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Chapter 1

Introduction.

Galois cohomology is a fundamental tool for the classification of certain algebraic
structures. To be precise, let k be a field, G a linear algebraic group acting on
a space V , both defined over k. It is known [4], that if G is defined as the
set of automorphisms of a tensor τ on V , e.g., a quadratic form or an algebra
structure, the cohomology set H1(K/k,GK) classifies the K/k-forms of τ , i.e.,
those tensors of the same type also defined over k that become isomorphic to
τ over the larger field K (§4.1). Results of this type, however, hold in much
more general setings. In this notes, we give the general facts about cohomology
that allow the use of cohomology sets for classification, and give examples of
aplications to many parts of field theory and number theory. In particular,
we devote a whole chapter to the study of the relation between lattices and
cohomology.

Such a theory is already hinted at in [11]. In this reference, two finiteness
results are proven. The first one deals with the finiteness of the local cohomology
set H1(Gw,Γw), for an arithmetically defined group Γ. Notations are as in [11].
The second one deals with the finiteness of the kernel of the map

H1(G,Γ) −→
∏

v place of k

H(Gw(v),Γw(v)),

where we have fixed a place w(v) of K dividing each place v of k. It is the proof
of the second result which requires expressing the given kernel in terms of the
set of double cosets

Gk\GAk
/
∏

w

Γw

(see corollary 3.3 in [11]). These double cosets are the same ones that classify the
classes of lattices in a genus. This relation is pursued in chapter (crossreference).

1.0.1 Notations

In all of this notes, k,K,E denote number or local fields of characteristic 0, or
algebraic extensions of them. If k is a number field, Π(k) denotes the set of
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places of k.

Remark 1.0.1. By an algebraic group, we mean a linear algebraic group. All
algebraic groups are assumed to be subgroups of the general linear group of a
vector space V , of finite dimension, over a sufficiently large algebraically closed
field Ω of characteristic 0. We assume that all localizations of number fields
inject into Ω. G denotes an algebraic group over Ω. GL(V ), SL(V ) denote
the general and special linear groups over Ω. When we work over a fixed local
or number field k, we say that G is defined over k if the equations defining G
have coefficients in k (see section 2.1.1 in [10]). This is the case for all groups
considered here. For any field E, k ⊆ E ⊆ Ω, we write GE for the set of E-points
of G, e.g., if G = GL(V ), the set of E points is denoted GLE(V ). The same
conventions apply to spaces and algebras. All spaces and algebras are assumed
to be finite dimensional.

Exceptions to this rule are the multiplicative and additive groups. We denote
Gm = Ω∗, Ga = Ω when considered as algebraic groups. For the set of k-points
we write k∗,k. Instead of (Gm)k, (Ga)k.

The orthogonal group of a quadratic form Q on V is written On(Q) or
On(Q, V ), where n = dimΩ(V ). The set of E-points is denoted On,E(Q).

The field on which a particular lattice is defined is always written as a
subindex. If K/k an extension of local or number fields and Λk is a lattice in
Vk, ΛK denotes the OK-lattice in VK generated by Λk.

If G is an algebraic group acting on a space V , both defined over k, and Λk is
a Ok-lattice on Vk, the stabilizer of Λk in Gk is denoted GΛ

k . If G = GL(V ), this
set is denoted GLΛ

k (V ). Similar conventions apply to special linear or orthogonal
groups.

Remark 1.0.2. Whenever K/k is a Galois extension of a number field k, and
v a place of k, w denotes a place of K dividing v. We assume that one fixed
such w has been chosen for every v. This convention is also applied for infinite
extension, e.g., K = k̄.

Remark 1.0.3. GK/k denotes the Galois group of the extensionK/k. If there is
no risk of confusion, we write simply G. If K is not specified, we assume K = k̄.
If k is a number field and v ∈ Π(k), we also use the notation Gw = GKw/kv .

If Γ is a group acting on a set S, S/Γ denotes the set of orbits and SΓ the
set of invariant points. The action of γ ∈ Γ is denoted s 7→ sγ , for s ∈ S.
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Chapter 2

Cohomology and

classification

In this chapter we introduced the basic results that are required to connect
cohomology and classification. The results in this section are found in chapter
1 in [5], and p. 13-26 in [10].

Definition 2.0.4. Let G be a finite group, and let A a group provided with a
G-action. H1(G, A) is defined as the quotient

H1(G, A) = {α : G 7→ A|α(hg) = α(h)α(g)h}/ ≡,

where α ≡ β if and only if there exists a ∈ A such that α(g) = a−1β(g)ag for
all g ∈ G. If G acts trivially on A, then H1(G, A) ∼= Hom(G, A)/A, where A acts
on Hom(G, A) by conjugation. In what follows we write αg instead of α(g).

In case that A ⊆ B is a subgroup, there is a long exact sequence

0 −→ AG −→ BG −→ (B/A)G −→ H1(G, A) −→ H1(G, B),

and furthermore, under the natural action 1 of BG on (B/A)G ,

(B/A)G/BG ∼= ker(H1(G, A) −→ H1(G, B)). (2.1)

To simplify notations, in all that follows we assume that whenever a sequence
of pointed sets

. . . −→ U −→ V −→W −→ X −→ Y −→ Z

is written, X,Y, Z denote pointed sets, W,V, U, . . . denote groups, and W acts
on X with

X/W ∼= ker(Y −→ Z).

1 This result is not found in [5], but can be found in [10] p.22.
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If A is normal in B, we have in the sense just described

0 // AG // BG // (B/A)G EDBC
GF@A

// H1(G, A) // H1(G, B) // H1(G, B/A).

(2.2)

In case A is central in B, the higher order cohomology groups for A are also
defined, and we have a long exact sequence

0 // AG // BG // (B/A)G EDBC
GF@A

// H1(G, A) // H1(G, B) // H1(G, B/A) EDBC
GF@A

// H2(G, A).

Finally, if A and B are both Abelian this sequence extends to cohomology
of all orders [13], [6]. All results of this section can be extended via direct limits
to profinite groups acting continuously on discrete groups ([13], p. 9 and 42).

2.1 The general classification principle

A (G, G)-space is a setX provided with both, a G-action and aG-action (denoted
∗) satisfying

gσ ∗ xσ = (g ∗ x)σ

for x ∈ P , g ∈ G, and σ ∈ G. The space X is said to be free, transitive, etc,
if the corresponding G-action has any of these properties. The most important
aplication for us of the results in the preceeding section is the following:

Proposition 2.1.1. Let X be a transitive (G, G)-space for all x ∈ X, g ∈ G,
and σ ∈ G. Let x0 ∈ X, and let H = StabG(x0). Then, XG is in one-to-
one correspondence with the elements of the cohomology set ker

(
H1(G, H) →

H1(G, G)
)
.

Proof. Since X is isomorphic to G/H as G-modules, the result follows
from (2.1).

A principal homogeneous G-space is a (G,G)-space where the G action is
transitive and free. Given any principal homogeneous G-space P and any base
elements x ∈ P , there exists a unique G-map (but not a G-map, unless x is
invariant) φ : G→ P that sends g to gx. In particular, we can identify P with
G as a set. Classifying principal homogeneous G-spaces is, therefore, equivalent
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to classifying twisted actions on G on G that turn the set G into a principal
hemogeneous G-space.

Let X be the group of all maps from G to G. Then X is a G-group with an
action f 7→ fσ satisfying fσ(λ) = f(λσ−1). A twisted semiaction of G on G is
a map ρ : G × G → G which satisfy ρ(hg, σ) = hσρ(g, σ) and ρ(1, 1) = 1. A
twisted semiaction ρ is a twisted action if it satisfies the relation

ρ(ρ(g, σ), λ) = ρ(g, σλ),

for all g in G and all σ and λ in G. The group X acts transitively on the set T
of twisted semiactions by

(α · ρ)(g, σ) = ρ(gα(σ)−1, σ)α(1),

for all α in X , all ρ in T , all g in G, and all σ in G. The stabilizer of ρ0, where
ρ0(g, σ) = gσ, is the set of maps satisfying α(σ)σ = α(1). This maps form a
subgroup G′ of X which is isomorphic to G as a G-group. The quotient set
X/G′ ∼= T has a natural G action which is traslated to to an action on T as

ρλ
−1

(1, σ) = ρ(1, σλ)λ
−1

ρ(1, λ)−λ
−1

. With this action, a twisted semiaction ρ is
invariant if and only if

ρ(1, σλ) = ρ(1, σ)λρ(1, λ) = ρ(ρ(1, σ), λ),

and premultiplying both sides by gσλ we see that a G-invariant action is the
same as a twisted action. The following lemma follows easily from proposition
2.1.1.

Lemma 2.1.2. The set of twisted actions on G is in natural correspondence,
up to isomorphisms of (G,G)-actions, with the kernel of the map H1(G, G) →
H1(G, X).

Proposition 2.1.3 (Shapiro’s Lemma). Let H be a subgroup of G. Let G be a
H-group and let G′ be the set of maps φ : G → G such that φ(σλ) = φ(σ)λ for
all λ ∈ H. Then H1(G, G′) ∼= H1(H, G).

Corollary 2.1.3.1. In the notations of lemma 2.1.2 H1(G, X) = {1}.

The following result follows from lemma 2.1.2 and corollary 2.1.3.1

Proposition 2.1.4 (([13], p. 44)). The set of principal homogeneous G-spaces
up to isomorphism is in one-to-one correspondence with the elements of the
cohomology set H1(G, G).

In most applications of the results in this chapter G is the Galois group GK/k
of a possibly infinite Galois extension K/k, where k is a local or number field.
The subgroups A,B, . . . are usually groups of algebraic or arithmetical nature.
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Chapter 3

The generalized Hilbert

theorem 90

3.1 Rings, units and cohomology

In this section, A is a ring provided with a G action. A left (A,G)-module is
an A-module B provided with a G-action, and satisfying (ab)σ = aσbσ for all
a ∈ A, b ∈ B, and σ ∈ G.

An element b ∈ B is a generator if Ab = B. It is a regular generator if ab = 0
impplies a = 0. In particular, if b ∈ B is a regular generator, the map a 7→ ab
is an isomorphism of A-modules between A and B. Assume that b is a regular
generator of B. Then an element ab ∈ B is a regular generator if and only if
a ∈ A∗. We say that the (A,G)-module is principal if it has a regular generator.

Proposition 3.1.1. The cohomology set H1(G, A∗) classifies the set of principal
left (A,G)-modules. The distinguished point of H1(G, A∗) corresponds to the
modules that have an invariant regular generator.

Proof. Let X be the group of all maps from G to A∗. As in §2.1, we define
a twisted semiaction as a map ρ : G ×A→ A satisfying:

a) ρ(aa′, σ) = aσρ(a′, σ).
b) ρ(1, σ) is a unit for all σ ∈ G.
A twisted action as a twisted semiaction that is an action. Any principal

left (A,G)-module is isomorphic to A with a twisted action. The group X acts
transitively on the set of twisted semiaction by (α·ρ)(a, σ) = ρ(aα(σ), σ)α(1)−1 ,
and the stabilizer of ρ0, where ρ0(a, σ) = aσ, is the set of maps satisfying
α(σ)σ = α(1) for all σ ∈ G. Now the proof follows as in §2.1.

Example 3.1.2. Let A = Z with the trivial G-action. Then H1(G,Z∗) =
Hom(G, {1,−1}), hence there exists a free left (G,Z)-module with no invariant
generator if and only if G has a normal subgroup of index 2. The reader can
easily check this result independently.
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Example 3.1.3. More generally, if A has the trivial G-action. ThenH1(G,Z∗) =
Hom(G, A∗)/ ∼=, where ∼= denotes the conjugacy relation. The module associ-
ated to the homomorphism α : G → A∗ has the action (ab)σ = aα(σ)b.

Example 3.1.4. Let K/k be a finite extension of local or number fields with
Galois group G. Let OK and Ok be the respective rings of integers. Then the
exact sequence O∗K →֒ K∗ ։ PK , where PK is the group of principal fractional
ideals of K, shows that the kernel of H1(G,O∗K) → H1(G,K∗) corresponds to
invariant ideals in PK modulo ideals in Pk (up to a suitable identification). Since
we prove later in this chapter that H1(G,K∗) = 1, then all free left (OK ,G)-
module of rank 1 are of this form. If the extension K/k is unramified, one can
prove that PGK is the set of fractional ideals in k that become principal over
K. It follows that H1(G,O∗K) is in correspondence with a subgroup of the ideal
group of k.

Example 3.1.5. Let R be a ring with a G-action. Then there is a natural action
of G on A = Mn(R) such that the matrices Ei,j with a 1 in the intersection of
the i-th row and the j-th column and 0 everywhere else are invariant.

Any A-module B has a decomposition of the form B = ⊕ni=1Ei,iB. Further-
more, we claim that Ei,j(Ek,kB) = δj,kEi,i. In fact, the case j 6= k is trivial
and the case j = k follows from the contentions Ei,jB = Ei,i(Ei,jB) ⊆ Ei,iB
and Ei,iB = Ei,j(Ej,iB) ⊆ Ei,jB. Conversely, if B′ is an R-module of rank n,
then B =

⊕∞
i=1 Bi where Bi

∼= B′ has a natural A-module structure satisfying
Ei,jBk = δj,kBi. It follows that The cohomology set H1(G, GLn(R)) classifies
free left (R,G)-modules of rank n.

3.2 Invariant generators of vector spaces

In this section, K/k is a finite Galois filed extension. Also, VK denotes a finite
dimensional vector space. We assume that the Galois group G acts on VK in
such a way that (λv)σ = λσvσ for any σ ∈ G, v ∈ VK , and Λ ∈ K.

Lemma 3.2.1. The maps h 7→ hσ, are linearly independent.

Proof. Assume
∑

σ∈G ασh
σ = 0 for all h ∈ K. Since any finite separable

extension is simple, we can assume K = k(ω). In particular,
∑
σ∈G ασω

kσ = 0.

However, the matrix with entries ωkσ is a Vandermonde matrix with non-zero
determinant, whence ασ = 0 for all σ.

Proposition 3.2.2. The space VK has a basis of G-invariant vectors.

Proof. Let Vk be the subspace of invariant vectors. It suffices to prove
that dimk(Vk) = dimK(VK). Let b : VK → Vk be the map b(v) =

∑
σ∈G v

σ.
If dimk(Vk) < dimK(VK), there exists a non-trivial lineal form u such that
u(b(v)) = 0 for all v. For any h ∈ K we have

0 = u(b(hv)) =
∑

σ∈G

hσu(vσ).
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Since the functions h 7→ hσ are linearly independent, it follows that u(vσ) = 0
for all v and all σ. In particular u = 0.

Corollary 3.2.2.1. There exists a k-subspace Vk of VK , such that VK ∼= K ⊗k
Vk.

Corollary 3.2.2.2 (Hilbert’s Theorem 90). H1(G,GLn(K)) = {1}.

3.3 Cohomology of the group of units of an al-

gebra

In this section, K/k is a finite Galois extension over an infinite field k.

Proposition 3.3.1. For any finite dimensional algebra A, defined over k, and
any algebraic extension K/k, it holds that H1(GK/k, A

∗
K) = {1}.

Proof. Assume first that K/k is finite. Let BK be a free left (AK ,G)-
module of rank 1. Then BK is a finite dimensional vector space overK satisfying
the hypotheses of proposition 3.2.2. It follows that BK has a basis of invariant
vectors {v1, . . . , vn}. In particular, BK ∼= K ⊗k Bk for some k-vector space Bk.
The set of generators of BK is a Zariski open set and therefore it must contain
an element of Bk (see some reference). In the general case, if {L} is the set of
finite subextensions of K/k, then

H1(G, A∗K) = H1(lim
←

GL/k, lim
→
A∗L) = lim

→
H1(GL/k, A

∗
L) = {1}.

Corollary 3.3.1.1. If Ak is a k-algebra which is the direct limit of a family
{Bk} of finite dimensional algebras then H1(GK/k, A

∗
K) = {1}.

Proof. In fact,

H1(G, A∗K) = H1(G, lim
→
B∗K) = lim

→
H1(G, B∗K) = {1}.

Corollary 3.3.1.2. If Ak is a k-algebra such that every finite subset of Ak
generates a finite dimensional subalgebra then H1(GK/k, A

∗
K) = {1}.

Proof. In this case, Ak is the direct limit of its finite dimensional subal-
gebras.

Since GLK(V ) ∼= (EndK(V ))∗, Hilbert’s theorem 90 is a particular case of
proposition 3.3.1. However, proposition 3.3.1 has many other aplications, as can
be seen in these notes.

Let K/k be any field, then we have an exact sequence:

0 −→ SLK(V ) −→ GLK(V ) −→ K∗ −→ 0

which gives a long exact sequence in cohomology:

GLk(V ) → k∗ → H1(GK/k, SLK(V )) → H1(GK/k, GLK(V )) = 1.

as the determinant map is always surjective, this proves:
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Proposition 3.3.2. for any field extension K/k we have:

H1(GK/k, SLK(V )) = {1}.

More generally, if A is a finite dimensional central simple algebra split by
K/k and NE : AE −→ E∗ is the reduced norm, we have a sequence:

A∗k
Nk−→ k∗ −→ H1(G, SA∗K) −→ H1(G,A∗K) = {1},

where SA∗K = ker(NK) , therefore:

H1(G, SA∗K) = k∗/Nk(A
∗
k).

Example 3.3.3. AE =
(
−1,−1
E

)
, AR = H , N(AR) = R+, and AC = M2(C),

hence H1(G, SH∗
C
) = {[1], [−1]}. Same result applies to any matrix algebra over

H.

Proposition 3.3.4. The multiplicative and additive groups Gm and Ga have
trivial H1.

Proof. It is an immediate aplication of proposition 3.3.1 thatH1(G,Gm) =
{1}.

Let Ak = k[x]/(x2). A is a local algebra with maximal ideal I = (x). Let
U = {1 + y|y ∈ I}. Then, U ∼= Ga. Therefore, there exists an exact sequence

{1} −→ Ga −→ A∗ −→ Gm −→ {1}.

It follows that H1(G,Ga) ∼= coker(A∗k → k∗) = {1}.
In fact, it holds that Hi(G,Ga) = {1} for all i > 0. One way to prove this

is to see that K is an induced G-module so that Shapiro’s lemma applies ([6],
p.73). If k has characteristic 0, an alternative proof follows from the fact that
Hi(G, A) is annihilated by |G| for all G-module A, while the map λ→ nλ is an
isomorphism for all n ([6], p. 84).

Proposition 3.3.5. If VK is a finite dimensional vector space over K provided
with a Galois action, then H1(G, VK) = {1}.

Proof. Let {v1, . . . , vn} be a basis of invariant vectors of VK , and let W =
span {v1, . . . , vn−1}. There exists an exact sequence

{1} −→W −→ V −→ Ga −→ {1}.

Hence, the result follows by induction.

Proposition 3.3.6. If Vk is an arbitrary vector space over k, then H1(G, VK) =
{1}.
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Proof. This follows from the previous result since Vk is a direct limit of
its finite dimensional subspaces {Wk} and therefore

H1(G, VK)) = H1(G, lim
→
WK) = lim

→
H1(G,WK) = {1}.

Example 3.3.7. Let G be a G-group and let K be a field with a faithfull G-
action. Let F = KG . It follows from Galois theory that the extension K/F
is Galois and Gal(K/F ) ∼= G. Let AK = K[G] be the group algebra. Let
AF = AGK . It follows from proposition 3.2.2 that dimF (AF ) = dimK(AK).
In particular, AK is actually obtained from AF by extension of scalars and
proposition 3.3.1 applies. A basis S of AK satisfying both S = Sσ for σ ∈ G,
and GS = S, is a principal homogeneous G-space. If a principal homogeneous
G-space in isomorphic to some basis S as above we say that it is represented
in AK . Let T be the set of bases S of AK satisfying GS = S. then A∗K
acts on T by S 7→ Sa for a ∈ A∗K . Invariants elements of T are principal
homogeneous G-spaces represented in A∗K . By propositions 2.1.1 and 3.3.1, it
follows that T G/A∗F is in correspondence with H1(G, G). It follows that every
principal homogeneous G-space is represented in AK and if two bases S and
S′ that are principal homogeneous G-spaces are isomorphic as such, then there
exists a ∈ A∗F such that S′ = Sa.
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Chapter 4

Algebraic aplications of

cohomology

4.1 Tensors and K/k-forms

By a tensor of type (l,m) on V , we mean an Ω-linear map τ : V ⊗l −→ V ⊗m,
where

V ⊗r =
r⊗

i=1

V for r ≥ 1, V ⊗0 = Ω.

τ is said to be defined over k, if τ(V ⊗lk ) ⊆ V ⊗mk . All tensors mentioned in this
work are assumed to be defined over k. GL(V ) acts on the set of tensors of type
(l,m) by g(τ) = g⊗m ◦ τ ◦ (g⊗l)−1. It makes sense, therefore, to speak about
the stabilizer of a tensor.

Let I be any set. By an I-family of tensors, we mean a map that associates,
to each element i ∈ I, a tensor ti of type (ni,mi). GL(V ) acts on the set of
all I-families by acting in each coordinate. In all that follows, we say a family
instead of an I-family unless the set of indices needs to be made explicit. Let
T be a family of tensors and H = StabGL(V )(T). Then, H is a linear algebraic
group.

If K/k is a Galois extension with Galois group G, we get an exact sequence

{1} −→ HK −→ GLK(V ) −→ XK −→ {1},

where XK is the GLK(V )-orbit of T. It follows from (2.1), and example 3.2.2.2,
that XGK/GLk(V ) ∼= H1(G, HK). The elements of XGK/GLk(V ) can be thought
of as isomorphism classes of pairs (V ′k,T

′) that become isomorphic to (Vk,T)
when extended to K. These classes are usually called K/k-forms of (V,T), or
just k-forms if K = k̄. Observe that two vector spaces of the same dimension
are isomorphic, so we can always assume that the vector space V , in which all
tensors are defined, is fixed.
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Definition 4.1.1. We call a pair (V,T), where T is a family of tensors on V , a
space with tensors, or simply a space. By abuse of language, we identify (V,T)
and (V,T′) whenever T,T′ are in the same GLk(V )-orbit, i.e., if they correspond
to the same K/k-form. We say that (V,T′) is a K/k-form of (V,T), if T and T′

are in the same GLK(V ) orbit.

Example 4.1.2. Let Q be a non-singular quadratic form on the space V . Then,
On(Q) = StabGL(V )(Q). Equivalence classes of non-singular quadratic forms on
Vk are classified by H1(G,On,k̄(Q)). A space, in this case, is what is usually
called a quadratic space.

4.2 Semi-simple abelian algebras

An abelian algebra is semisimple if it has no nontrivial nilpotent elements. In
this section, let L be an abelian semi-simple algebra defined over a number field
k. Then L is a k-form of the trivial semi-simple algebra

A(m) = k ⊕ k ⊕ . . .⊕ k︸ ︷︷ ︸
m times

,

whose group of automorfisms equals Sm, the simetric group on m symbols.
It follows that the set of isomorfism clases of semi-simple abelian algebras of
dimension m over k is in one-to-one correspondence with the cohomogical set
H1(G, Sm) ∼= Hom(G, Sm)/ ∼, where φ ∼ ψ means that there exists σ ∈ Sm
such that ψ(g) = σφ(g)σ−1 for any g ∈ G.

Let ψ : G → Sm be one map in the conjugacy class corresponding to L. then
some properties of the algebra L can be translated into properties of the map ψ

Acording to the general theory, the algebra L can be defined as the set of
invariant points of the corresponding twisted action, i.e.,

L = {l ∈ k̄m|ψ(σ)lσ = l ∀σ ∈ G}.

Next we describe some properties of L in terms of Ψ = im(ψ).

Proposition 4.2.1. L is a field iff and only if Ψ acts transitively on the set
{1, . . . ,m}.

Proof. The algebra L is a field if it contains a non trivial projection P .
Let Pt ∈ k̄m be the proyection in the t-th factor. If S ⊆ {1, . . . ,m}, define
PS =

∑
t∈S Pt. Any proyection P ∈ k̄m is of the form PS for some subset S.

Since all projections are fixed by the non-twisted action, PS ∈ L if and only
if ψ(σ)PS = PS for all σ ∈ G. We have ψ(σ)Pm = Pψ(σ)(m). Therefore, a
non-trivial projection exists if and only if Ψ is not transitive.

More precisely, if O ⊆ {1, . . . ,m}, then PO ∈ L if and only if O is invariant
under Ψ, i.e., is a union of orbits. Any element l of L has the form l = (l1, . . . , lm)
where the elements in l1, . . . , lm corresponding to elements in the same orbit
form a complete set of conjugates under the action of the Galois group, which
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acts on them by lσj = lψ−1(j). In particular, if L is a field, {l1, . . . , lm} is a
complete set of conjugates.

Proposition 4.2.2. Let H be the subset of G that fixes a subfield L′ of k̄ iso-
morphic to L. Then

ker(ψ) =
⋂

σ∈G

σHσ−1.

The description of L given earlier, implies that L′ can be assumed to be
the image of L under the projection on the first factor. the group ker(ψ) is
the subgroup of G that fixes L pointwise (in the non-twisted action). Every
conjugate of H is the stabilizer of the image of L under some projection.

Corollary 4.2.2.1. If L is a Galois extension of k, then Gal(L/k) ∼= Ψ.

Corollary 4.2.2.2. L is a cyclic extension of k if and only if imψ is generated
by an m-cycle.

Proof. If L/k is a cyclic extension, then im(ψ) is cyclic and transitive.

Example 4.2.3. The exact sequence

{1} −→ Am −→ Sm −→ µ2 −→ {1}

defines a cohomology map d : H1(G, Sm) −→ H1(G, µ2) ∼= k∗/(k∗)2, called the
discriminant, whose kernel is H1(G, Am). In other words, L has discriminant
1 if and only if Ψ ⊆ Am. It follows that if L is Galois and n is odd then the
discriminant of L is 1. The converse is true for n = 3.

4.3 finite dimensional abelian algebras with nilpo-

tent elements

Let Lk be an arbitrary finite dimensional abelian algebra over k, and let K be
an algebraic closure of k.

Proposition 4.3.1. There are no non-trivial K/k-forms of k[x]/(xn).

Proof. Set Ak = k[x]/(xn). Then AK = K ⊕ IK , where IK is the ideal
generated by x. Similarly Ak = k ⊕ Ik. Observe that In−1K 6= 0 and InK = 0.
We use induction on n. If n = 1 there is nothing to prove. If n ≥ 2, then
Gn = Aut(A) acts on A/In−1. Let G′ be the kernel of this action. Then
Gn/G

′ ∼= Gn−1, so that by induction hipothesis H1(G, G/G′) = {1}.
Let g ∈ G′, and set g(u) = u+ e(u) with e(u) ∈ Im. Then g(1) = 1, so that

e(1) = 0. Also, for uv ∈ I2, g(uv) = (u + e(u))(v + e(v)) = uv, so e(uv) = 0.
It follows that G′ ∼= Hom(I/I2, Im). In particular, it is a vector space, so it is
acyclic.

A similar argument shows the following result:

13



Proposition 4.3.2. There are no non-trivial K/k-forms of

k[x1, . . . , xn]/(x1, . . . , xn)
m.

In general, for an algebra Ak without projectors on the algebraic closure k̄
it is always true that AK = K ⊕ IK , ehere IK is the nilradical of AK . We can
also define Gn = Aut(Ak/I

n+1
k ). However, in general Gn/G

′ is only a subgroup
of Gn−1, and it is not always true that H1(G,Aut(AK)) = {1}.

The following example will make this clear:

Let Ak = k[x, y]/
(
(x, y)3 + (x2 − y2)

)
. Then if Ik is the image of the ideal

(x, y), then I3 = 0, but I2 6= 0. Let G be the automorphism group of A and let
G′ be the subgroup of automorphisms of A that induce the trivial automorphism
of A/I2. Then G/G′ is contained in the group of automorphisms of A/I2, i.e.,
the group GL(V ), where V is the vector space generated by x and y. An element
g ∈ GL(V ) is in G/G′ if and only if it fixes the ideal (x, y)3+(x2−y2). It follows
that there is a short exact sequence

K∗ →֒ GK/G
′
K ։ OK(q),

where q is the quadratic form x2 − y2 and O(q) its orthogonal group. Since
K∗ is acyclic, it follows that H1(G, GK) equals H1(G,OK(q)). In other words,

the K/k-forms of Ak are the algebras of the form k[x, y]/
(
(x, y)3 + (q′(x, y))

)
,

where q′ is a quadratic form.

4.4 Skolem-Noether theorem

Let A be a central simple algebra defined over k. Let L be a maximal semisimple
Abelian subalgebra defined over k. A∗ acts on the set of maximal semisimple
Abelian subalgebras by conjugation. It is a trivial exercise in linear algebra
to prove the transitivity of this action over an algebraically closed field. Let
G be the stabilizer of L. It follows from (2.1), and proposition 3.3.1, that the
set of conjugacy classes of maximal Abelian subalgebras that are defined over
k is parametrized by H1(G, G). Observe that, over the algebraic closure, any
automorphism of L arises from a conjugation. The short exact sequence

{1} −→ L∗ −→ G −→ Aut(L) −→ {1},

where Aut(L) is the set of automorphisms of L as an Ω-algebra, gives

1 = H1(G, L∗) −→ H1(G, G) −→ H1(G,Aut(L)).

It follows, sinceH1(G,Aut(L)) classifies isomorphism classes of semisimple Abelian
algebras, that any two isomorphic algebras are conjugate.
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4.5 Finite subgroups in proyective groups of al-

gebras

Let k be a field and let Ak be a finite dimensional k-algebra. Let Γ0 be a
finite subgroup of A∗k/k

∗. The group Γ0 can be regarded as a subgroup of
A
∗
K/K

∗ for any field extension K/k. In this section we describe a cohomology
set that classifies finite subgroups Γ of A∗k/k

∗ that become conjugate to Γ0 over
some separable algebraic extension K/k. Let CK be the centralizer of Γ0 in
A∗K/K

∗ and let W be the group of automorphisms of Γ0 that can be realized as
conjugations from elements in A∗K/K

∗. In this section we prove the following
result:

Proposition 4.5.1. Let K/k be a Galois extension. There exists a natural
action of W on the cohomology set H1(CK) = H1(K/k,CK). The set of con-
jugacy classes of finite subgroups of A∗k/k

∗ that become conjugate over K to Γ0

is in one-to-one correspondence with the set of orbits H1(CK)/W .

Proof. The group A∗K act on the set of finite subgroups by conjugation.
The stabilizer of Γ0 is the preimageNK ⊆ A∗K of the normalizer of Γ0 in AK/K

∗.
It follows from Proposition 2.1.1 that, if X is the set of finite subgroups Γ of
A∗K/K

∗ that are conjugate to Γ0, i.e., the A∗K-orbit of Γ0, then XG/A∗k
∼=

ker[H1(NK) → H1(A∗K)]. Since H1(A∗K) = {1} ([5], p. 16), it follows that
H1(NK) is in correspondence with the set of conjugacy classes under A

∗
k of

G-invariant finite groups Γ that are A∗K-conjugate to Γ0. The initial group Γ0

corresponds to the distinguished element of H1(NK). There exists a short exact
sequence CK →֒ NK ։ W , where W is a subgroup of Aut(Γ0). Notice that G
acts trivially on Aut(Γ0), and hence also on W . It follows from Propositions

38 and 39 in ([13], p. 49), that H1(CK)/W ∼= ker[H1(NK)
π
→ H1(W )]. Now,

since the action of G on W is trivial, the set H1(W ) is identified with the set of
conjugacy classes of homomorphisms from G toW . Under this identification, the
map π sends a cocycle α ∈ H1(NK) to a map φα, where φα(σ) ∈W acts on Γ0

as conjugation by ασ. If α is the cocycle corresponding to a group Γ = aΓ0a
−1,

then ασ = a−1aσ. Now,

(aγa−1)σ = aασγα
−1
σ a−1 ∀γ ∈ Γ0 ⊆ Ak.

It follows that the kernel of the map φα is the subgroup of G corresponding to
the Galois extension k(Γ)/k generated by the coordinates of the elements of Γ.
Hence φα is trivial if and only if k(Γ) = k. The result follows.

We give two applications of this result:

Corollary 4.5.1.1. Let k be a field whose characteristic does not divide n. If
Ak is a central division algebra over k of dimension n2, and if Γ0 contains a
subgroup Ω ∼= Z/nZ×Z/nZ that intersects trivially the center Z(Γ0) of Γ0, then
every finite group Γ of A∗k/k

∗ that is conjugate to Γ0 over K is conjugate to Γ0

over k.
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Proof. Without loss of generality we assume K/k is a Galois extension.
we claim that if Ω is a subgroup of A∗k/k

∗ isomorphic to Z/nZ×Z/nZ, then Ω
is its own centralizer in A∗K/K

∗. The group Ω is generated by ρ(x) and ρ(y),
where ρ : A∗K →: A∗K/K

∗ is the canonical projection, and the elements x and
y satisfy the identities xn = a, yn = b, and xy = ηyx for some a, b, η ∈ k.
By Kummer’s Theory, yt ∈ k(x) implies that n divides t. In particular, η is a
primitive n-th root of unity. By considering the eigenvectors of u 7→ xux−1, it
follows that x and y generates AK as a K-algebra. Any element centralizing
ρ(x) and ρ(y) must be of the form ρ(z) where z−1xz = τx and z−1yz = κy.
Comparing eigenvalues of the functions u 7→ xu and u 7→ (z−1xz)u we see that
τ = ηt, and similarly κ = ηs. It follows that zy−tx−s centralizes both x and y,
so that ρ(z) = ρ(y)tρ(x)s. The condition that Ω meets trivially the center of Γ0

implies that CK = K∗, hence H1(CK) = {1} ([5], p. 16). The result follows by
Theorem 4.5.1.

This result applies to groups Γ0 containing a copy of A2n for n2 = dimk Ak >
1. If n = 2, it applies to groups isomorphic to A4, S4 or A5.

Corollary 4.5.1.2. Let k be a field of characteristic not equal to p, where p is
a prime. If Ak is a central division algebra over k of dimension p2, and if Γ0

is isomorphic to Z/mZ with m 6= p, then every finite group Γ of A∗k/k
∗ that is

conjugate to Γ0 over K is conjugate to Γ0 over k.

Proof. Without loss of generality we assume K/k is a Galois extension.
The group Γ0 is generated by an element ρ(x), where x ∈ Ak satisfies xm ∈ k
and ρ is as in the proof of Corollary 4.5.1.1. Since Ak is a division algebra, for
any d < m the subalgebra k(xd) is maximal abelian in Ak, i.e., [k(x

d) : k] =
p. In particular, k(xd) = k(x). Furthermore, we have K(x)∗ ⊆ CK . Then
any element z ∈ AK such that ρ(z) centralizes ρ(x) must satisfy z−1xz = τx
where τ is an m-th root of unity. Since τx and x have the same eigenvalues,
multiplication by τ must permute the eigenvalues of x. It follows that the order
of τ must divide p!. Assume first that m is not a power of p. Replacing x by
some power if needed we might assume that m is a prime. Since [k(x) : k] = p,
we must have m > p. We conclude that z ∈ K(x)∗. Assume next m = pr with
r > 1. The same argument as above shows that τ must be a p-th root of unity.
Hence z commutes with xp. Since k(xp) = k(x), we still have z ∈ K(x)∗. As
H1(K(x)∗) = 1 ([5], p. 16), the result follows.
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Chapter 5

Lattices and cohomology

5.1 Basic results

Let k be a local or number field, K/k a Galois extension, G ⊆ GL(V ) an
algebraic group defined over k, Λk a lattice on Vk, LK a G-invariant lattice on
VK . Let G = GK/k.

Proposition 5.1.1. If there is an element ϕ ∈ GK such that ϕ(LK) = ΛK , then
aσ = ϕσϕ−1 is a well defined element of H1(G, GΛ

K). It is independent of the
choice of ϕ and depends only on the orbit of LK under Gk. The correspondence
assigning, to every such Gk-orbit of OK-lattices, an equivalence class of cocycles,
is an injection. The image of this map is

ker(H1(G, GΛ
K)

i∗−→ H1(G, GK)),

where i is the inclusion.

Proof. GK acts on the set of OK-lattices in VK . Let X be the orbit of ΛK .
We have an exact sequence

{1} −→ GΛ
K −→ GK −→ X −→ {1}.

Hence, by (2.1), we get XG/Gk ∼= ker(H1(G, GΛ
K) −→ H1(G, GK)). �

Example 5.1.2. Using the fact that H1(G, GLK(V )) = {1}, we obtain that
the set of GLk(V )-orbits of G-invariant OK-lattices isomorphic to ΛK is in
correspondence with H1(G, GLΛ

K(V )).

If G is defined as the stabilizer of a family of tensors, e.g., the unitary group
of a hermitian form or the automorphism group of an algebra, we get a more
precise result.

Recall that in section 4.1 we identified K/k-forms of (V,T) with the corre-
sponding GLk(V )-orbits of families of tensors.
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Definition 5.1.3. Let (V,T) be a space. A lattice in (VK ,T) is a pair (ΛK ,T),
where ΛK is a lattice in VK . GLK(V ) acts on the set of pairs (ΛK ,T

′), for
all families of tensors T′, by acting on each component. Two lattices (ΛK ,T),
(LK ,T

′) are said to be in the same space if T,T′ are in the same GLk(V )-orbit.

Proposition 5.1.4. Assume that G is the stabilizer of a family of tensors T

on V . The set H1(G, GΛ
K) is in one-to-one correspondence with the set of Gk-

orbits of G-invariant OK-lattices in the same GK-orbit, in all spaces that are
K/k-forms of (V,T). The kernel of the map

H1(G, GΛ
K)

i∗−→ H1(G, GK),

where i is the inclusion, corresponds to the subset of orbits of lattices that are
in the same space as ΛK .

Proof. We have an action of GLK(V ) on the set of all pairs (LK ,T
′), where

LK is a lattice and T′ a family of tensors with a fixed index set. If T is the orbit
of (ΛK ,T), we have a sequence

{1} −→ GΛ
K −→ GLK(V ) −→ T −→ {1},

and the same argument as before applies. Last statement follows from the fact
that spaces (VK ,T

′) are classified by H1(GK/k, GK), (see section 4.1 or [5], p.
15). �

Remark 5.1.5. Recall that ΛK = Λk ⊗Ok
OK . If LK is in the same Gk-orbit

as ΛK , LK = Lk ⊗Ok
OK , since Gk also acts on Vk. Recall that we defined

the cocycle corresponding to L by the formula aσ = φσφ−1 (see prop. 5.1.1).
This definition does not depend on G, as long as φ ∈ G. It follows that the
set of Gk-orbits of lattices in Vk that are isomorphic as Ok-modules, and whose
extensions to K are in the same GK orbit, corresponds to

ker
(
H1(G, GΛ

K) −→ H1(G, GK)×H1(G, GLΛ
K(V ))

)
. (5.1)

In the case that G is the stabilizer of a family of tensors,

ker(H1(G, GΛ
K) −→ H1(G, GLΛ

K(V )))

corresponds to the set of Gk-orbits of such lattices in all spaces that are K/k-
forms of (V,T).

Example 5.1.6. If Λk is free, (5.1) corresponds to the set of Gk-orbits of free
lattices on Vk, whose extensions to K are in the same GK -orbit.

Definition 5.1.7. We say that an OK-lattice ΛK is defined over k, if ΛK ∼=
OK ⊗Ok

Λk for some Λk. We say that ΛK is a k-free lattice, if Λk is free.

Assume first that G is the stabilizer of a family of tensors.
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Definition 5.1.8. Let a ∈ H1(G, GΛ
K). We say that a is defined over k, k-free

or in (V,T) if some (hence any), lattice in the class corresponding to a has this
property. Define

Ldef(G,K/k,Λ) = {a ∈ H1(G, GΛ
K)|a is defined over k},

Lfr(G,K/k,Λ) = {a ∈ Ldef(G,K/k,Λ)|a is k-free},
LV (G,K/k,Λ) = {a ∈ H1(G, GΛ

K)|a is in (VK ,T)},
LV

def
(G,K/k,Λ) = LV (G,K/k,Λ) ∩ Ldef(G,K/k,Λ),

LV
fr
(G,K/k,Λ) = LV (G,K/k,Λ) ∩ Lfr(G,K/k,Λ).

Let
F1 : H1(G, GΛ

K) −→ H1(G, GK), (5.2)

F2 : H1(G, GΛ
K) −→ H1(G, GLΛ

K(V )), (5.3)

be the maps defined by the inclusions. Then, we have the following proposition:

Proposition 5.1.9. Assume that Λk is free. The following identities hold:

LV (G,K/k,Λ) = kerF1,
Lfr(G,K/k,Λ) = kerF2,
LV

fr
(G,K/k,Λ) = kerF1 ∩ kerF2.�

Later, we give a similar interpretation to Ldef.

Example 5.1.10.

Lfr(On(Q), k̄/k,Λ) = ker(H1(G,OΛ
n,k̄(Q)) −→ H1(G, GLΛ

k̄ (V )))

is in correspondence with the set of isometry classes of free quadratic lattices
that become isometric to Λk over some extension.

Remark 5.1.11. Notice that LV ,LV
def
,LV

fr
can be defined, even if G is not the

stabilizer of a family of tensors, as follows:

LV (G,K/k,Λ) = ker(H1(G, GΛ
K) −→ H1(G, GK)),

LV
def
(G,K/k,Λ) = {a ∈ LV (G,K/k,Λ)|a is defined over k},

LV
fr
(G,K/k,Λ) = {a ∈ LV (G,K/k,Λ)|a is free}.

In this case, the first and last identities of proposition 5.1.9 still hold. Notice
that we can still interpret LV as a set of equivalence classes of lattices, because
of proposition 5.1.1.

5.2 H1(G, UK) and the ideal group

Let k be a local or number field, K/k a finite Galois extension. Let G = GK/k.
UK = O∗K denotes the group of units of Ok.

For any local or number field E, let IE be its group of fractional ideals, PE
the subgroup of principal fractional ideals. There is a natural map α : Ik → IK
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defined by α(A) = A
⊗
Ok

OK . Clearly α(Pk) ⊆ PK , so we get a map α′ :
Ik/Pk → IK/PK .

Apply the general theory to Λk = Ok, G = Gm, G
Λ
K = UK . Any λ ∈ K∗

acts by A 7→ λA, for A ∈ IK . It follows that,

H1(G, UK) ∼= (PK)G/α(Pk).

Remark 5.2.1. When this is done over the function field extension L(X)/F (X),
one obtains UK = L∗. Since H1(G, L∗) = {1}, this implies that every invariant
ideal in L[X ] has a generator in F [X ]. In particular, if a polinomial P of F [X ]
is an n-power in L[X ], by taking the principal ideal generated by the n-th root,
we obtain that λP is an n-th power in F [X ] for some constant λ. Since powers
of monic polinomials are monic we conclude that a monic in F [X ] is an n-th
power in L[X ] if and only if it is an n-th power in F [X ].

Non-zero prime ideals of OK form a set of free generators for IK (see [7], p.
18). Let A ∈ IK . We can write

A =
∏

℘∈Π(k)

(
∏

P|℘

Pβ(P)).

If A is G-invariant, all the powers β(P) corresponding to prime divisors of the
same prime of k must be equal. In other words:

A =
∏

℘∈Π(k)

(
∏

P|℘

P)β(℘), (5.4)

where β(℘) is the common value of β(P) for all P dividing ℘. This ideal is in
α(Ik) if and only if the ramification degree e℘ divides β(℘) for all ℘. Hence, we
have an exact sequence

0 −→ kerα′ −→ (PK)G/α(Pk) −→
∏

℘∈Π(k)

(Z/e℘),

where the image of the last map corresponds to those ideals of the form (5.4)
that are principal in K. The image of kerα′ is what we call Ldef(G,K/k,Λ).
In particular, since all ideals become principal in some extension, we can take
a direct limit, to obtain the long exact sequence:

0 −→ Ik/Pk −→ H1(Gk̄/k, Uk̄) −→
∏

℘∈Π(k)

(Q/Z) −→ 0.

A refinement of this argument gives

H1(Gk̄/k, Uk̄)
∼= (Ik

⊗

Z

Q)/(Pk
⊗

Z

Z), Ldef(G,K/k,Λ) = Ik/Pk.
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5.3 Localization

Recall remarks 1.0.2 and 1.0.3.
Assume k is a number field. There exist natural localization maps

Fv : H1(G, GΛ
K) → H1(Gw, G

Λ
Kw

),

defined by inclusion and restriction. We define GΛ
Kw

= GKw
if w is Archimedean.

Lemma 5.3.1. Let F1 : H1(G, GΛ
K) → H1(G, GK) be the map induced by the

inclusion. If the natural map

τ : H1(G, GK) →
∏

v∈Π(k)

H1(Gw, GKw
)

is injective, then kerF1 ⊇
⋂
v kerFv.

Proof of lemma. Immediate from the following commutative diagram:

H1(G, GΛ
K)

F1
//

∏
v
Fv

��

H1(G, GK)

τ

��∏
v H

1(Gw, G
Λ
Kw

) //
∏
vH

1(Gw , GKw
).�

Remark 5.3.2. If the hypothesis of this lemma is satisfied, one says that G
satisfies the Hasse principle over k.

Characterisation of Ldef. Ldef(G,K/k,Λ) is the set of equivalence classes
of lattices defined over k that become isomorphic overK. A lattice LK is defined
over k if and only if it is generated by its k-points, i.e.,

LK = OK(LK ∩ Vk).

This is a local property. On the other hand, for any local place v, all lattices
defined over kv are kv-free, i.e.,

Ldef(GL(V ),Kw/kv,Λ) = Lfr(GL(V ),Kw/kv,Λ).

The following result is immediate from this observation.

Proposition 5.3.3.

Ldef(G,K/k,Λ) = ker

(
H1(G, GΛ

K) −→
∏

v

H1(Gw , GL
Λ
Kw

(V ))

)
.�
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5.4 Genus and cohomology

Assume that In all of section 5.4, k is a number field.

Definition 5.4.1. Let Fv be the localization map. Define

Cgen(G,K/k,Λ) = ker(
∏

v

Fv).

We call this set the cohomological genus of Λ with respect to G.

Proposition 5.4.2. For any linear algebraic group G, it holds that

Cgen(G,K/k,Λ) ⊆ Ldef(G,K/k,Λ).

Proof. This follows from proposition 5.3.3 and the commutative diagram

H1(G, GΛ
K)

�� **VVVVVVVVVVVVVVVVVV

∏
v∈Π(k)H

1(Gw, G
Λ
Kw

) //
∏
v∈Π(k)H

1(Gw, GL
Λ
Kw

(V )).�

Remark 5.4.3. Assume G is the stabilizer of a family of tensors. This result
tells us that the cohomological genus corresponds to a set of equivalence classes
ol lattices defined over k. In fact, a ∈ Cgen(G,K/k,Λ) if and only if a corresponds
to a lattice, in some K/k-form of (V,T), that is in the same Gkv -orbit, at every
place v.

Definition 5.4.4. We define the V C-genus of Λk by the formula

V Cgen(G,K/k,Λ) = Cgen(G,K/k,Λ) ∩ LV (G,K/k,Λ).

In other words, it is the kernel of the map

H1(G, GΛ
K) −→ H1(G.GK)×

∏

v∈Π(k)

H1(Gw, G
Λ
Kw

). (5.5)

Let G be an arbitrary linear algebraic group. The V C-genus corresponds to
a set of Gk-orbits of lattices in Vk. In fact, it corresponds to a subset of the
set of double cosets Gk\GAk

/GΛ
Ak
, i.e., the genus of G (see [10], p. 440). In

particular, the following proposition holds.

Proposition 5.4.5. If G has class number 1 with respect to a lattice Λk, then
(5.5) has trivial kernel for every Galois extension K/k (compare with corollary
4 on p. 491 of [10]).�

This, in particular, applies to a group having absolute strong approximation
(see [10]). However, we have a stronger result.

Proposition 5.4.6. If G has absolute strong approximation over k, the map
(5.5) is injective.
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Proof. Recall remark 1.0.2.
Let MK ,LK be two G-invariant OK-lattices in VK , that are locally in the

same Gkv -orbit for all v. Then, we can choose elements σv ∈ Gkv , such that
σvMKw

= LKw
for every place v, and σv = 1 at all but finite places. Now,

any global element σ, close enough to σv at all finite places where σv 6= 1, and
stabilizing MKw

= LKw
at the remaining finite places, satisfies σMK = LK , as

claimed. �
The following result is just a restatement of lemma 5.3.1.

Proposition 5.4.7. If G satisfies the Hasse principle over k, then

V Cgen(G,K/k,Λ) = Cgen(G,K/k,Λ).�

This result tells us that, in the presence of Hasse principle, the cohomological
genus corresponds to a subset of the genus (compare with [11], thm 3.3, p. 198).

5.5 Spinor norm and genera

Let G ⊆ GL(V ) be a semi-simple group with universal cover G̃ and fundamental
group µn. Let K = k̄.

The short exact sequence

{1} −→ µn −→ G̃K −→ GK −→ {1},

defines a map θ : Gk −→ H1(G, F ) = k∗/(k∗)n.
Let Λk be any lattice in Vk. The following proposition holds.

Proposition 5.5.1. With the above notations, V Cgen(G,K/k,Λ) is in one-to-
one correspondence with the genus of G (compare with theorem 8.13 in [10], p.
490).

Proof. It suffices to show that any two Gk-orbits in the same genus are
identified over some extension. Without loss of generality, we assume k is non-
real. It suffices to check that they are in the same spinor genus (see [2]). Spinor
genera are classified by

Jk/J
n
k k
∗ΘA(G

Λ
Ak
),

where ΘA(G
Λ
Ak
) is the kernel of the local spinor norm (see1 [1] or [2]). This is a

finite set, and the representing adeles can be chosen to have trivial coordinates
at almost all places. Therefore, it suffices to take an extension that contains the
n-roots of unity, and n roots of a finite set of local elements.�

This result allows us to use cohomology to study the genus of any Semisimple
group.

1 The case of an orthogonal group is already considered in [3].
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5.6 Determinant class of a lattice

Let [A] be the k∗-orbit of the OK-ideal A. Assume that

Λk = Ok ⊕ . . .⊕Ok︸ ︷︷ ︸
n times

.

The map det∗ : H1(G, GLΛ
K(V )) −→ H1(G, UK) is the map induced in

cohomology by the determinant. It is surjective, since det has a right inverse.
However, in general it is not injective, as the example below shows.

Definition 5.6.1. Let LK be a G-invariant lattice in VK , and let a be the cocycle
class corresponding to the GLk(V )-orbit of LK . We define the determinant class
of LK , which we denote det∗(LK), by:

det∗(LK) = det∗(a) ∈ H1(G, UK) ∼= PGK/α(Pk),

and we identify it with the corresponding ideal class.

Example 5.6.2. Using the standard embedding GL(V )×GL(W ) −→ GL(V ⊕
W ), it is easy to prove that det∗(ΛK⊕LK) = det∗(ΛK)det∗(LK). In particular,
we obtain that det∗(A1 ⊕ . . .⊕An) = [A1 . . .An].

Assume k ⊆ K are local fields with maximal ideals ℘, P . Assume that
℘OK = Pe. Then,

det∗(P ⊕ . . .P︸ ︷︷ ︸
e

) = [Pe] = 1 = det∗(OK ⊕ . . .⊕OK︸ ︷︷ ︸
e

),

but the latter lattice is defined over k and the first one is not.

Let Ldef = Ldef(GL(V ),K/k,Λ). We have the following result:

Lemma 5.6.3. Ldef ∩ ker(det∗) = {1}.

Proof of lemma. This follows from the fact that all k-defined lattices are of
the form Ak⊕Ok⊕ . . .⊕Ok (see [8], (81:5)). It can also be proved by a diagram
chasing argument. �

Now observe that, for any algebraic groupG ⊆ GL(V ), we haveLdef(G,K/k,Λ) =
i−1∗ (Ldef), where i∗ is the cohomology map induced by the inclusion.

Proposition 5.6.4. If G ⊆ SL(V ), then i−1∗ (Ldef) = ker(i∗).

Proof of proposition. It is immediate from the commutative diagram

H1(G, GΛ
K) //

i∗
((PPPPPPPPPPPP

�

H1(G, SLΛ
K(V ))

vvlllllllllllll

H1(G, GLΛ
K(V ))

det∗
��

H1(G, UK)
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that im(i∗) ⊆ ker(det∗). Now recall lemma 5.6.3.�
In particular, such a group cannot identify a free lattice to a non-free k-

defined lattice over any extension, although it can identify a free lattice to a
non-k-defined lattice.

In this case, a description of Lfr is equivalent to a description of Ldef, hence
Ldef(G,K/k,Λ) can be described without resorting to localization.

5.7 Cohomology and representation

Let M be a sublattice of Λ. Let GΛ,M
K be the stabilizer of M in GΛ

K . There
exists a short exact sequence:

{1} −→ GΛ,M
K −→ GΛ

K −→ X −→ {1},

where X is the orbit of M in the set of sublattices. Then

XG/GΛ
k
∼= ker(H1(G, GΛ,M

K ) −→ H1(G, GΛ
K))

can be identified with the set of GΛ
k -orbits of G-invariant sublattices in the same

GΛ
K-orbit.
Let F be the stabilizer inG of the spaceW = ΩM . Γ its point-wise stabilizer.

H = F/Γ. There is a natural map GΛ,M
K −→ HM

K , which induces a map

H1(G, GΛ,M
K ) −→ H1(G, HM

K )

in cohomology. If we are interested in lattices that are in the same Hk-orbit,
they will be classified by the kernel of the map

H1(G, GΛ,M
K ) −→ H1(G, HM

K )×H1(G, GΛ
K).

In the applications, G is the stabilizer of a tensor τ of type (l,m), W a sub-
space satisfying τ(W⊗l) ⊆ W⊗m, and H = StabGL(W )(τ |W ), where τ |W is the
restriction of τ to W . The condition on W is vacuous if m = 0.

Example 5.7.1. Let τ = q is a quadratic form. Inequivalent representations
of Mk by Λk, that become equivalent over K, are in correspondence with

ker
(
H1(G,OΛ,M

K,n (q)) −→ H1(G,OM
K,p(q|W ))×H1(G,OΛ

K,n(q))
)
,

where n = dim V , p = dimW , and q|W is the restriction of q to W .

Remark 5.7.2. All result in this paper apply also to lattices over rings of
S-integers. Absolute strong approximation must be replaced by strong approx-
imation with respect to S.
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