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A combinatorial construction of symplectic expansions

Yusuke Kuno

Abstract

The notion of a symplectic expansion directly relates the topology of a surface to

formal symplectic geometry. We give a method to construct a symplectic expansion

by solving a recurrence formula given in terms of the Baker-Campbell-Hausdorff

series.

1 Introduction

Let Σ be a compact oriented surface of genus g > 0 with one boundary component. Choose
a basepoint ∗ on the boundary ∂Σ and let π = π1(Σ, ∗) be the fundamental group of Σ.

The notion of (generalized) Magnus expansions was introduced by Kawazumi [5] in
his study of the mapping class group of a surface. By definition, the mapping class group
Mg,1 is the group of homeomorphisms of Σ fixing ∂Σ pointwise, modulo isotopies fixing ∂Σ
pointwise. The groupMg,1 faithfully acts on π, a free group of rank 2g, and it is known as
the theorem of Dehn-Nielsen thatMg,1 is identified with a subgroup of the automorphism
group of a free group:

Mg,1 = {ϕ ∈ Aut(π);ϕ(ζ) = ζ}.

Here, ζ ∈ π is the element corresponding to the boundary. See §2. By choosing a Magnus
expansion, the completed group ring of π (with respect to the augmentation ideal) is
identified with the completed tensor algebra generated by the first homology of the surface.
In this way we obtain a tensor expression of the action ofMg,1 on π. From this point of
view he obtained extensions of the Johnson homomorphisms τk introduced by Johnson [3]
[4]. For details, see [5].

Actually the treatment in [5] is on the automorphism group of a free group, rather than
the mapping class group. There are infinitely many Magnus expansions, and the arguments
in [5] hold for any Magnus expansions. Recently, Massuyeau [10] introduced the notion of
symplectic expansions, which are Magnus expansions satisfying a certain kind of boundary
condition, which comes from the fact that π has a particular element corresponding to
the boundary ∂Σ. Some nice properties of symplectic expansions are clarified by [6]. In
particular, it is shown that there is a Lie algebra homomorphism from the Goldman Lie
algebra of Σ (see Goldman [2]) to “associative”, one of the three Lie algebras in formal
symplectic geometry by Kontsevich [7], via a symplectic expansion (see [6] Theorem 1.2.1).

Although there are infinitely many symplectic expansions (see [6] Proposition 2.8.1),
there are not so many known examples. The boundary condition is so strong to be satis-
fied. For instance, the fatgraph Magnus expansion given by Bene-Kawazumi-Penner [1], is
unfortunately, not symplectic. Kawazumi [5] first constructed an R-valued symplectic ex-
pansion, called the harmonic Magnus expansion, by a transcendental method. Massuyeau
[10] also gave a Q-valued symplectic expansion using the LMO functor.
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The purpose of this paper is to present another construction of symplectic expansions.
Our construction is elementary and suitable for computer-aided calculation.

Theorem 1.1. There is an algorithm to construct a symplectic expansion θS associated to

any free generating set S for π.

In §2, we recall Magnus expansions and symplectic expansions. Theorem 1.1 will be
proved in §3. In §4 we show a naturality of our construction under the action of a subgroup
of Aut(π) including the mapping class group Mg,1. In §5, we discuss the symplectic
expansion associated to symplectic generators.

2 Basic notions

We denote by ζ the loop parallel to ∂Σ and going by counter-clockwise manner. Ex-
plicitly, if we take symplectic generators α1, β1, . . . , αg, βg ∈ π as shown in Figure 1,
ζ =

∏g

i=1[αi, βi]. Here our notation for commutator is [x, y] := xyx−1y−1.

Figure 1: symplectic generators for g = 2

α1

β1

α2

β2

∗

ζ

LetHZ := H1(Σ;Z) be the first integral homology group of Σ. We denoteH := HZ⊗ZQ.
HZ is naturally isomorphic to π/[π, π], the abelianization of π. With this identification in
mind, we denote [x] := x mod [π, π] ∈ HZ, or [x] := (x mod [π, π])⊗Z 1 ∈ H , for x ∈ π.

Let T̂ be the completed tensor algebra generated by H . Namely T̂ =
∏∞

m=0H
⊗m, where

H⊗m is the tensor space of degree m. For each p ≥ 1, denote T̂p :=
∏∞

m≥pH
⊗m. Note that

the subset 1 + T̂1 constitutes a subgroup of the multiplicative group of the algebra T̂ .

Definition 2.1 (Kawazumi [5]). A map θ : π → 1 + T̂1 is called a (Q-valued) Magnus

expansion if

(1) θ : π → 1 + T̂1 is a group homomorphism, and

(2) θ(x) ≡ 1 + [x] mod T̂2, for any x ∈ π.

The standard Magnus expansion defined by θ(si) = 1+[si], for some free generating set
{si}i for π, is the simplest example of a Magnus expansion. This is introduced by Magnus
[8] and and often used in combinatorial group theory.

Let L̂ ⊂ T̂ be the completed free Lie algebra generated by H . The bracket is given by
[u, v] := u⊗v−v⊗u, and its degree p-part Lp = L̂∩H

⊗p is successively given by L1 = H ,
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and Lp = [H,Lp−1], p ≥ 2. We denote by ω ∈ L2 the symplectic form. Explicitly, if we
take symplectic generators as in Figure 1,

ω =

g∑

i=1

Ai ⊗Bi −Bi ⊗Ai =

g∑

i=1

[Ai, Bi], (2.1)

where Ai = [αi] and Bi = [βi].
For a Magnus expansion θ, let ℓθ := log θ. Here, log is the formal power series

log(x) =

∞∑

n=1

(−1)n−1

n
(x− 1)n

defined on the set 1 + T̂1. The inverse of log is given by the exponential exp(x) =∑∞
n=0(1/n!)x

n. Note that the Baker-Campbell-Hausdorff formula

u ⋆ v := log(exp(u) exp(v)) = u+ v +
1

2
[u, v] +

1

12
[u− v, [u, v]]

−
1

24
[u, [v, [u, v]]] + · · · (2.2)

endows the underlying set of L̂ with a group structure. A priori, ℓθ is a map from π to T̂1.

Definition 2.2 (Massuyeau [10]). A Magnus expansion θ is called symplectic if

(1) θ is group-like, i.e., ℓθ(π) ⊂ L̂, and

(2) θ(ζ) = exp(ω), or equivalently, ℓθ(ζ) = ω.

Remark 2.3. Let Iπ be the augmentation ideal of the group ring Qπ, and Q̂π :=
lim
←−m

Qπ/Iπm the completed group ring of π. Any Magnus expansion θ induces an iso-

morphism θ : Q̂π
∼=
→ T̂ of complete augmented algebras. See [5] Theorem 1.3. Moreover,

let 〈ζ〉 be the cyclic subgroup of π generated by ζ , and Q[[ω]] the ring of formal power

series in the symplectic form ω, which is regarded as a subalgebra of T̂ in an obvious way.
Then any symplectic expansion θ induces the morphism θ : (Qπ,Q〈ζ〉) → (T̂ ,Q[[ω]]) of
(complete) Hopf algebras. See [6] §6.2.

3 Main construction

We fix a free generating set S = {s1, . . . , s2g} for π. We denote Si := [si] ∈ H , 1 ≤ i ≤ 2g.
Let x1x2 · · ·xp be a word in S representing ζ .

Definition 3.1. Fix an integer n ≥ 1. A set {ℓj(si); 1 ≤ i ≤ 2g, 1 ≤ j ≤ n} ⊂ L̂ is called

a partial symplectic expansion up to degree n, if

(1) ℓ1(si) = Si, for 1 ≤ i ≤ 2g,

(2) ℓj(si) ∈ Lj, for 1 ≤ i ≤ 2g, 1 ≤ j ≤ n, and
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(3) if we set ℓ̄n(si) =
∑n

j=1 ℓj(si) for 1 ≤ i ≤ 2g, then

ℓ̄n(x1) ⋆ ℓ̄n(x2) ⋆ · · · ⋆ ℓ̄n(xp) ≡ ω mod T̂n+2. (3.1)

Here, we understand ℓ̄n(s
−1
i ) = −ℓ̄n(si).

This notion could be thought as an approximation to a symplectic expansion. In this
section we give a method to refine an approximation up to degree n− 1, to the one up to
degree n. Repeating this process, we will obtain a symplectic expansion.

We need two lemmas.

Lemma 3.2. Suppose 4g elements Y1, . . . , Y2g, Z1, . . . , Z2g ∈ H satisfy
∑2g

i=1 Yi⊗Zi = ω ∈
H⊗2. Then Z1, . . . , Z2g constitute a basis for H.

Proof. Using the Poincaré duality, we make an identification H⊗2 ∼= Hom(H,H), X⊗Y 7→
(Z 7→ (Z ·X)Y ). Here ( · ) is the intersection form. From (2.1), we see that ω(X) = −X
for X ∈ H . Hence,

X = ω(−X) =

2g∑

i=1

(−X · Yi)Zi.

This shows the 2g elements Z1, . . . , Z2g generate H . This proves the lemma.

Since π is free, the quotient [π, π]/[π, [π, π]] is naturally isomorphic to Λ2HZ, the second
exterior product of HZ. The isomorphism is induced by the homomorphism f : [π, π] →
Λ2HZ which maps the commutator [x, y] to [x]∧ [y]. Note that Λ2HZ is naturally identified
with a subgroup of H⊗2 by

Λ2HZ → H⊗2, X ∧ Y 7→ X ⊗ Y − Y ⊗X,

and under this identification, we have f(ζ) = ω.

Lemma 3.3. Let y1 · · · yq be a word in S and suppose y1 · · · yq lies in the commutator

subgroup [π, π]. Then

f(y1 · · · yq) =
1

2

∑

i<j

[yi] ∧ [yj].

Proof. We may assume q ≥ 2. We prove the lemma by induction on q. The case q = 2 is
trivial. Suppose q > 2. Then there must exist i ≥ 1 such that yi+1 = y−1

1 , and

y1 · · · yq = y1y2 · · · yiy
−1
1 yi+2 · · · yq = [y1, y2 · · · yi]y2 · · · yiyi+2 · · · yq.

Hence f(y1 · · · yq) = f([y1, y2 · · · yi]) + f(y2 · · · yiyi+2 · · · yq). The first term equals

[y1] ∧ ([y2] + · · ·+ [yi]) =
1

2
([y1] ∧ ([y2] + · · ·+ [yi]) + ([y2] + · · ·+ [yi]) ∧ [yi+1])

since [y1] = −[yi+1], and the second term equals

1

2

∑

k<ℓ;
k,ℓ 6=1,i+1

[yk] ∧ [yℓ],

by the inductive assumption. This proves the lemma.
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Let Φ: T̂1 → L̂ be the linear map defined by Φ(Y1⊗· · ·⊗Ym) = [Y1, [· · · [Ym−1, Ym] · · · ]],

Yi ∈ H , m ≥ 1. We have Φ(u) = mu and Φ(uv) = [u,Φ(v)] for any u ∈ Lm, v ∈ T̂1. See
Serre [11] Part I, Theorem 8.1, p.28. From these two properties we see the map

1

m+ 1
(id⊗ Φ): H⊗m+1 → H ⊗ Lm (3.2)

gives a right inverse of the bracket [ , ] : H ⊗ Lm ։ Lm+1.
Let n ≥ 2 and let {ℓj(si); 1 ≤ j ≤ n− 1, 1 ≤ i ≤ 2g} be a partial symplectic expansion

up to degree n− 1. We have

ℓ̄n−1(x1) ⋆ ℓ̄n−1(x2) · · · ⋆ ℓ̄n−1(xp) ≡ ω mod T̂n+1. (3.3)

Let Vn+1 ∈ Ln+1 be the degree (n+1)-part of ℓ̄n−1(x1) ⋆ ℓ̄n−1(x2) · · ·⋆ ℓ̄n−1(xp). By Lemma
3.3 we have ω = f(ζ) = f(x1 · · ·xp) =

1
2

∑
i<j Xi∧Xj =

1
2

∑
i<j(Xi⊗Xj−Xj⊗Xi), where

Xi = [xi]. Since S1, . . . , S2g constitute a basis for H , we can uniquely write

ω =
1

2

∑

i<j

(Xi ⊗Xj −Xj ⊗Xi) =

2g∑

i=1

Si ⊗ Zi, where Zi =
∑

k

cikSk, cik ∈ Z. (3.4)

Also, in view of applying (3.2) we write Vn+1 ∈ Ln+1 ⊂ H⊗n+1 as

Vn+1 =

2g∑

i=1

Si ⊗ V Si

n , V Si

n ∈ H⊗n.

Now by Lemma 3.2, Z1, . . . , Z2g constitute a basis for H , hence the matrix {cik}i,k is of full
rank. Let {dik}i,k be the inverse matrix of {cik}i,k.

Proposition 3.4. Notations are as above. Set Wi := (−1/(n + 1))Φ(V Si

n ) ∈ Ln for

1 ≤ i ≤ 2g, and ℓn(si) :=
∑

k dikWk for 1 ≤ i ≤ 2g. Then {ℓj(si); 1 ≤ j ≤ n− 1, 1 ≤ i ≤
2g} ∪ {ℓn(si)}i is a partial symplectic expansion up to degree n.

Proof. Set ℓ̄n(si) = ℓ̄n−1(si)+ℓn(si). Understanding ℓn(s
−1
i ) = −ℓn(si), we have

∑p
i=1 ℓn(xi) =

0 since ζ ∈ [π, π]. Hence we have ℓ̄n(x1) ⋆ ℓ̄n(x2) · · · ⋆ ℓ̄n(xp) ≡ ω mod T̂n+1 from (3.3). By
(2.2) we see the degree (n+ 1)-part of ℓ̄n(x1) ⋆ ℓ̄n(x2) · · · ⋆ ℓ̄n(xp) equals

Vn+1 +
1

2

∑

i<j

([Xi, ℓn(xj)] + [ℓn(xi), Xj]). (3.5)

Let λ : H → Ln be the linear map defined by λ(Si) = ℓn(si), and we apply the linear map
[id, λ] : H⊗2 → H⊗n+1 to (3.4). Then we obtain

1

2

∑

i<j

([Xi, ℓn(xj)]− [Xj, ℓn(xi)]) =

2g∑

i=1

[Si,W
′
i ], W ′

i =
∑

k

cikℓn(sk).

But W ′
i =

∑
k

∑
j cikdkjWj = Wi. Hence (3.5) is equal to

Vn+1 +

2g∑

i=1

[Si,Wi] = Vn+1 −
1

n + 1

2g∑

i=1

[Si,Φ(V
Si

n )] = Vn+1 −
1

n + 1
Φ(Vn+1) = 0,

since Vn+1 ∈ Ln+1. Therefore, we have ℓ̄n(x1) ⋆ ℓ̄n(x2) · · · ⋆ ℓ̄n(xp) ≡ ω mod T̂n+2. This
completes the proof.
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proof of Theorem 1.1. Denote S = {s1, . . . , s2g} and set ℓ1(si) := Si, 1 ≤ i ≤ 2g. By
the Baker-Campbell-Hausdorff formula (2.2) and Lemma 3.3, {ℓ1(si)}1≤i≤2g is a partial
symplectic expansion up to degree 1. Applying Proposition 3.4, we obtain {ℓj(si); 1 ≤

i ≤ 2g, j ≥ 1} satisfying (3.1) for any n ≥ 1. Setting ℓS(si) :=
∑∞

j=1 ℓj(si) ∈ L̂ and

θS(si) := exp(ℓS(si)), we extend θS to a homomorphism from π using the universality
of the free group π. Then θS is the desired symplectic expansion. This completes the
proof.

Remark 3.5. Suppose θ is a group-like expansion satisfying ℓθ(ζ) ≡ ω mod T̂n+1 for some
n ≥ 2. We denote ℓθ(x) =

∑∞
j=1 ℓ

θ
j(x), ℓ

θ
j(x) ∈ Lj, for x ∈ π. Choosing a free generating set

for π and applying Proposition 3.4, we can modify θ into a symplectic expansion without
changing ℓθj(x), for 1 ≤ j ≤ n− 1.

4 Naturality

Let Aut(π) be the automorphism group of π. For ϕ ∈ Aut(π), let |ϕ| be the filter-preserving

algebra automorphism of T̂ induced by the action of ϕ on the first homology H . If θ is a
Magnus expansion, then the composite |ϕ| ◦ θ ◦ ϕ−1 is again a Magnus expansion.

We show a naturality of the symplectic expansion θS given in Theorem 1.1. Note that
fatgraph Magnus expansions have similar property (see [1] Theorem 4.2).

Proposition 4.1. Suppose ϕ ∈ Aut(π) satisfies ϕ(ζ) = ζ, or ϕ(ζ) = ζ−1. Then

θϕ(S) = |ϕ| ◦ θS ◦ ϕ−1.

Proof. Let S = {s1, . . . , s2g}. We shall put S on the upper right of the objects Vn+1, ℓj ,
cik, etc, in the proof of Proposition 3.4 to indicate their dependence on S.

The equality we are going to prove is equivalent to ℓϕ(S)(ϕ(si)) = |ϕ|ℓ
S(si), or, ℓ

ϕ(S)
n (ϕ(si)) =

|ϕ|ℓSn(si) for any n ≥ 1. We prove this by induction on n. Since ℓ
ϕ(S)
1 (ϕ(si)) = [ϕ(si)] =

|ϕ|[si], the case n = 1 is clear. Suppose n ≥ 2.
First we assume ϕ(ζ) = ζ . Then ϕ(x1) · · ·ϕ(xp) is a word in ϕ(S) representing ζ and

|ϕ|ω = ω. By the inductive assumption, we have ℓ̄
ϕ(S)
n−1 (ϕ(si)) = |ϕ|ℓ̄

S
n−1(si), hence applying

|ϕ| to (3.3), we obtain V
ϕ(S)
n+1 = |ϕ|V S

n+1. Therefore, writing V
ϕ(S)
n+1 =

∑2g
i=1(|ϕ|Si)⊗ V

|ϕ|Si

n ,

we have V
|ϕ|Si

n = |ϕ|V Si

n .
On the other hand, applying |ϕ| to (3.4), we obtain

ω =

2g∑

i=1

|ϕ|Si ⊗ Z
ϕ(S)
i , Z

ϕ(S)
i =

∑

k

cik|ϕ|Sk.

This implies c
ϕ(S)
ik = cSik hence d

ϕ(S)
ik = dSik. We conclude W

ϕ(S)
i = |ϕ|W S

i and ℓ
ϕ(S)
n (ϕ(si)) =

|ϕ|ℓSn(si), as desired.

If ϕ(ζ) = ζ−1, the same argument shows V
ϕ(S)
n+1 = −|ϕ|V S

n+1 and c
ϕ(S)
ik = −cSik. Hence we

again obtain ℓ
ϕ(S)
n (ϕ(si)) = |ϕ|ℓ

S
n(si). This completes the induction.
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5 Symplectic generators

Let S0 = {α1, β1, . . . , αg, βg} be symplectic generators as in §2, and let θ0 = θS0 be the
symplectic expansion associated to S0, given by the algorithm in Theorem 1.1. For simplic-
ity we write α1, β1, . . . , αg, βg = ξ1, . . . , ξ2g. Let T ∈ Aut(π) be the automorphism defined
by T (ξi) = ξ2g+1−i, 1 ≤ i ≤ 2g. Then T (ζ) = ζ−1 and T (S0) = S0. By Proposition 4.1, we
obtain a certain kind of symmetry for θ0.

Proposition 5.1. Let θ0 be the symplectic expansion as above. Then

θ0(T (ξ2g+1−i)) = |T |θ
0(ξi), 1 ≤ i ≤ 2g.

Finally, we give a more explicit formula for ℓS0 in a form suitable for computer-aided
calculation. First we give another description of Vn+1 which does not involve the Baker-
Campbell-Hausdorff series. Let n ≥ 2 and let {ℓj(si); 1 ≤ j ≤ n − 1, 1 ≤ i ≤ 2g} be
a partial symplectic expansion up to degree n − 1. Set θ̄n−1(si) := exp(ℓ̄n−1(si)), and
θ̄n−1(s

−1
i ) := exp(−ℓ̄n−1(si)). From (3.3), we have ℓ̄n−1(x1) ⋆ ℓ̄n−1(x2) · · · ⋆ ℓ̄n−1(xp) ≡

ω + Vn+1 mod T̂n+2. Applying the exponential, we obtain θ̄n−1(x1)θ̄n−1(x2) · · · θ̄n−1(xp) ≡

exp(ω) + Vn+1 mod T̂n+2. Hence

Vn+1 =
(
θ̄n−1(x1)θ̄n−1(x2) · · · θ̄n−1(xp)− exp(ω)

)
n+1

, (5.1)

where the subscript n + 1 in the right hand side means taking the degree (n+ 1)-part.

Let us consider the case S = S0. Then ζ =
∏g

i=1[αi, βi]. For X, Y ∈ T̂1, by a direct
computation, we have

(1 +X)(1 + Y )(1 +X)−1(1 + Y )−1 = 1 +
∑

i,j≥0

(−1)i+j[X, Y ]X iY j. (5.2)

See Magnus-Karrass-Solitar [9] §5.5, (7a) for a similar formula. Therefore in case S = S0,
(5.1) becomes

Vn+1 =

(
g∏

i=1

G
(
θ̄n−1(αi)− 1, θ̄n−1(βi)− 1

)
− exp(ω)

)

n+1

,

where G(X, Y ) is the right hand side of (5.2). From (2.1) and (3.4), we obtain the recursive
formula for ℓS0:

ℓS0

n (αi) =
1

n+ 1
Φ(V Bi

n ),

ℓS0

n (βi) =
−1

n+ 1
Φ(V Ai

n ).

In this way we can effectively compute the terms of ℓS0(ξi). See [6] Appendix, for first few
terms of this symplectic expansion.
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