An asymptotic equivalence between two frame perturbation theorems

B. A. Bailey

Abstract In this paper, two stability results regarding exponential frames are compared. The theorems, (one proven herein, and the other in [3]), each give a constant such that if $\sup_{n \in \mathbb{Z}} \|\varepsilon_n\|_{\infty} < C$, and $(e^{i\langle \cdot, t_n \rangle})_{n \in \mathbb{Z}^d}$ is a frame for $L_2[-\pi, \pi]^d$, then $(e^{i\langle \cdot, t_n + \varepsilon_n \rangle})_{n \in \mathbb{Z}^d}$ is a frame for $L_2[-\pi, \pi]^d$. These two constants are shown to be asymptotically equivalent for large values of *d*.

1 The perturbation theorems

We define a frame for a separable Hilbert space *H* to be a sequence $(f_n)_n \subset H$ such that for some $0 < A \leq B$,

$$A^2 ||f||^2 \le \sum_n |\langle f, f_n \rangle|^2 \le B^2 ||f||^2, \quad f \in H.$$

The best A^2 and B^2 satisfying the inequality above are said to be the frame bounds for the frame. If $(e_n)_n$ is an orthonormal basis for H, the synthesis operator $Le_n = f_n$ is bounded, linear, and onto, iff $(f_n)_n$ is a frame. Equivalently, $(f_n)_n$ is a frame iff the operator L^* is an isomorphic embedding, (see [2]). In this case, A and B are the best constants such that

$$A||f|| \le ||L^*f|| \le B||f||, \quad f \in H.$$

The simplest stability result regarding exponential frames for $L_2[-\pi,\pi]$ is the theorem below, which follows immediately from [4, Theorem 13, p 160].

B. A. Bailey

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, e-mail: abailey@math.tamu.edu

B. A. Bailey

Theorem 1. Let $(t_n)_{n \in \mathbb{Z}} \subset \mathbb{R}$ be a sequence such that $(h_n)_{n \in \mathbb{Z}} := \left(\frac{1}{\sqrt{2\pi}}e^{it_nx}\right)_{n \in \mathbb{Z}}$ is a frame for $L_2[-\pi,\pi]$ with frame bounds A^2 and B^2 . If $(\tau_n)_{n \in \mathbb{Z}} \subset \mathbb{R}$ and $(f_n)_{n \in \mathbb{Z}} := \left(\frac{1}{\sqrt{2\pi}}e^{i\tau_nx}\right)_{n \in \mathbb{Z}}$ is a sequence such that

$$\sup_{n\in\mathbb{Z}} |\tau_n - t_n| < \frac{1}{\pi} \ln\left(1 + \frac{A}{B}\right),\tag{1}$$

then the sequence $(f_n)_{n \in \mathbb{Z}}$ is also a frame for $L_2[-\pi, \pi]$.

The following theorem is a very natural generalization of Theorem 1 to higher dimensions.

Theorem 2. Let $(t_k)_{k\in\mathbb{N}} \subset \mathbb{R}^d$ be a sequence such that $(h_k)_{k\in\mathbb{N}} := \left(\frac{1}{(2\pi)^{d/2}} e^{\langle (\cdot), t_k \rangle}\right)_{k\in\mathbb{N}}$ is a frame for $L_2[-\pi, \pi]^d$ with frame bounds A^2 and B^2 . If $(\tau_k)_{k\in\mathbb{N}} \subset \mathbb{R}^d$ and $(f_k)_{k\in\mathbb{N}} := \left(\frac{1}{(2\pi)^{d/2}} e^{i\langle (\cdot), \tau_k \rangle}\right)_{k\in\mathbb{N}}$ is a sequence such that

$$\sup_{k\in\mathbb{N}} \|\tau_k - t_k\|_{\infty} < \frac{1}{\pi d} \ln\left(1 + \frac{A}{B}\right),\tag{2}$$

then the sequence $(f_k)_{k\in\mathbb{N}}$ is also a frame for $L_2[-\pi,\pi]^d$.

The proof of Theorem 2 relies on the following lemma:

Lemma 1. Choose $(t_k)_{k\in\mathbb{N}}\subset\mathbb{R}^d$ such that $(h_k)_{k\in\mathbb{N}}:=\left(\frac{1}{(2\pi)^{d/2}}e^{\langle(\cdot),t_k\rangle}\right)_{k\in\mathbb{N}}$ satisfies

$$\Big\|\sum_{k=1}^n a_k h_k\Big\|_{L_2[-\pi,\pi]^d} \le B\Big(\sum_{k=1}^n |a_k|^2\Big)^{1/2}, \quad \text{for all} \quad (a_k)_{k=1}^n \subset \mathbb{C}.$$

If $(\tau_k)_{k\in\mathbb{N}} \subset \mathbb{R}^d$, and $(f_k)_{k\in\mathbb{N}} := \left(\frac{1}{(2\pi)^{d/2}}e^{i\langle (\cdot),\tau_k \rangle}\right)_{k\in\mathbb{N}}$, then for all $r, s \ge 1$ and any finite sequence $(a_k)_k$, we have

$$\left\|\sum_{k=r}^{s} a_{k}(h_{k}-f_{k})\right\|_{L_{2}[-\pi,\pi]^{d}} \leq B\left(e^{\pi d\left(\sup_{r\leq k\leq s}\|\tau_{k}-t_{k}\|_{\infty}\right)}-1\right)\left(\sum_{k=r}^{s}|a_{k}|^{2}\right)^{\frac{1}{2}}.$$

This lemma is a slight generalization of Lemma 5.3, proven in [1] using simple estimates. Lemma 1 is proven similarly. Now for the proof of Theorem 2.

Proof. Define $\delta = \sup_{k \in \mathbb{N}} \|\tau_k - t_k\|_{\infty}$. Lemma 1 shows that the map $\tilde{L}e_n = f_n$ is bounded and linear, and that

$$\|L - \tilde{L}\| \le B(e^{\pi d\delta} - 1) := \beta A$$

for some $0 \le \beta < 1$. This implies

$$||L^*f - \tilde{L}^*f|| \le \beta A$$
, when $||f|| = 1$. (3)

An asymptotic equivalence between two frame perturbation theorems

Rearranging, we have

$$A(1-\beta) \le \|\tilde{L}^*f\|$$
, when $\|f\| = 1$.

By the previous remarks regarding frames, $(f_k)_{k \in \mathbb{N}}$ is a frame for $L_2[-\pi, \pi]^d$.

Theorem 3, proven in [3], is a more delicate frame perturbation result with a more complex proof:

Theorem 3. Let $(t_k)_{k \in \mathbb{N}} \subset \mathbb{R}^d$ be a sequence such that $(h_k)_{k \in \mathbb{N}} := \left(\frac{1}{(2\pi)^{d/2}} e^{\langle (\cdot), t_k \rangle}\right)_{k \in \mathbb{N}}$ is a frame for $L_2[-\pi, \pi]^d$ with frame bounds A^2 and B^2 . For $d \ge 1$, define

$$D_d(x) := \left(1 - \cos \pi x + \sin \pi x + \frac{\sin \pi x}{\pi x}\right)^d - \left(\frac{\sin \pi x}{\pi x}\right)^d,$$

and let x_d be the unique number such that $0 < x_d \le 1/4$ and $D_d(x_d) = \frac{A}{B}$. If $(\tau_k)_{k \in \mathbb{N}} \subset \mathbb{R}^d$ and $(f_k)_{k \in \mathbb{N}} := \left(\frac{1}{(2\pi)^{d/2}}e^{i\langle \langle \cdot \rangle, \tau_k \rangle}\right)_{k \in \mathbb{N}}$ is a sequence such that

$$\sup_{k \in \mathbb{N}} \|\tau_k - t_k\|_{\infty} < x_d,\tag{4}$$

then the sequence $(f_k)_{k\in\mathbb{N}}$ is also a frame for $L_2[-\pi,\pi]^d$.

2 An asymptotic equivalence

It is natural to ask how the constants x_d and $\frac{1}{\pi d} \ln \left(1 + \frac{A}{B}\right)$ are related. Such a relationship is given in the following theorem.

Theorem 4. If x_d is the unique number satisfying $0 < x_d < 1/4$ and $D_d(x_d) = \frac{A}{B}$, then

$$\lim_{d \to \infty} \frac{x_d - \frac{1}{\pi d} \ln\left(1 + \frac{A}{B}\right)}{\frac{\left[\ln\left(1 + \frac{A}{B}\right)\right]^2}{6\pi\left(1 + \frac{B}{A}\right)d^2}} = 1$$

We prove the theorem with a sequence of propositions.

Proposition 1. Let d be a positive integer. If

$$f(x) := 1 - \cos(x) + \sin(x) + \operatorname{sinc}(x),$$

$$g(x) := \operatorname{sinc}(x),$$

then

1)
$$f'(x) + g'(x) > 0, \quad x \in (0, \pi/4),$$

2) $g'(x) < 0, \quad x \in (0, \pi/4),$
3) $f''(x) > 0, \quad x \in (0, \Delta)$ for some $0 < \Delta < 1/4.$

The proof of Proposition 1 involves only elementary calculus and is omitted.

Proposition 2. The following statements hold: 1) For d > 0, $D_d(x)$ and $D'_d(x)$ are positive on (0, 1/4). 2) For all d > 0, $D''_d(x)$ is positive on $(0, \Delta)$.

Proof. Note $D_d(x) = f(\pi x)^d - g(\pi x)^d$ is positive. This expression yields

$$D'_d(x)/(d\pi) = f(\pi x)^{d-1} f'(\pi x) - g(\pi x)^{d-1} g'(\pi x) > 0$$
 on $(0, 1/4)$

by Proposition 1. Differentiating again, we obtain

$$\begin{split} D_d''(x)/(d\pi^2) &= (d-1) \left[f(\pi x)^{d-2} (f'(\pi x))^2 - g(\pi x)^{d-2} (g'(\pi x))^2 \right] + \\ &+ \left[f(\pi x)^{d-1} f''(\pi x) - g(\pi x)^{d-1} g''(\pi x) \right] \quad \text{on} \quad (0,1/4). \end{split}$$

If $g''(\pi x) \le 0$ for some $x \in (0, 1/4)$, then the second bracketted term is positive. If $g''(\pi x) > 0$ for some $x \in (0, 1/4)$, then the second bracketted term is positive if $f''(\pi x) - g''(\pi x) > 0$, but

$$f''(\pi x) - g''(\pi x) = \pi^2(\cos(\pi x) - \sin(\pi x))$$

is positive on (0, 1/4).

To show the first bracketted term is positive, it suffices to show that

$$f'(\pi x)^2 > g'(\pi x)^2 = (f'(\pi x) + g'(\pi x))(f'(\pi x) - g'(\pi x)) > 0$$

on $(0, \Delta)$. Noting $f'(\pi x) - g'(\pi x) = \pi(\cos(\pi x) + \sin(\pi x)) > 0$, it suffices to show that $f'(\pi x) + g'(\pi x) > 0$, but this is true by Proposition 1.

Note that Proposition 2 implies x_d is unique.

Corollary 1. We have $\lim_{d\to\infty} x_d = 0$.

Proof. Fix n > 0 with $1/n < \Delta$, then $\lim_{d\to\infty} D_d(1/n) = \infty$ (since f increasing implies $0 < -\cos(\pi/n) + \sin(\pi/n) + \sin(\pi/n)$). For sufficiently large d, $D_d(1/n) > \frac{A}{B}$. But $\frac{A}{B} = D_d(x_d) < D_d(1/n)$, so $x_d < 1/n$ by Proposition 2.

Proposition 3. Define $\omega_d = \frac{1}{\pi d} \ln \left(1 + \frac{A}{B}\right)$. We have

$$\begin{split} \lim_{d \to \infty} d\left(\frac{A}{B} - D_d(\omega_d)\right) &= \frac{A}{6B} \left[\ln\left(1 + \frac{A}{B}\right)\right]^2,\\ \lim_{d \to \infty} \frac{1}{d} D_d'(\omega_d) &= \pi \left(1 + \frac{A}{B}\right),\\ \lim_{d \to \infty} \frac{1}{d} D_d'(x_d) &= \pi \left(1 + \frac{A}{B}\right). \end{split}$$

Proof. 1) For the first equality, note that

An asymptotic equivalence between two frame perturbation theorems

$$D_{d}(\omega_{d}) = \left[(1+h(x))^{\ln(c)/x} - g(x)^{\ln(c)/x} \right] \Big|_{x=\frac{\ln(c)}{d}}$$
(5)

where $h(x) = -\cos(x) + \sin(x) + \sin(x)$, $g(x) = \operatorname{sinc}(x)$, and $c = 1 + \frac{A}{B}$. L'Hospital's rule implies that

$$\lim_{x \to 0} (1 + h(x))^{\ln(c)/x} = c \quad \text{and} \quad \lim_{x \to 0} g(x)^{\ln(c)/x} = 1.$$

Looking at the first equality in the line above, another application of L'Hospital's rule yields

$$\lim_{x \to 0} \frac{(1+h(x))^{\ln(c)/x} - c}{x} = c \ln(c) \left[\frac{\frac{h'(x)}{1+h(x)} - 1}{x} - \frac{\ln(1+h(x)) - x}{x^2} \right].$$
 (6)

Observing that $h(x) = x + x^2/3 + O(x^3)$, we see that

$$\lim_{x \to 0} \frac{\frac{h'(x)}{1+h(x)} - 1}{x} = -\frac{1}{3}.$$

L'Hospital's rule applied to the second term on the right hand side of equation (6) gives

$$\lim_{x \to 0} \frac{(1+h(x))^{\ln(c)/x} - c}{x} = \frac{-c\ln(c)}{6}.$$
(7)

In a similar fashion,

$$\lim_{x \to 0} \frac{g(x)^{\ln(c)/x} - 1}{x} = \ln(c) \lim_{x \to 0} \left[\frac{\frac{g'(x)}{g(x)}}{x} - \frac{\ln(g(x))}{x^2} \right].$$
(8)

Observing that $g(x) = 1 - x^2/6 + O(x^4)$, we see that

$$\lim_{x \to 0} \frac{\frac{g'(x)}{g(x)}}{x} = -\frac{1}{3}.$$

L'Hospital's rule applied to the second term on the right hand side of equation (8) gives

$$\lim_{x \to 0} \frac{g(x)^{\ln(c)/x} - 1}{x} = -\frac{\ln(c)}{6}.$$
(9)

Combining equations (5) (7), and (9), we obtain

$$\lim_{d\to\infty} d\left(\frac{A}{B} - D_d(\omega_d)\right) = \frac{A}{6B} \left[\ln\left(1 + \frac{A}{B}\right)\right]^2.$$

2) For the second equality we have, (after simplification),

B. A. Bailey

$$\frac{1}{d}D'_d(\omega_d) = \pi \left[\frac{\left(1 + h\left(\frac{\ln(c)}{d}\right)\right)^{\left(\ln(c)\right)/\left(\frac{\ln(c)}{d}\right)}}{1 + h\left(\frac{\ln(c)}{d}\right)} - \frac{g\left(\frac{\ln(c)}{d}\right)^{\left(\ln(c)\right)/\left(\frac{\ln(c)}{d}\right)}}{g\left(\frac{\ln(c)}{d}\right)}g'\left(\frac{\ln(c)}{d}\right)\right]$$

In light of the previous work, this yields

$$\lim_{d \to \infty} \frac{1}{d} D'_d(\omega_d) = \pi \left(1 + \frac{A}{B} \right)$$

3) To derive the third equality, note that $(1 + h(\pi x_d))^d = \frac{A}{B} + g(\pi x_d)^d$ yields

$$\frac{1}{d}D'_d(x_d) = \pi \left[\frac{\frac{A}{B} + g(\pi x_d)^d}{1 + h(\pi x_d)}h'(\pi x_d) - \frac{g(\pi x_d)^d}{g(\pi x)}g'(\pi x_d)\right].$$
 (10)

Also, the first inequality in propostion 3 yields that, for sufficiently large *d* (also large enough so that $x_d < \Delta$ and $\omega_d < \Delta$), that $D_d(\omega_d) < \frac{A}{B} = D_d(x_d)$. This implies $\omega_d < x_d$ since D_d is increasing on (0, 1/4). But D_d is also convex on $(0, \Delta)$, so we can conclude that

$$D'_d(\omega_d) < D'_d(x_d). \tag{11}$$

Combining this with equation (10), we obtain

$$\left[\frac{1}{d}D'_d(\omega_d) + \frac{\pi g(\pi x_d)^d}{g(\pi x_d)}g'(\pi x_d)\right] \left(\frac{1+h(\pi x_d)}{h'(\pi x_d)}\right) < \pi \left(\frac{A}{B} + g(\pi x_d)^d\right) < \pi \left(1+\frac{A}{B}\right).$$

The limit as $d \to \infty$ of the left hand side of the above inequality is $\pi \left(1 + \frac{A}{B}\right)$, so

$$\lim_{d\to\infty}\pi\Big(\frac{A}{B}+g(\pi x_d)^d\Big)=\pi\Big(1+\frac{A}{B}\Big).$$

Combining this with equation (10), we obtain

$$\lim_{d\to\infty}\frac{1}{d}D'_d(x_d)=\pi\Big(1+\frac{A}{B}\Big).$$

Now we complete the proof of Theorem 4. For large *d*, the mean value theorem implies

$$\frac{D_d(x_d) - D_d(\omega_d)}{x_d - \omega_d} = D'_d(\xi), \quad \xi \in (\omega_d, x_d),$$

so that

$$x_d - \omega_d = \frac{\frac{A}{B} - D_d(\omega_d)}{D'_d(\xi)}.$$

For large d, convexity of D_d on $(0, \Delta)$ implies

An asymptotic equivalence between two frame perturbation theorems

$$\frac{d\left(\frac{A}{B}-D_d(\omega_d)\right)}{\frac{1}{d}D_d'(x_d)} < d^2(x_d-\omega_d) < \frac{d\left(\frac{A}{B}-D_d(\omega_d)\right)}{\frac{1}{d}D_d'(\omega_d)}.$$

Applying Proposition 3 proves the theorem.

References

- Bailey, B.A.: Sampling and recovery of multidimensional bandlimited functions via frames. J. Math. Anal. Appl. 367, Issue 2 374–388 (2010)
- 2. Casazza, P.G.: The art of frames. Taiwanese J. Math. 4. No. 2 129–201 (2001)
- 3. Sun, W., Zhou, X.: On the stability of multivariate trigonometric systems. J. Math. Anal. Appl. 235, 159–167 (1999)
- 4. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press (2001)

Acknowledgements This research was supported in part by the NSF Grant DMS0856148.