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Abstract

In this paper, we shall study the uniqueness problems on meromorphic functions
sharing a polynomial. We give a complete answer to a problem posed by Fang Mingliang.
Our results improve or generalize those given by Fang and Hua, Yang and Hua, Fang,
Fang and Qiu, Lin and Yi, Zhang, Xu, et al.
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1 Introduction and main results

Let C denote the complex plane and f(z) be a non-constant meromorphic function on C.
We assume the reader is familiar with the standard notion used in the Nevanlinna value
distribution theory such as T (r, f), m(r, f), N(r, f), and S(r, f) denotes any quantity that
satisfies the condition S(r, f) = o(T (r, f)) as r → ∞ outside of a possible exceptional set of
finite linear measure. A meromorphic function a(z) is called a small function with respect
to f(z), provided that T (r, a) = S(r, f).

Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z), b(z) be small
functions of f(z) and g(z). We say that f(z), g(z) share a(z) CM (counting multiplicities)
if f(z)− a(z), g(z)− a(z) have the same zeros with the same multiplicities and we say that
f(z), g(z) share a(z) IM (ignoring multiplicities) if we do not consider the multiplicities.
We denote by Nk)(r,

1
f−a

) (or Nk)(r,
1

f−a
) ) the counting function for zeros of f − a with

multiplicity ≤ k (ignoring multiplicities), and by N(k(r,
1

f−a
) (or N (k(r,

1
f−a

) ) the counting
function for zeros of f − a with multiplicity ≥ k (ignoring multiplicities). Moreover we set
Nk(r,

1
f−a

) = N(r, 1
f−a

) +N (2(r,
1

f−a
) +N (3(r,

1
f−a

) + · · · +N (k(r,
1

f−a
).

We say that a finite value z0 is called a fixed point of f if f(z0) = z0 or z0 is a zero of
f(z)− z.

∗Correspoding author: E-mail: xujunf@gmail.com(J.F. Xu); xbzhang1016@mail.sdu.edu.cn(X.B. Zhang)
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The following well known theorem in value distribution theory was posed by Hayman
and settled by several authors almost at the same time [1, 3].

Theorem A: Let f(z) be a transcendental meromorphic function, n ≥ 1 a positive integer.
Then fnf ′ = 1 has infinitely many solutions.

Fang and Hua [4], Yang and Hua [15] got a unicity theorem respectively corresponding
to Theorem A.

Theorem B: Let f and g be two non-constant entire (meromorphic) functions, n ≥ 6(n ≥

11) be a positive integer. If fn(z)f ′(z) and gn(z)g′(z) share 1 CM, then either f(z) = c1e
cz,

g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying 4(c1c2)

n+1c2 = −1, or
f(z) ≡ tg(z) for a constant t such that tn+1 = 1.

Note that fn(z)f ′(z) = 1
n+1(f

n+1(z))′, Fang [5] considered the case of kth derivative
and proved

Theorem C: Let f and g be two non-constant entire functions, and let n, k be two positive
integers with n > 2k+4. If (fn(z))(k) and (gn(z))(k) share 1 CM, then either f(z) = c1e

cz,
g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying (−1)k(c1c2)
n(nc)2k = 1, or

f(z) ≡ tg(z) for a constant t such that tn = 1.

Theorem D: Let f and g be two non-constant entire functions, and let n, k be two positive
integers with n > 2k + 8. If (fn(z)(f(z)− 1))(k) and (gn(z)(g(z)− 1))(k) share 1 CM, then
f(z) ≡ g(z).

Corresponding to uniqueness of entire or meromorphic functions sharing fixed points,
Fang and Qiu [6] obtained the following result.

Theorem E: Let f and g be two non-constant meromorphic (entire) functions, n ≥ 11(n ≥

6) a positive integer. If fn(z)f ′(z) and gn(z)g′(z) share z CM, then either f(z) = c1e
cz2,

g(z) = c2e
−cz2, where c1, c2 and c are three constants satisfying 4(c1c2)

n+1c2 = −1, or
f(z) ≡ tg(z) for a constant t such that tn+1 = 1.

Lin and Yi [8] obtained:

Theorem F: Let f and g be two non-constant entire functions, and let n ≥ 7 be a positive
integer . If fn(f − 1)f ′ and gn(g − 1)g′ share z CM, then f ≡ g.

Zhang [18] extended Theorems E and F as follows.

Theorem G: Let f and g be two non-constant entire functions, and let n, k be two positive
integers with n > 2k + 4. If (fn)(k) and (gn)(k) share z CM, then either
(1) k = 1, f(z) = c1e

cz2, g(z) = c2e
−cz2, where c1, c2 and c are three constants satisfying

4(c1c2)
n(nc)2 = −1, or
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(2) f(z) ≡ tg(z) for a constant t such that tn = 1 .

Theorem H: Let f and g be two non-constant entire functions, and let n, k be two positive
integers with n > 2k + 6. If (fn(f − 1))(k) and (gn(g − 1))(k) share z CM, then f ≡ g.

Regarding Theorems G and H, Xu et al. [13] considered the case of meromorphic func-
tions. They got

Theorem I: Let f and g be two non-constant meromorphic functions, and let n, k be two
positive integers with n > 3k+10. If (fn)(k) and (gn)(k) share z CM, f and g share ∞ IM,
then either f(z) = c1e

cz2, g(z) = c2e
−cz2, where c1, c2 and c are three constants satisfying

4(c1c2)
n(nc)2 = −1, or f(z) ≡ tg(z) for a constant t such that tn = 1.

Theorem J: Let f and g be two non-constant meromorphic functions satisfying Θ(∞, f) >
2/n, and let n, k be two positive integers with n > 3k+12. If (fn(f−1))(k) and (gn(g−1))(k)

share z CM, f and g share ∞ IM, then f ≡ g.

Corresponding to Theorems C and D, Professor Fang Mingliang posed the following
problem in a conference at Shanghai in 2009.

Problem 1.1. Does Theorem C or D hold if f and g are meromorphic functions?

Remark 1.1. Problem 1.1 seems to have been solved by Bhoosnurmath and Dyavanal [2],
but their proofs contain some gaps that were pointed out by Zhang [18, Annex remarks],
Xu et al [13, Remark 2], respectively. The gaps have not been filled as far as we know. Here
we use different methods from theirs to fill these gaps and thus give a complete answer to
Problem 1.1.

Considering Theorems I and J, one can also ask the following

Problem 1.2. Does Theorem I or J hold without the condition “f and g share ∞ IM” ?

Actually, in this paper, we consider some problems that are more general than the above
two. Now we state our results as follows.

Theorem 1.2. Let f and g be two transcendental meromorphic functions, p(z) be a nonzero
polynomial with deg(p) = l ≤ 5. Let n, k be two positive integers with n > 3k+8. If [fn](k)

and [gn](k) share p CM, then one of the following two conclusions holds:
(1) f(z) ≡ tg(z) for a constant t such that tn = 1;
(2) if p(z) is not a constant, then f = c1e

cQ(z), g = c2e
−cQ(z), where Q(z) =

∫ z

0 p(z) dz,
c1, c2 and c are constants such that (c1c2)

n(nc)2 = −1,
if p(z) is a nonzero constant b, the transcendental restriction on f and g can be removed, and
then f = c3e

dz, g = c4e
−dz, where c3, c4 and d are constants such that (−1)k(c3c4)

n(nd)2k =
b2.

Remark 1.3. Theorem 1.2 affirmatively answered Problems 1.1 and 1.2 that Theorems C
and I hold for the case of meromorphic functions. But unfortunately, Theorems D and J
fail if f and g are meromorphic functions without the condition Θ(∞, f) > 2/n, even if f
and g share ∞ CM. We give the following counterexample.
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Example 1.1. Let

f(z) =
h(z)(1 − hn(z))

1− hn+1(z)
, g(z) =

1− hn(z)

1− hn+1(z)
, (1.1)

where n is a positive integer and h(z) is a non-constant meromorphic function.

We deduce from (1.1) that fn(f − 1) = gn(g− 1), thus f and g satisfy the conditions of
Theorem D or J, but f 6≡ g.
Note that

T (r, f) = T (r, gh) = nT (r, h) + S(r, f).

By the second fundamental theorem, we deduce

N(r, f) =
n∑

j=1

N(
1

h− aj
) ≥ (n− 2)T (r, h) = nT (r, h) + S(r, f),

where aj(6= 1) (j = 1, 2, · · · , n) are distinct roots of the algebraic equation hn+1 = 1.
Therefore,

Θ(∞, f) = 1− lim sup
r→∞

N(r, f)

T (r, f)
≤ 2/n.

Thus Theorem J is the best possible in some sense, at least for the case Θ(∞, f) > 2/n.

Corresponding to Theorem 1.2, one may pose the following problem.

Problem 1.3. Can the condition “transcendental” be removed in Theorem 1.2 when p(z)
is a nonconstant polynomial with deg(p) = l ≤ 5?

We give an affirmative answer to Problem 1.3 and get

Theorem 1.4. Let f and g be two non-constant meromorphic functions, p(z) be a nonzero
polynomial with deg(p) = l ≤ 5. Let n, k be two positive integers with n > 3k + 3l + 8. If
[fn](k) and [gn](k) share p CM, then one of the following two conclusions holds:
(1) f(z) ≡ tg(z) for a constant t such that tn = 1;
(2) if p(z) is not a constant, then f = c1e

cQ(z), g = c2e
−cQ(z), where Q(z) =

∫ z

0 p(z) dz,
c1, c2 and c are constants such that (c1c2)

n(nc)2 = −1,
if p(z) is a nonzero constant b, then f = c3e

dz, g = c4e
−dz, where c3, c4 and d are constants

such that (−1)k(c3c4)
n(nd)2k = b2.

It’s easy to obtain a uniqueness theorem of meromorphic functions concerning fixed
points.

Corollary 1.5. Let f and g be two non-constant meromorphic functions, n, k be two
positive integers with n > 3k + 11. If [fn](k) and [gn](k) share z CM, then
(1) f(z) ≡ tg(z) for a constant t such that tn = 1; or
(2) f = c1e

cz2 , g = c2e
−cz2, where c1, c2 and c are constants such that (c1c2)

n(nc)2 = −1.
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Remark 1.6. By using Theorem 1.2, one can improve Theorem 1 of [10] by removing the
conditions “f 6= ∞ and g 6= ∞” in (ii).

Remark 1.7. In Theorem 1.2, if p(z) is replaced by a small function of f , one can not
easily get the representation of f(z) and g(z) like (2). Wang and Gao [12, Remark 3.1,
Examples 3.2–3.4] gave some examples at the end of their paper to discuss the problem.

Remark 1.8. From the proof of Theorem 1.2 or 1.4, one can see that the computation will
be very complicated when deg(p) becomes large, so we are not sure whether Theorem 1.2
or 1.4 holds for the general polynomial p(z). Nevertheless, Theorems 1.2 and 1.4 improve
or generalize the previous results such as Theorems B, C, E, G and I.

2 Preliminary lemmas and a main proposition

Lemma 2.1. [14] Let f(z) be a non-constant meromorphic function and let a0(z), a1(z),
· · · , an(z)(6≡ 0) be small functions of f . Then

T (r, anf
n + an−1f

n−1 + · · ·+ a0) = nT (r, f) + S(r, f).

Lemma 2.2. [7, 17, 16] Let f(z) be a non-constant meromorphic function, and let k be a
positive integer, and let c be a nonzero finite complex number. Then

T (r, f) ≤ N(r, f) +N(r,
1

f
) +N(r,

1

f (k) − c
)−N(r,

1

f (k+1)
) + S(r, f)

≤ N(r, f) +Nk+1(r,
1

f
) +N(r,

1

f (k) − c
)−N0(r,

1

f (k+1)
) + S(r, f),

where N0(r,
1

f(k+1) ) is the counting function which only counts those points such that f (k+1) =

0 but f(f (k) − c) 6= 0.

Lemma 2.3. [9] Let f(z) be a non-constant meromorphic function, s, k be two positive
integers. Then

Ns(r,
1

f (k)
) ≤ T (r, f (k))− T (r, f) +Ns+k(r,

1

f
) + S(r, f),

Ns(r,
1

f (k)
) ≤ kN(r, f) +Ns+k(r,

1

f
) + S(r, f).

Lemma 2.4. [17] Let f(z) be a non-constant meromorphic function, and let k be a positive
integer. Suppose that f (k) 6≡ 0, then

N(r,
1

f (k)
) ≤ N(r,

1

f
) + kN(r, f) + S(r, f).

Lemma 2.5. [15] Let f(z) and g(z) be two non-constant meromorphic functions and n, k
be two positive integers, a be a finite nonzero constant. If f and g share a CM, then one of
the following cases holds:
(i) T (r, f) ≤ N2(r, 1/f) + N2(r, 1/g) + N2(r, f) + N2(r, g) + S(r, f) + S(r, g), the same
inequality holding for T (r, g);
(ii) fg ≡ a2; (iii) f ≡ g.
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Lemma 2.6. Let f, g be non-constant meromorphic functions, n, k be two positive integers
with n > k + 2, a(z)(6≡ 0,∞) be a small function of f . If [fn](k) and [gn](k) share a IM,
then T (r, f) = O(T (r, g)), T (r, g) = O(T (r, f)).

Proof. Let F = fn. By the second fundamental theorem for small functions, we have

T (r, F (k)) ≤ N(r, f) +N(r,
1

F (k)
) +N(r,

1

F (k) − a
) + S(r, F ). (2.1)

By (2.1) and Lemma 2.1 and Lemma 2.3 with s = 1 applied to F , we have

nT (r, f) ≤ Nk+1(r,
1

F
) +N(r,

1

F (k) − a
) +N(r, f) + S(r, F )

≤ (k + 1)N (r,
1

f
) +N(r,

1

[fn](k) − a
) +N(r, f) + S(r.f)

≤ (k + 2)T (r, f) +N(r,
1

[gn](k) − a
) + S(r, f).

Namely,

(n− k − 2)T (r, f) ≤ N(r,
1

[gn](k) − a
) + S(r, f)

≤ n(k + 1)T (r, g) + S(r, f).

Since n > k + 2, we have T (r, f) = O(T (r, g)). Similarly we have T (r, g) = O(T (r, f)).
This completes the proof of Lemma 2.6.

By the arguments similar to the proof of Lemma 2.6, we get the following proposition.

Proposition 2.1. Let f be a transcendental meromorphic function, n, k be two positive
integers with n > k + 2, a(z)(6≡ 0,∞) be a small function of f . Then [fn](k) − a(z) has
infinitely many zeros.

Lemma 2.7. [13] Let f and g be two non-constant meromorphic functions, k, n > 2k + 1
be two positive integers. If [fn](k) = [gn](k), then f = tg for a constant t such that tn = 1.

Lemma 2.8. [17, Theorem 4.8] Let F and G be two distinct nonconstant meromorphic
functions, and let c be a complex number such that c 6= 0, 1. If F and G share 1 and c IM,
and if N(r, 1/F ) + N(r, F ) = S(r, F ) and N(r, 1/G) + N(r,G) = S(r,G), then F and G
share 0, 1, c, ∞ CM.

Lemma 2.9. [11] If f and g are distinct nonconstant meromorphic functions that share
four values a1, a2, a3, a4 CM, then f is a Möbius transformation of g; two of the shared
values, say a1 and a2 are Picard exceptional values, and the cross ratio (a1, a2, a3, a4) = 1.

Lemma 2.10. [7, Theorem 3.10] Suppose that f is a non-constant meromorphic function,
k ≥ 2 is an integer. If

N(r, f) +N(r, 1/f) +N(r, 1/f (k)) = S(r, f ′/f),

then f = eaz+b, where a 6= 0, b are constants.
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Lemma 2.11. Let p(z), q(z), r(z) be three polynomials satisfying

p2(z)− q2(z) = r2(z). (2.2)

If deg(p) = deg(r) > 2 deg(q), then q(z) ≡ 0.

Proof. Suppose, to the contrary, that q(z) 6≡ 0, then p2(z) 6≡ r2(z), namely, p(z) +
r(z) 6≡ 0 and p(z)− r(z) 6≡ 0. Rewrite (2.2) as

q2(z) = p2(z)− r2(z) = (p(z) + r(z))(p(z) − r(z)). (2.3)

It’s easy to obtain from (2.3) that 2 deg(q) = deg(q2) ≥ deg(p) > 2 deg(q), which is a
contradiction.
This completes the proof of Lemma 2.11.

Lemma 2.12. Let f, g be two transcendental meromorphic functions, p(z) be a nonzero
polynomial with deg(p) = l ≤ 5, n, k be two positive integers with n > 3k + 8. If
[fn](k)[gn](k) = p2,
(i) if p(z) is not a constant, then f = c1e

cQ(z), g = c2e
−cQ(z), where Q(z) =

∫ z

0 p(z) dz,
c1, c2 and c are constants such that (c1c2)

n(nc)2 = −1,
(ii) if p(z) is a nonzero constant b, the transcendental restriction on f and g can be
removed, and then f = c3e

dz , g = c4e
−dz, where c3, c4 and d are constants such that

(−1)k(c3c4)
n(nd)2k = b2.

Proof.

Case 1. p(z) is not a constant. First, we prove

N(r, 1/f) +N(r, 1/g) = O(log r). (2.4)

Suppose that z0 is a zero of f with multiplicity s, if z0 is a pole of g with multiplicity t, but
not a zero of p(z), then z0 is a zero of [fn](k) with multiplicity ns− k, a pole of [gn](k) with
multiplicity nt+ k, thus we have

ns− k = nt+ k,

namely

n(s− t) = 2k. (2.5)

Note that n > 3k + 8 and we get a contradiction from (2.5). Thus z0 is a zero of p(z) and
we have N(r, 1/f) = O(log r). Similarly, we get N(r, 1/g) = O(log r). Thus (2.4) holds.
Next we prove

N(r, f) = S(r, f), N(r, g) = S(r, g). (2.6)

Rewrite [fn](k)[gn](k) = p2 as

[fn](k) =
p2

[gn](k)
. (2.7)

7



We deduce from (2.7) that

N(r, [fn](k)) = N(r,
1

[gn](k)
). (2.8)

As N(r, [fn](k)) = nN(r, f)+kN(r, f), this together with (2.4), (2.8) and Lemma 2.4 implies
that

nN(r, f) + kN(r, f) ≤ kN(r, g) +O(log r) + S(r, g). (2.9)

Similarly we get

nN(r, g) + kN(r, g) ≤ kN(r, f) +O(log r) + S(r, f). (2.10)

Note that f and g are transcendental, combining (2.9) and (2.10) yields

N(r, f) +N(r, g) = S(r, f) + S(r, g). (2.11)

By Lemma 2.6 we have S(r, f) = S(r, g), thus we obtain (2.6). Let

F1 =
[fn](k)

p
, G1 =

[gn](k)

p
. (2.12)

Then

S(r, F1) = S(r, f), S(r,G1) = S(r, g), (2.13)

and

F1G1 = 1. (2.14)

Obviously, F1 6≡ G1, or else we get that F1 is a constant, thus f is a polynomial, which
contradicts our assumption.
By (2.6), (2.12), (2.13) and Lemma 2.4 we get

N(r, 1/F1) ≤ nN(r, 1/f) + kN(r, f) + S(r, f) ≤ S(r, F1). (2.15)

Similarly we have

N(r, 1/G1) ≤ nN(r, 1/g) + kN(r, g) + S(r, g) ≤ S(r,G1). (2.16)

Moreover, we have

N(r, F1) = S(r, F1), N(r,G1) = S(r,G1). (2.17)

It follows from (2.15)–(2.17) that

N(r, 1/F1) +N(r, F1) = S(r, F1), N(r, 1/G1) +N(r,G1) = S(r,G1). (2.18)

In view of (2.14), we know that F1 and G1 share 1 and −1 IM, this together with (2.18)
and Lemma 2.8 implies that F1 and G1 share 1, −1, 0, ∞ CM, thus by Lemma 2.9 we get

8



that 0 and ∞ are Picard values of F1 and G1. We deduce from (2.12) that both f and g
are transcendental entire functions, by (2.4) we have

f(z) = P1(z)e
α(z), g(z) = Q1(z)e

β(z), (2.19)

where P1(z), Q1(z) are nonzero polynomials, α(z), β(z) are non-constant entire functions.
If P1(z) is not a constant, suppose that z1 is a zero of f with multiplicity m, then z1 is a
zero of [fn](k) with multiplicity nm− k(> m(3k + 8) − k ≥ 2k + 8 ≥ 10), and is a zero of
p2(z) with multiplicity no greater than 10 since l ≤ 5, which leads to a contradiction. Thus
P1(z) is a constant. Similarly, Q1(z) is a constant. Without loss of generality, rewrite f
and g as follows.

f(z) = eα(z), g(z) = eβ(z). (2.20)

Then

T (r,
(fn)′

fn
) = T (r, nα′).

We claim that α+ β ≡ C, where C is a constant.
We deduce from (2.20) that either both α and β are transcendental functions or both α and
β are polynomials. Moreover, we have

N(r, 1/[fn](k)) ≤ N(r, 1/p2(z)) = O(log r).

From this and (2.20) we get

N(r, fn) +N(r, 1/fn) +N(r, 1/[fn](k)) = O(log r).

If k ≥ 2, suppose that α is a transcendental entire function. We deduce from Lemma 2.10
that α is a polynomial, which is a contradiction.
Thus α is a polynomial and so is β.
We deduce from (2.20) that

(fn)(k) = A[(α′)k + Pk−1(α
′)]enα, (gn)(k) = B[(β′)k +Qk−1(β

′)]enβ ,

where A,B are nonzero constants, Pk−1(α
′) and Qk−1(β

′) are differential polynomials in α′

and β′ of degree at most k − 1 respectively. Thus we obtain

AB[(α′)k + Pk−1(α
′)][(β′)k +Qk−1(β

′)]en(α+β) = p2(z). (2.21)

We deduce from (2.21) that α(z) + β(z) ≡ C for a constant C.
If k = 1, from (2.21) we get

ABα′β′en(α+β) = p2(z). (2.22)

Let α+β = γ. If α and β are transcendental entire functions, obviously γ is not a constant,
then (2.22) implies that

ABα′(γ′ − α′)enγ = p2(z). (2.23)

9



Since T (r, γ′) = m(r, γ′) ≤ m(r, (e
nγ )′

enγ ) +O(1) = S(r, enγ). Thus (2.23) implies that

T (r, enγ) ≤ T (r,
p2

α′(γ′ − α′)
) +O(1)

≤ (2 + o(1))T (r, α′) + S(r, enγ),

which implies that

T (r, enγ) = O(T (r, α′)),

similarly we have

T (r, α′) = O(T (r, enγ)).

Thus T (r, γ′) = S(r, enγ) +O(1) = S(r, α′).
In view of (2.23) and by the second fundamental theorem for small functions, we get

T (r, α′) ≤ N(r,
1

α′
) +N(r,

1

α′ − γ′
) + S(r, α′) ≤ O(log r) + S(r, α′).

Thus α′ is a polynomial, which contradicts that α is a transcendental entire function.
Thus α and β are both polynomials and α(z) + β(z) ≡ C for a constant C.
Hence from (2.21) we get

C1(α
′)2k = p2 + P̃2k−1(α

′), (2.24)

where C1 is a nonzero constant and P̃2k−1 is a differential polynomial in α′ of degree at
most 2k − 1. Since p(z) is not a constant. thus α′ is a non-constant polynomial.
If k ≥ 2, next we distinguish into five subcases below.
Subcase 1. l = 1. Since α′ is not a constant, deg(α′) ≥ 1, by (2.24) we immediately get a
contradiction.
Subcase 2. l = 2. Since k ≥ 2, by (2.24) we get deg(α′) = 1 and k = 2, thus α′′ is a
nonzero constant. From (2.21) we get

K[(nα′)2 + nα′′][(nβ′)2 + nβ′′] = p2, (2.25)

where K is a nonzero constant. Note that α + β ≡ C, then α′ + β′ ≡ 0 and α′′ + β′′ ≡ 0.
From (2.25) we obtain

K[((nα′)2)2 − (nα′′)2] = p2. (2.26)

By Lemma 2.11, we derive α′′ ≡ 0 from (2.26), which is a contradiction.
Subcase 3. l = 3. Similarly as above, we get deg(α′) = 1 and k = 3, thus α′′ is a nonzero
constant. From (2.21) we get

K1[n
3(α′)3 + 3n2α′α′′][n3(β′)3 + 3n2β′β′′] = p2, (2.27)

where K1 is a nonzero constant. Thus we have

−K1[((nα
′)3)2 − (3n2α′α′′)2] = p2. (2.28)
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By Lemma 2.11, we arrive at the same contradiction.
Subcase 4. l = 4. Similarly as above, we get either deg(α′) = 1 and k = 4 or deg(α′) = 2
and k = 2.
If deg(α′) = 1 and k = 4, then α′′ is a nonzero constant. From (2.21) we get

[(nα′)4 + 3(nα′′)2]2 − [6n3(α′)2α′′]2 = p2. (2.29)

Without loss of generality, suppose that α′ = z, or else, we only need to do a transformation
of p(z). We deduce from (2.29) that

(nz)8 − 30n6z4 + 9n4 = p2(z), (2.30)

which implies p2(z) = p2(−z), thus p(z) = p(−z) or p(z) = −p(−z). Note that l =
4, thus p(z) = p(−z). Suppose that p(z) = a4z

4 + a2z
2 + a0, where a4 6= 0, a2, a0 are

constants. Compare the coefficients at both sides of (2.30), we get a2 = 0, at last we derive
a contradiction by calculation.
If deg(α′) = 2 and k = 2, then we get (2.26). By Lemma 2.11, we arrive at a contradiction.
Subcase 5. l = 5. Similarly as above, we get deg(α′) = 1 and k = 5.
From (2.21) we get

[10n4(α′)3α′′ + 12n3α′α′′]2 − [(nα′)5 + 3n3α′(α′′)2]2 = p2. (2.31)

With similar discussion as in Subcase 4, we get a contradiction.
Hence k = 1. by induction we get

α′ + β′ ≡ 0,

n2enCα′β′ = p2(z).

By computation we get

α′ = cp(z), β′ = −cp(z), (2.32)

Hence

α = cQ(z) + l1, β = −cQ(z) + l2, (2.33)

where Q(z) is defined as in Theorem 1.2, and l1, l2 are constants. We can rewrite f and g
as

f = c1e
cQ(z), g = c2e

−cQ(z),

where c1, c2 and c are constants such that (c1c2)
n(nc)2 = −1.

Case 2. If p(z) is a nonzero constant b, similarly to the proof in Case 1, we deduce that α′

is a nonzero constant, thus α = dz + l3, β = −dz + l4.
Rewrite f and g as

f = c3e
dz , g = c4e

−dz ,

where c3, c4 and d are nonzero constants. We deduce that (−1)k(c3c4)
n(nd)2k = b2.

This completes the proof of Lemma 2.12.
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Lemma 2.13. Let f, g be two non-constant rational functions, p(z) be a nonzero polynomial
with deg(p) = l, n, k be two positive integers with n > 3k+3l+8. Then there are no solutions
of the functional differential equation of the following form

[fn](k)[gn](k) = p2. (2.34)

Proof.

Suppose, to the contrary, that there exist non-constant rational solutions of Equation (2.34).
Suppose that z2 is a zero of f with multiplicity p2, then z2 is a zero of [f

n](k) with multiplicity
np2 − k, if z2 is not a pole of g, since n > 3k + 3l + 8, we get that z2 must be a zero of
p2. Since np2 − k > 2k + 8 + 3l > 2l, we get a contradiction. Therefore, z2 must be a
pole of g with multiplicity q2, and is a pole of [gn](k) with multiplicity nq2 + k, obviously
p2 > q2, or else, z2 is a pole of p, which is a contradiction since p is a polynomial. Note that
n(p2 − q2) − 2k > k + 3l + 8 > 2l, we get that z2 is a zero of p2 with multiplicity greater
than 2l, which is a contradiction, thus f has no zero. Similarly, g has no zero. Set

f(z) = 1/R(z), g(z) = 1/K(z), (2.35)

where R(z) and K(z) are non-constant polynomials. We deduce from (2.35) that

[fn(z)](k) = R1(z)/R2(z), [gn(z)](k) = K1(z)/K2(z), (2.36)

where R1(z), R2(z), K1(z) and K2(z) are non-constant polynomials such that deg(R2) >
deg(R1), deg(K2) > deg(K1), combining this with (2.34) leads to a contradiction.
This completes the proof of Lemma 2.13.

3 Proof of Theorem 1.2

Let F = [fn](k), G = [gn](k), F ∗ = fn, G∗ = gn, F ⋆ = F/p, G⋆ = G/p, then F ⋆ and G⋆

share 1 CM.
Since p is a small function of f . by Lemma 2.8, p is a small function of g. Thus by Lemma
2.5, one of the following cases holds:
(i) T (r, F ⋆) ≤ N2(r, 1/F

⋆) +N2(r, 1/G
⋆) +N2(r, F

⋆) +N2(r,G
⋆) + S(r, F ⋆) + S(r,G⋆), the

same inequality holding for T (r,G⋆);
(ii) FG ≡ p2; (iii) F ≡ G.

Case (i). by Lemma 2.1 and Lemma 2.3 with s = 2, we obtain

T (r, F ∗) ≤ Nk+2(r, 1/F
∗) +Nk+2(r, 1/G

∗) + (k + 2)N (r, g) + 2N(r, f)

+S(r, f) + S(r, g)

≤ (k + 2)N (r, 1/f) + (k + 2)N (r, 1/g) + (k + 2)N (r, g) + 2N(r, f)

+S(r, f) + S(r, g)

≤ (2k + 4)T (r, g) + (k + 4)T (r, f) + S(r, f) + S(r, g),

namely

nT (r, f) ≤ (2k + 4)T (r, g) + (k + 4)T (r, f) + S(r, f) + S(r, g). (3.1)
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Similarly we have

nT (r, g) ≤ (2k + 4)T (r, f) + (k + 4)T (r, g) + S(r, f) + S(r, g). (3.2)

From (3.1) and (3.2) we deduce that

(n− 3k − 8)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g), (3.3)

which is a contradiction since n > 3k + 8.

Case (ii). We have [fn](k)[gn](k) = p2. By Lemma 2.12 we get the conclusion (2) of Theo-
rem 1.2.

Case (iii). We have [fn](k) ≡ [gn](k). By Lemma 2.7 we get the conclusion (1) of Theorem
1.2.

This completes the proof of Theorem 1.2.

4 Proof of Theorem 1.4

Let F , G, F ∗, G∗, F ⋆, G⋆ be defined as in Section 3, then F ⋆ and G⋆ share 1 CM. By
Lemma 2.5, we consider three cases

Case 1. Note that T (r, F ) ≤ T (r, F ⋆) + l log r, By the arguments similar to the proof of
Case (i) in Theorem 1.2, we get

nT (r, f) ≤ (2k + 4)T (r, g) + (k + 4)T (r, f) + 3l log r + S(r, f) + S(r, g). (4.1)

and

nT (r, g) ≤ (2k + 4)T (r, f) + (k + 4)T (r, g) + 3l log r + S(r, f) + S(r, g). (4.2)

Since T (r, f) ≥ log r+O(1) and T (r, g) ≥ log r+O(1), combining this with (4.1) and (4.2)
yields

(n − 3k − 3l − 8)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g), (4.3)

which is a contradiction since n > 3k + 3l + 8.

Case 2. We have [fn](k)[gn](k) = p2. It follows from Lemma 2.13 that f and g are both
transcendental meromorphic functions, by Lemma 2.12, we get the conclusion (2) of Theo-
rem 1.4.

Case 3. We have [fn](k) ≡ [gn](k). By Lemma 2.7 we get the conclusion (1) of Theorem 1.4.

This completes the proof of Theorem 1.4.
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Annex remarks

In this section, we would like to point out another gap that appears in the proof of Theorem
4 of [2]. In [2, P. 1203], on the first line below formula (6.8), the authors said:
“Let z1 be a zero of f − 1 of order p1, then z1 is zero of [fn(f − 1)](k) of order p1 − k.
Therefore from (6.7), we obtain

p1 − k = nq1 + q1 + k,

since z1 is a pole of g of order q1”.
A question arises:
Question: If p1 ≤ k, then z1 is not a zero of [fn(f − 1)](k), and thus not a pole of g. How
to deal with this case?

Open problem

Look forward this paper, there are two problems unsolved. For further study, we state them
as follows.

Problem 4.1. Does Theorem J hold without the condition “f and g share ∞ IM” ?

Problem 4.2. Does Theorem 1.4 hold for the general polynomial p(z) ?
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