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Abstract

Let Mn denote the algebra of complex n×n matrices and write M
for the direct sum of the Mn. So a typical element of M has the form

x = x1 ⊕ x2 · · · ⊕ xn ⊕ · · · ,

where xn ∈ Mn and ‖x‖ = supn ‖xn‖. We set D = {{xn} ∈ M : xn
is diagonal for all N}. We conjecture (contra Kadison and Singer
(1959)) that every pure state of D extends uniquely to a pure state of
M . This is known for the normal pure states of D, and we show that
this is true for a (weak*) open, dense subset of all the singular pure
states of D. We also show that (assuming the Continuum hypothesis)
M has pure states that are not multiplicative on any maximal abelian
*-subalgebra of M .

Let Mn denote the algebra of complex n × n matrices and write M for
the direct sum of the Mn. So a typical element of M has the form

x = x1 ⊕ x2 · · · ⊕ xn ⊕ · · · ,

where xn ∈Mn and ‖x‖ = supn ‖xn‖. We embedMn inM in the natural way
and M in B(H) (the algebra of all bounded operators on a Hilbert space) in
the natural way by viewing elements of M as block diagonal matrices. We
use D to denote the diagonal elements in M (D also comprises the diagonal
elements of B(H) in this embedding). We write P for the unique conditional
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expectation of B(H) (or M) onto D. Our purpose here is to study the
Kadison-Singer problem in this context. Our conjecture in the context of M
is:

CONJECTURE: Each pure state of D has a unique state extension to
M .

This problem has many equivalent formulations. In their original paper Kadi-
son and Singer “inclined to the view” that our conjecture had a negative
answer. We take the opposite position here

In what follows, we could take the sizes of the matrix summands of M
to be any finite numbers that tend to infinity with n. Our choice has been
made purely for notational convenience. It is well known that all of the pure
states on D extend uniquely to M if and only if they all extend uniquely to
B(H). In certain ways M is simpler than B(H). For example M does not
contain a non-atomic MASA (i.e. maximal abelian *subalgebra). In other
ways M is more complicated than B(H). For example it has a large center
and a complicated ideal structure. M is also an appealing venue for study
of this problem since it may be possible to avoid the set-theoretic issues that
arise in B(H).

Let’s address the last point first. We begin by introducing some notation.
Recall that an element b ∈ B(H) (or b ∈M) is called paveable if for all ǫ > 0

there exist an integer m > 1 and projections p1, ..., pm ∈ D with
m
∑

1

pj = 1

such that
∥

∥

m
∑

1

pj(b− P(b))pj
∥

∥ < ǫ.

There are two natural approaches to this problem. A well known result of
the second author [6] states that our conjecture is true iff each element of M
(or B(H)) is paveable. One can either show that more and more elements
of B(H) or M are paveable, or one can show that more and more singular
pure states of D have unique extension to all of M or B(H). In B(H) only
the first has been successful without the use of the continuum hypothesis or
similar set theoretic assumptions. In particular, no singular pure states of
D have been shown to have unique state extensions to B(H) without using
the continuum hypothesis or something similar.

As we show in Section 3, the situation is very different forM . InM there
is a weak* relatively open, unitarily invariant, dense subset of the singular
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pure states of D for which pure state extensions are unique. In particular,
the set of singular pure states of D that fail to have unique state extensions
to M (if any) is of first category in the set of all singular pure states of D
with the weak* topology. At present, even using additional set theoretic
assumptions, there is no result this strong for B(H). We shall also show that
every element of the ideal Iab of M generated by the abelian projections is
paveable.

In the final section, we show that, assuming the Continuum Hypothesis,
there are pure states of M that are not pure on any MASA of M .

1 Ideals in M

Let us begin by presenting some facts about ideals inM . In this paper the

term ideal will always refer to a norm-closed two-sided ideal. The
ideal structure of M is quite rich and our discussion is not complete. Some
of the results presented here are known. Nevertheless it seems worthwhile
to collect them and to point out connections to the Kadison-Singer problem.
Let us now introduce some more notation. Write τn for the normalized trace
on Mn and

‖a‖2 = (τn(a
∗a))1/2.

Ideals in M were studied by Wright in [20]. He called a subset L of
projections in M a p-ideal if:

(1) it is closed under equivalence and

(2) it is closed under the formation of sups and infs

and he proved the following theorem in [20]. We write Z(M) for the center
of M .

Theorem 1.1. The following statements hold.

(1) The p-ideals in the set of projections in M are in one-to-one correspon-
dence with the ideals in M .

(2) Each ideal in M is generated by its projections.

(3) There is a one-to-one correspondence between the maximal ideals of M
and the maximal ideals in Z(M).
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The center of M consists of elements of the form ⊕∞
n=1λnIn, where {λn}

is a bounded complex sequence and In is the identity matrix in Mn. In
other words the center of M can be identified with ℓ∞ (which may also be
identified with C(βN), where βN denotes the Stone-Cech compactification of
the natural numbers.

The first conclusion of the following Lemma is based on an idea of Sorin
Popa. Details of the proof were provided by David Sherman. The second
conclusion is based on the proof of Theorem 1 of [11].

Lemma 1.2. If x ∈ Mn with P(x) = 0 (i.e. x has zero diagonal) and G
denotes the group of symmetries (i.e. self-adjoint unitary operators) in D,
then

(1) There is d ∈ G such that

‖xd− dx‖2 ≥
√
2‖x‖2.

(2) If x = x∗, there is u ∈ G such that

‖xu− ux‖ ≥ ‖x‖.

Proof. Direct calculation (using P(x) = 0) shows that for any diagonal ele-
ment d with diagonal entries (d1, ..., dn) ∈ G,

‖xd− dx‖22 = (1/n)
∑

i 6=j

|xij |2|dj − di|2.

Choose Haar measure µ on G to have total mass 1. Because each di takes
the values +1,−1 with equal probability and independently, |dj −di|2 = 4 or
0 with equal probability for i 6= j, so i 6= j,

∫

G
|dj − di|2dµ(d) = 2. Thus

∫

G

‖xd− dx‖22dµ(d) = ‖xd− dx‖22 = (1/n)
∑

i 6=j

|xij |2
∫

G

|dj − di|2dµ(d)

= (1/n)
∑

i 6=j

2|xij|2dµ = 2‖x‖22.

Since µ(G) = 1, for some d ∈ G, ‖xd− dx]‖22 ≥ 2‖x‖22.
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For the second assertion we may assume that ‖x‖ = 1. Since ux −
xu has zero diagonal for any u ∈ G, u(ux − xu) = x − uxu also has zero
diagonal. Thus

∫

G
(x−uxu) dµ(u) also has zero diagonal, as does uxu. Next

observe that
∫

G
uxu dµ(u) is a diagonal matrix (by direct calculation) . Since

∫

G
uxu dµ(u) also has zero diagonal (as above), it is 0. This means that

∫

G

u(ux− xu) dµ(u) =

∫

G

x dµ(u)−
∫

G

uxu dµ(u) = x.

Thus 1 = ‖x‖ ≤
∫

G
‖ux− xu‖ dµ(u), so (since µ(G) = 1) ‖ux− xu‖ ≥ 1, for

some u ∈ G.

Notation 1.3. Since the center Z ofM may be identified with ℓ∞ = C(βN),
a closed ideal Γ in the center is determined a closed subset of βN. Let Ω
denote such a closed subset and define two ideals in M as follows. Write

I2(Ω) = {x = ⊕xn : lim
ω

‖xn‖2 = 0, ω ∈ Ω} and

I∞(Ω) = {x = ⊕xn : lim
ω

‖xn‖ = 0, ω ∈ Ω}.

It is clear that I2(Ω) ∩ Z(M) = I∞(Ω) ∩ Z(M) = Γ.

Proposition 1.4. Incorporating the notation above, I2(Ω) is the maximal
ideal J such that J ∩ Z(M) = Γ and I∞(Ω) is the minimal such ideal.

Proof. If x ∈ M , it is clear that ||xn||2 ≤ ||xn|| ∀n, hence I∞(Ω) ⊂ I2(Ω).
Now fix an ideal J with

J ∩ Z(M) = Γ.

Since Γ contains an approximate unit for I∞(Ω), J must contain I∞(Ω).
For the maximality claim, by contradiction suppose that there is a self-

adjoint element a ∈ J and ω ∈ Ω such that lim
ω

‖an‖2 6= 0. Using spectral

theory, we may replace a by a projection p. Since the 2-norm is continuous
on βN, there are a central projection r ∈ M and a natural number k such
that τn(rp) ≥ (1/k)τn(r) ∀n, and lim

ω
‖rn‖2 = 1. Since J is an ideal, there

are partial isometries v1, ...vk ∈ M such that
∑k

1 v
∗
jpvj ≥ r, hence r ∈ J .

This means that J ∩ Z(M) is strictly larger than Γ which gives the desired
contradiction.
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Notation: For any ideal J of M , xJ denotes the support projection of J
in M∗∗, yJ denotes the supremum in M∗∗ of projections in D ∩ J , and zJ
denotes the support projection in M∗∗ of J ∩ Z(M). Clearly xJ ≥ yJ ≥ zJ .
Also, if a is a self–adjoint element of M and σ is a measurable subset of R,
we write χσ(a) for the spectral projection of a determined by σ.

Proposition 1.5. The following statements hold for an ideal J of M .

(1) a ∈ (J)sa if and only if a ∈Msa and 1− χ(−1/n,1/n)(a) ∈ J for all n.

(2) J ∩D is a MASA in J .

(3) yJ is dense in xJ .

(4) yJ is regular in J∗∗.

(5) P(J) ⊂ J ∩D.

(6) If J = I2(Ω) or I∞(Ω), (D + J)/J is a MASA in M/J .

Proof. Fix a = a∗ in J . Since ideals are hereditary and

na ≥ 1− χ(−1/n,1/n)(a),

it follows that 1− χ(−1/n,1/n)(a) ∈ J .
Next suppose a is a self adjoint element of M and pn = 1− χ(−1/n,1/n)(a)

is in J for all n. Since J is norm closed, apn is in J and ‖a− apn‖ ≤ 1/n, it
follows that a ∈ J . So the assertion in part (1) is true.

Now fix a self-adjoint element a in J that commutes with elements of
J ∩D. Since J contains the operators of finite rank, a must be diagonal, so
a ∈ J ∩D and therefore assertion (2) is true.

Next if the assertion in (3) is false, then there is a self adjoint a ∈ J that
is orthogonal to all the projections in D ∩ J . This contradicts part (2).

(4) follows immediately from [3] Lemma 4.1(iii), because yJ dominates
the central cover of J ∩ Iβ(N)\N .

For (5), let p ∈ J be a projection. Fix an integer k > 0, and write

q = χ(1/k,1](P(p)).

Then it suffices to show that q ∈ J since ||qP(p) − P(p)|| < 1/k and J is
norm closed. Now observe that
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rank(pn) = nτn(pn) = nτn(P(p)n) ≥ (n/k)τn(qn) ≥ (1/k)rank(qn) (∗)

and define a projection r ∈ M as follows. If rank(pn) ≥ n/k, then set
rn = 1n. If rank(pn) < n/k, then choose unitaries {vj}k1 ∈ M such that for

each n, rn :=
∑k

j=1 vjpnv
∗
j is a projection; necessarily rank(rn)= k rank(pn).

We claim that r ∈ J . Let s ∈ M be the central projection defined by
sn = rn if rn = 1n, and sn = 0 if not. Clearly s ∈ J since there exist unitaries
w1, ..., wk in M such that

∑k
1 wnpw

∗
n ≥ s. Thus sr ∈ J and (1 − s)r ∈ J

by its construction as a finite sum of projections in J . This establishes our
claim.

Now note that rank(rn) ≥ rank(qn) for all n by (∗) above. Thus there is a
unitary U ∈M such that UrU∗ ≥ q, and hence q ∈ J . Since k was arbitrary
and J is closed, it follows that we also have P (p) ∈ J , as desired.

For (6), suppose first that J = I∞(Ω), then fix x in M such that x has
0 diagonal and xd − dx = 0 in the quotient M/J for all d ∈ D. Thus
lim
ω

‖dx − xd‖∞ = 0 for all ω ∈ Ω and for all d ∈ D. By Lemma 1.2,

lim
ω

‖x‖∞ = 0 for every ω in Ω, i.e. x ∈ I∞(Ω). This gives the result.

If J = I2(Ω), then fix an element x in M such that x has 0 diagonal and
xd − dx ∈ J for all d ∈ D. Thus lim

ω
‖xd − dx‖ = 0 for each ω in Ω and for

all d ∈ D. By Lemma 1.2, limω ‖x‖2 = 0 for each ω in Ω, so x is in I2(Ω).

Remarks.

(a) We know by Theorem 1.5.7 and Corollary 1.5.8 in [14], that for any
ideal J ofM , the algebra J+D is norm closed and that its quotient (J+D)/J
is a C*-subalgebra of M/J . It follows that if the quotient (D + J)/J is not
a MASA of M/J , then our Kadison - Singer Conjecture would be false. For
this reason we take assertion (6) of the last theorem as more evidence for our
conjecture.

(b) If an ideal J has the form I∞, then yJ = xJ = zJ .
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2 Some General C*-Algebra Results

Recall that a MASA is a maximal abelian *subalgebra of a C∗- algebra, and,
if f is a state on a C∗- algebra A, then its hereditary kernel is by definition

Kf = {x ∈ A : f(xx∗ + x∗x) = 0}.

Recall that as defined in [2] a net {aα} of positive norm one elements in a
C∗-algebra A excises a state f of A if

lim
α

‖aαaaα − f(a)a2α‖ = 0 for every a in A.

We are interested in pure states, so we recall the basic facts. First by Propo-
sition 2.2 of [2], if f is a pure state of a C∗-algebra A, then its hereditary
kernel is a maximal hereditary C∗-subalgebra. Further, the covering projec-
tion p of this hereditary kernel is the limit in A∗∗ of its approximate unit,
and 1− p (i.e. the support projection of f) has rank 1 ([14], 3.13).

Theorem 2.1. If f is a pure state of the C ∗-subalgebra B of C and {bα} is
any excising net for f in B, then f has unique state extension to C if and
only if {bα} converges to a rank one projection in C∗∗.

Proof. Suppose {bα} converges to a projection p of rank one in the double
dual of C and suppose g and h are states on C that extend f . If we fix c ∈ C
we have

lim
α
g(c) = lim

α
g(bαcbα) = g(pcp) = g(λp) = λ = lim

α
h(bαcbα) = h(c)

For the converse suppose that f has a unique state extension g to all of
C. It follows that {bα} must converge to a projection of rank one in C∗∗, else
the extension would not be unique.

Proposition 2.2. Let A be a unital C*-algebra and f a pure state on A.
There there is a MASA of A on which f is pure and from which f has
unique state extension if and only if the hereditary kernel of f has an abelian
approximate unit.
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Proof. Suppose that the hereditary kernel of f has an abelian approximate
unit {bα} and let B be any MASA of A that contains {bα}. Write p in A∗∗

for the limit of the bα’s. Since f is pure, p has codimension 1 as mentioned
in the introduction to section 2. Since p also lies in B∗∗, it has codimension
1 there also. Since f is supported on 1− p which has dimension 1 in B∗∗, its
restriction to B is pure and it must have a unique state extension.

Now suppose that there there is a MASA B of A on which f is pure
and from which f has unique state extension. Then the approximate unit
of {x ∈ B : f(xx∗ + x∗x) = 0} must converge in A∗∗ to a projection of
codimension 1, else state extensions of f would not be unique.

Lemma 2.3. Let A be a C*-algebra and x be an open, dense (i.e. x =
1), central projection in A∗∗. Let S(A) (resp., PS(A)) denote the states
(resp.,pure states) of A and S(A)x (resp., PS(A)x) denote those states (resp.,
pure states) that take the value 1 on x. Then S(A)x (resp. PS(A)x) is weak*
dense in S(A) (resp. PS(A)).

Proof. Let aα ↑ x, aα ∈ A. The complement of S(A)x (resp. PS(A)x) in
S(A) (resp. PS(A)) consists of those f such that f(aα) = 0 for all α, and
that is clearly closed.

That S(A) = S(A)x follows since the central projection x is regular. The
conclusion PS(A) = PS(A)x follows from S(A) = S(A)x by [8, Appendix
B14].

3 The Ideal Iab Generated by the Abelian Pro-

jections

Let Iab denote the ideal generated by the abelian projections inM . It is clear
that a projection p = ⊕pn ∈ M is abelian if and only if the rank of pn is 0
or 1 for each n. In some sense, the existence the ideal Iab is what makes M
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so different from B(H). We define the projection pB ∈ Iab by the condition
that (pB)n has 1/n in each of its entries. Recall that

I2(βN \ N) = {⊕xn : lim
ω

‖xn‖2 = 0, ω ∈ βN \ N},

and let K denote the compact operators in M , i.e. K = I∞(βN \ N).

Proposition 3.1. The following statements hold.

(1) Iab ⊂ I2(βN \ N).

(2) Any ideal J that is strictly larger than K contains an infinite dimen-
sional abelian projection.

(3) K 6= Iab 6= I2(βN \ N).

Proof. For the first assertion, it suffices to show that every abelian projection
lies in IβN\N. This is clear since for any abelian projection p = ⊕pn ∈ M ,
where ‖pn‖2 ≤ 1/

√
n.

For the second assertion, suppose the ideal J contains a non-compact
operator. It follows that J contains a projection of infinite rank which, in
turn, must dominate an infinite dimensional abelian projection.

For the third assertion, if p is an abelian projection such that rank(pn) = 1
for all n, then p ∈ Iab \K.

If q is a projection in M such that rank(q2n) = n and rank(qk) = 0 when
k is not a power of 2, then q ∈ I2(βN \ N) \ Iab as follows.

‖q2n‖2 =
√
n/2n/2 →n→∞ 0.

Thus q ∈ I2(βN \ N). If b is a self-adjoint linear combination of t abelian
projections, then for all n, rank(bn) ≤ t. Since rank(qn) → ∞, ||(b−q)n|| ≥ 1
when rank(qn) > t. Thus q can’t be in Iab.

Proposition 3.2. If ω is a free ultrafilter and q = ⊕qn is a projection in
I2({ω}) ∩D, then

lim
ω

‖(pBq)n‖ = 0.

Proof. Since lim
ω

‖qn‖2 = 0, if ǫ > 0 we may select a set σ ∈ ω such that

‖qn‖2 < ǫ for each n in σ. Since q ∈ D, (qpbq)n can be viewed as a block
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matrix in Mn for each n ∈ σ. The size of the block is rank(qn)× rank(qn)
and the entries in the block are all 1/n. I.e. this block is a scalar multiple of
a rank 1 projection, and the multiple is rank(qn)/n ≤ ǫ2. Thus

lim
ω

‖(pBq)n‖ = 0.

Corollary 3.3. If p is a projection in D ∩ I2(βN \N), then ppB is compact.

Proof. Apply Proposition 3.2 to each ω ∈ (βN \ N).

Corollary 3.4. For any proper ideal J that contains pB, yJ 6= xJ .

Proof. If yJ = xJ , then the projection approximate unit for D ∩ J , which
converges to yJ , would be an approximate unit for pB, and that is false by
the last proposition.

Proposition 3.5. If f is a pure state of M , p is an abelian projection in M
such that f(p) = 1, and B is a MASA of M that contains p, then f |B is pure
and f is its unique state extension.

Proof. Since every MASA of M is unitarily equivalent to D, we may assume
B = D.

Let f ′ be any state extension of f |D and recall that f ′ = pf ′p by Schwarz
inequality. Now observe that pMp ⊂ D because p is abelian. So, for any
a ∈M ,

f ′(a) = f ′(pap) = f(pap) = f(P(pap)) = f(pP(a)p) = f(P(a)).

Thus f is the unique state extension of f |D.
If f |D is not pure, there would be a projection q ∈ D such that 0 <

f(q) < 1 and this would mean that for any a ∈M ,

f(a) = f(P(qaq + qa(1− q) + (1− q)aq + (1− q)a(1− q)))

= f(P(qaq + (1− q)a(1− q))

= f(qaq + (1− q)a(1− q))

= ((qfq) + (1− q)f(1− q))(a),

so f = qfq+ (1− q)f(1− q), contradicting the assumption that f is pure on
M . So f is a pure state on D.
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Theorem 3.6. The set of all singular pure states of M that take a nonzero
value on Iab is relatively weak* open and dense in the set of all singular pure
states of M .

Proof. The central cover x of the ideal Iab/K in (M/K)∗∗ is an open pro-
jection. If x were not dense for M/K, there would be a non-zero hereditary
subalgebra J0 ofM/K that is orthogonal to Iab/K. Lift J0 to a closed hered-
itary subalgebra J of M . Since J is generated by its projections, it contains
an infinite rank projection p. Thus by the form ofM there is an infinite rank
abelian projection q in Iab such that pq=q. However this contradicts the
assumption that J is orthogonal to Iab/K. Thus x is open and dense. Apply
Lemma 2.3 to M/K to get that PS(M/K)x is weak* dense in PS(M/K).
Since x is central and open, PS(M/K)x = {f ∈ PS(M/K) : f(x) > 0},
PS(M/K)x must be weak* open in PS(M/K).

Theorem 3.7. The set of all singular pure states of D that take a nonzero
value on Iab ∩D is relatively weak* open and dense in the set of all singular
pure states of D. All of these pure states of D have unique state extension
to all of M .

Proof. The first sentence is proved in the same way as the last theorem. The
second sentence follows from Theorem 3.5.

Theorem 3.8. Every element of Iab can be paved.

Proof. Let ǫ > 0 be given, let q be an abelian projection in M and choose
m > 2/ǫ. By Proposition 1.2 of [17], it will suffice to prove that q is paveable.
The rank of each qn is 1 or 0, so there are abelian projections {pα}mα=1 such
that if p is a rank 1 projection in D such that ppα = 0 for all α = 1, ..., m,
then ||pqp|| < ǫ/2. Set r = 1 − ∑m

α=1 pα. Since each pα is abelian and in
D, pα(q −P(q))pα = 0.

Define the map Ψ : rD → qMq by Ψ(b) = qbq. Since q is abelian, the
range of Ψ intersects each Mn in either {0} or the 1-dimensional space of
multiples of qn. By the definition of r, for each n and each abelian projection
s ∈ rD, ‖(sqs)n‖ = ‖(qsq)n‖ = ‖(Ψ(s))n‖1 ≤ ǫ/2. Choose k as a power of
2 such that 1/k < ǫ. Thus by Theorem 5.7 of [1] (applied inside each Mn),
there are projections {pα}m+k

α=m+1 ∈ rD such that
∑m+k

α=m+1 pα = r and, for
α = 1, ..., k, ||Ψ(pm+α) − (1/k)qrq|| ≤ ǫ. Thus‖|Ψ(pm+α)‖ = ‖qpm+αq‖ =
‖pm+αqpm+α‖ < 2ǫ. Thus ||pαqpα|| ≤ 2ǫ for all α = 1, ..., m + k. I.e. q is
paveable.
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Theorem 3.9. If J is any ideal of M that is not contained in Iab, then there
is a projection p ∈ J ∩D and a ∗-isomorphism of pMp onto M .

Proof. Since J is not contained in Iab, there is a projection q ∈ J ∩D such
that rank(qn) → ∞. Thus by a routine recursive construction, there is a
subsequence {nk} and projections pnk

∈ Dnk
such that rank(pnk

) = k and
pnk

≤ qnk
for each k = 1, 2, 3, ... Set p =

∑

k pnk
. Since p ≤ q, then

p ∈ J ∩D. Since pnk
Mpnk

is *isomorphic to Mk, there is a *isomorphism of
pMp onto M .

Theorem 3.10. If J is any ideal of M that is not contained in Iab, and if
our Kadison Singer Conjecture is false, then there is a pure state of D ∩ J
that does not have unique state extension to J .

Proof. By assumption there is a pure state h of D that does not have unique
state extension toM . By the last theorem there is a *isomorphism ψ of pMp
onto M for some projection p ∈ J ∩D. Note that p ∈ D implies that ψ|pDp

is a *isomorphism onto D. If f1, f2 are distinct state extensions of h to M ,
then ψ∗(f1), ψ

∗(f2) are distinct states of pMp. If a ∈ D, then there exists
unique b ∈ D such that ψ−1(b) = pap.

Now define θ : M → pMp by θ(c) = pcp. Remark that θ∗ is a positive
isometry from (pMp)∗ onto pM∗p. Thus the states gi = θ∗ ◦ψ∗(fi) for i=1,2,
are also distinct states. Compute:

gi(a) = θ∗ ◦ ψ∗(fi)(a) = ψ∗(fi)(pap) = ψ∗(fi)(ψ
−1(b)) = fi(b) = h(b) =

h(ψ−1(pap) = ψ−1∗(h)(θ(a)) = θ∗ ◦ ψ−1∗(h)(a)

Thus g1, g2 are distinct states of M that live on J and have the same pure
restriction θ∗ ◦ ψ−1∗(h) to D.

Theorem 3.11. If J is any ideal of M that is not contained in Iab, and if
our Kadison Singer Conjecture is false, then there is an element of J that
cannot be paved.

Proof. As in the proof of the last theorem, there is a *isomorphism ψ of pMp
ontoM for some projection p ∈ J ∩D. Note that p ∈ D implies that ψ|pDp is
a *isomorphism onto D. Thus if our conjecture is false, there is an element
of M that can’t be paved, so the image in J of that element under ψ−1 can’t
be paved.

13



We have already seen (Theorem 3.8) that every element of Iab is paveable.
We now compare Iab with a large C*-subalgebra of M that has the same
property. We will say that b ∈M is an almost permutation if each bn has at
most one non-zero entry in each row and column, that entry being 1. The
C*-algebra A generated by D and the almost permutations will be called
the permutation algebra. It was shown in [18] that every element of A is
paveable.

We shall now give a characterization of the elements of A. Say that b ∈M
is d-empty if there is a natural number d such that each bn has at most d non-
zero entries in each row and column. Let F be the *subalgebra of operators
that are d-empty for some d ∈ N. It was shown [19] that an operator b is
in F iff there are a m ∈ N, c1, ..., cm ∈ D and near permutations b1, ..., bm
such that b =

∑n
i=1 cibi; thus A is the norm-closure of F . A also contains

each element b ∈ M whose non-zero entries have modulus larger than some
positive number δ, since bn is ( δ

‖bn‖
)2-empty.

Remark 3.12. A+Iab is a C*- subalgebra ofM by Corollary 1.5.8 of [14], and
every element in this subalgebra is paveable. We don’t know of a larger C*-
subalgebra of M with this property. It is known ([19]) that neither A ⊂ Iab
nor Iab ⊂ A holds. The question left hanging in [19] is whether pB in A.
The answer, which surprised us, is “yes”. Our intuition was that if b is any
d-empty matrix, and n is much larger than d, then subtracting b from pB
affects only a “small” fraction of the entries of (pB)n, and hence the resulting
norm can’t be all that small. A graph theoretic technique shows that this
intuition is wrong. We thank Michel de la Salle and Gilles Pisier for pointing
us to a theorem from graph theory (Theorem 1.1 of [10]),which is due to
Friedman and which is exactly what is needed here.

Theorem 3.13. pb ∈ A.

Proof. The range of (pB)n is the 1-dimensional subspace spanned by (1, ..., 1) =
v. If b is any permutation matrix in Mn, then bv = v. This suggests that
if we take an even integer d (much smaller than n), we might approximate
(pB)n by a d-empty element s ∈ A of the form

sn = (1/d)

d/2
∑

α=1

(bα + b∗α),

where each bα is a permutation matrix in Mn.
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To estimate ‖sn − (pB)n‖ we note that (sn − (pB)n)(v) = 0, so it suffices
to carry out our estimate on the orthogonal complement of v. Since (pb)n
vanishes there, we are actually concerned with estimating the modulus of the
second largest eigenvalue of the self adjoint operator sn.

At this point Friedman’s paper [10] suggests that we should show that sn
is the type of matrix that he is dealing with in his Theorem 1.1. That is, we
need to show that sn is the adjacency matrix of a d-regular undirected graph
on n vertices (times 1/d). If the matrix bα corresponds to the permutation
πα of 1, ..., n. such a graph Gn is formed by defining the edges ([10] p. 2) as
follows:

E = {(i, πα(i)), (i, π−1
α (i)) : α = 1, ..., d/2; i = 1, ..., n}.

The adjacency matrix of G is exactly dsn.
Now we can apply Theorem 1.1 of [10] to conclude that there are positive

constants η, r, independent of n, such that with probability at least 1 −
η/nr, the second eigenvalue of a random matrix of the same form as sn will
be less than (2

√
d− 1+1)/d. Of course that expression can be made as small

as we like by taking a large d, and this is independent of n.
If δ > 0 is given, we choose even d so that (2

√
d− 1 + 1)/d < δ. Let

n0 be large enough so that 1 − η/nr
0 > 0. Since A clearly contains all of

the finite rank operators in M , we may define an operator c ∈ A by letting
cn = (pB)n, n < n0. For n ≥ n0 we choose cn to one of those elements in Mn

of the form sn (for the value of d chosen above) whose second eigenvalue is
less than δ. These choices ensure that c ∈ A and that ||pB − c|| < δ.

This proof is a classic use of the probabilistic method in combinatorics.
One shows the existence of something by showing that a random choice has
a positive probability of being a right choice.

We call a projection q ∈ M a Hadamard projection if rank(qn) is 0
or 1 for each n, and if rank(qn) = 1, then qn has a eigenvector of the form
(eiθ1 , ..., eiθn), for real θ1, ..., θn.

Corollary 3.14. If q is a Hadamard projection in M , then q ∈ A.

Proof. Using the notation above, let w be a unitary in D such that
wn(e

iθ1 , ..., eiθn) = (1, ..., 1). Then w∗pBw = q ∈ A.
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4 Pure States of M

Proposition 4.1. If f0 is a pure state of D and if f is defined on M by
f = fo ◦ P , then f is a pure state of M .

Proof. The proof of [5, Corollary 3] applies without change.

Theorem 4.2. If

(1) N is a type II1 von Neumann algebra factor that has the cardinality of
the continuum,

(2) τ denotes the faithful normal tracial state on N ,

(3) C(N ) is a collection of MASAs of N that has the cardinality of the
continuum, and

(4) the continuum hypothesis holds,

then there is a pure state of N that is not multiplicative when restricted to
any MASA in C(N ).

Proof. The proof is essentially given in Lemma 0.5-Theorem 0.7 of [4]. How-
ever, those results assume that N acts on a separable Hilbert space. Thus
we need to be sure that each time that hypothesis is used in [4], we can show
here that it is not needed under the hypotheses of the present theorem.

1. To modify the proof of Lemma 0.5 of [4] to handle the present theorem,
we note that in a II1 factor, any two projections with the same trace are
unitarily equivalent.

2. To modify the proof of Lemma 0.6 of [4] to handle the present theorem,
we need only show that for any projection p ∈ N and any singular state f
on N such that f(p) = 1, there is a sequence {pn} of projections in N such
that f(pn) = 1 for all n and pn ↓ 0 strongly. Let qj be a maximal orthogonal
family of projections under p for which f(qj) = 0. Since τ is faithful, this
family must be at most countable, and by [15] the set of {qj}must be infinite.
Set pj =

∑∞
i=j qi. This works since τ(pj) → 0 because τ is normal.

3. To modify the proof of Theorem 0.7 of [4] to handle the present
theorem, we need only note that both N and C(N ) have cardinality c = ℵ1

under CH.
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Corollary 4.3. There is a pure state g of M that is not multiplicative on
any MASA of M .

Proof. If J is any maximal ideal of M and QJ is the quotient map of M
onto M/J , then by [9], QJ(M) is a II1 factor that has the cardinality of the
continuum and the set of images of the MASAs ofM also has the cardinality
of the continuum. Thus the Corollary follows by taking the pure state f on
QJ(M) that is non-multiplicative on each of the images of the MASAs of M
from the last theorem and defining g = f ◦QJ .
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