π/n)+ sin(π/n)+ sinc(π/n)). For sufficiently larged, Dd(1/n)>
A
B . But A

B = Dd(xd)< Dd(1/n), soxd < 1/n by Proposition 2.

Proposition 3. Defineωd = 1
πd ln

(

1+ A
B

)

. We have

lim
d→∞

d
(A

B
−Dd(ωd)

)

=
A
6B

[

ln
(

1+
A
B

)]2
,

lim
d→∞

1
d

D′
d(ωd) = π

(

1+
A
B

)

,

lim
d→∞

1
d

D′
d(xd) = π

(

1+
A
B

)

.

Proof. 1) For the first equality, note that
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Dd(ωd) =
[

(1+h(x))ln(c)/x−g(x)ln(c)/x
]
∣

∣

∣

x= ln(c)
d

(5)

whereh(x)=−cos(x)+sin(x)+sinc(x), g(x)= sinc(x), andc= 1+ A
B . L’Hospital’s

rule implies that

lim
x→0

(1+h(x))ln(c)/x = c and lim
x→0

g(x)ln(c)/x = 1.

Looking at the first equality in the line above, another application of L’Hospital’s
rule yields

lim
x→0

(1+h(x))ln(c)/x− c
x

= cln(c)

[ h′(x)
1+h(x) −1

x
− ln(1+h(x))− x

x2

]

. (6)

Observing thath(x) = x+ x2/3+O(x3)), we see that

lim
x→0

h′(x)
1+h(x) −1

x
=−1

3
.

L’Hospital’s rule applied to the second term on the right hand side of equation (6)
gives

lim
x→0

(1+h(x))ln(c)/x− c
x

=
−cln(c)

6
. (7)

In a similar fashion,

lim
x→0

g(x)ln(c)/x−1
x

= ln(c) lim
x→0

[ g′(x)
g(x)

x
− ln(g(x))

x2

]

. (8)

Observing thatg(x) = 1− x2/6+O(x4), we see that

lim
x→0

g′(x)
g(x)

x
=−1

3
.

L’Hospital’s rule applied to the second term on the right hand side of equation (8)
gives

lim
x→0

g(x)ln(c)/x−1
x

=− ln(c)
6

. (9)

Combining equations (5) (7), and (9), we obtain

lim
d→∞

d
(A

B
−Dd(ωd)

)

=
A
6B

[

ln
(

1+
A
B

)]2
.

2) For the second equality we have, (after simplification),
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1
d

D′
d(ωd) = π

[

(

1+h
( ln(c)

d

)

)

(

ln(c)
)

/
(

ln(c)
d

)

1+h
(

ln(c)
d

) −
g
(

ln(c)
d

)

(

ln(c)
)

/
(

ln(c)
d

)

g
(

ln(c)
d

) g′
( ln(c)

d

)

]

.

In light of the previous work, this yields

lim
d→∞

1
d

D′
d(ωd) = π

(

1+
A
B

)

.

3) To derive the third equality, note that(1+h(πxd))
d = A

B +g(πxd)
d yields

1
d

D′
d(xd) = π

[

A
B +g(πxd)

d

1+h(πxd)
h′(πxd)−

g(πxd)
d

g(πx)
g′(πxd)

]

. (10)

Also, the first inequality in propostion 3 yields that, for sufficiently larged (also
large enough so thatxd < ∆ andωd < ∆ ), thatDd(ωd)<

A
B = Dd(xd). This implies

ωd < xd sinceDd is increasing on(0,1/4). But Dd is also convex on(0,∆), so we
can conclude that

D′
d(ωd)< D′

d(xd). (11)

Combining this with equation (10), we obtain
[

1
d

D′
d(ωd)+

πg(πxd)
d

g(πxd)
g′(πxd)

]

(1+h(πxd)

h′(πxd)

)

< π
(A

B
+g(πxd)

d
)

< π
(

1+
A
B

)

.

The limit asd → ∞ of the left hand side of the above inequality isπ
(

1+ A
B

)

, so

lim
d→∞

π
(A

B
+g(πxd)

d
)

= π
(

1+
A
B

)

.

Combining this with equation (10), we obtain

lim
d→∞

1
d

D′
d(xd) = π

(

1+
A
B

)

.

Now we complete the proof of Theorem 4.
For larged, the mean value theorem implies

Dd(xd)−Dd(ωd)

xd −ωd
= D′

d(ξ ), ξ ∈ (ωd,xd),

so that

xd −ωd =
A
B −Dd(ωd)

D′
d(ξ )

.

For larged, convexity ofDd on (0,∆) implies
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d
(

A
B −Dd(ωd)

)

1
dD′

d(xd)
< d2(xd −ωd)<

d
(

A
B −Dd(ωd)

)

1
dD′

d(ωd)
.

Applying Proposition 3 proves the theorem.
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