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GENERATION OF CLASS FIELDS BY SIEGEL-RAMACHANDRA INVARIANTS

JA KYUNG KOO AND DONG HWA SHIN

Abstract. Let K be an imaginary quadratic field and f be a nontrivial integral ideal of K. We show that
the Siegel-Ramachandra invariant could be a primitive generator of the ray class field modulo f over K (or,
over the Hilbert class field of K).

1. Introduction

Let K be an imaginary quadratic field. For a nonzero integral ideal f of K we denote by Cl(f) the ray
class group modulo f and write C0 for its unit class. Then, there exists an abelian extension of K whose
Galois group is isomorphic to Cl(f) via the Artin map by class field theory ([5] or [12]). The field, denoted
by Kf, is called the ray class field modulo f of K. In particular, the ray class field modulo OK is called the
Hilbert class field of K and is simply written as HK .

For (r1, r2) ∈ Q2 − Z2, the Siegel function g(r1,r2)(τ) on the complex upper half-plane H = {τ ∈ C :
Im(τ) > 0} is defined by

g(r1,r2)(τ) = −q
1
2
B2(r1)eπir2(r1−1)(1− qz)

∞
∏

n=1

(1 − qnqz)(1 − qnq−1
z ) (1.1)

where B2(X) = X2−X+1/6 is the second Bernoulli polynomial, q = e2πiτ and qz = e2πiz with z = r1τ+r2.
If f is nontrivial (that is, 6= OK) and C ∈ Cl(f), then we take any integral ideal c in C so that fc−1 = [z1, z2]
(= Zz1 + Zz2) with z = z1/z2 ∈ H. Now we define the Siegel-Ramachandra invariant (of conductor f at C)
by

gf(C) = g12N
( a
N , b

N )
(z) (1.2)

where N is the smallest positive integer in f and a, b are integers such that 1 = (a/N)z1 + (b/N)z2. This
value depends only on the class C and lies in Kf. Furthermore, we have a well-known transformation formula

gf(C1)
σ(C2) = gf(C1C2) (C1, C2 ∈ Cl(f)) (1.3)

where σ is the Artin map ([10] Chapter 11 §1).
Ramachandra ([14]) constructed a primitive generator of Kf over K for any nontrivial f in terms of

certain elliptic unit, but his invariant involves overly complicated product of Siegel-Ramachandra invariants
and singular values of the modular ∆-function. Thus, Lang ([13] p. 292) and Schertz ([15]) conjectured that
the simplest invariant gf(C0) is a primitive generator of Kf over K (or, over HK), and Schertz conditionally

proved the assertion. Recently, Jung et al. ([6]) proved that if K 6= Q(
√
−1), Q(

√
−3) and f = (N)

(= NOK) for an integer N (≥ 2), then gf(C0) generates Kf over HK by showing that |gf(C0)| < |gf(C0)
σ|

for all nonidentity element σ ∈ Gal(Kf/HK).
In this paper we shall first give another proof of a weak version of the result of Jung et al., namely, for

a given integer N (≥ 2), g(N)(C0) generates K(N) over HK except for N7/2 imaginary quadratic fields K
(Theorem 3.3). Furthermore, we shall develop a simple criterion of f for gf(C0) to be a primitive generator
of Kf over K by adopting Schertz’s idea (Theorem 4.3 and Remark 4.4). In the last section we shall give
some applications when f = (2) (Proposition 5.4 and Theorem 5.6).
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2. Preliminaries

In this section we shall review basic properties of Siegel functions and Shimura’s reciprocity law.
For each positive integer N let FN be the field of meromorphic modular functions of level N whose Fourier

coefficients belong to the N th cyclotomic field Q(e2πi/N ). Then FN is a Galois extension of F1 = Q(j(τ)),
where

j(τ) = q−1 + 744 + 196884q+ 21493760q2 + · · ·
is the modular j-function, whose Galois group Gal(FN/F1) is represented by GL2(Z/NZ)/{±12} ([13] Chap-
ter 6 Theorem 3).

Let g(τ) be an element of FN . If both g(τ) and g(τ)−1 are integral over Q[j(τ)], then g(τ) is called a
modular unit (of level N) . As is well-known, g(τ) is a modular unit if and only if it has no zeros and poles
on H ([10] Chapter 2 §2).
Proposition 2.1. Let (r1, r2) ∈ 1

NZ2 − Z2 for some integer N (≥ 2).

(i) We have the order formula

ordq g(r1,r2)(τ) =
1

2
B2(〈r1〉)

where 〈r1〉 is the fractional part of r1 in the interval [0, 1).

(ii) g
12N/ gcd(6,N)
(r1,r2)

(τ) is a modular unit of level N .

(iii) Furthermore,

(

a b
c d

)

∈ GL2(Z/NZ)/{±12} ≃ Gal(FN/F1) acts on g
12N/ gcd(6,N)
(r1,r2)

(τ) by

g
12N/ gcd(6,N)
(r1,r2)

(τ)

(

a b
c d

)

= g
12N/ gcd(6,N)

(r1,r2)
(

a b
c d

) (τ) = g
12N/ gcd(6,N)
(r1a+r2c,r1b+r2d)

(τ).

Proof. (i) See [10] p. 31.
(ii) See [10] Chapter 3 Theorems 5.2 and 5.3.
(iii) See [13] Chapter 6 Theorem 3, [10] Chapter 2 Proposition 1.3 and [9] Proposition 2.4. �

Remark 2.2. Note that (iii) implies that g
12N/ gcd(6,N)
(r1,r2)

(τ) is determined by ±(r1, r2) mod Z2.

In the following two propositions we let K be an imaginary quadratic field with discriminant dK and

θK =

{ √
dK/2 if dK ≡ 0 (mod 4)

(−1 +
√
dK)/2 if dK ≡ 1 (mod 4),

(2.1)

which generates OK over Z.

Proposition 2.3 (Main theorem of complex multiplication). For every positive integer N we have

K(N) = KFN(θK) = K
(

h(θK) : h ∈ FN is defined and finite at θK
)

.

Proof. See [13] Chapter 10 Corollary to Theorem 2 or [16] Chapter 6. �

Furthermore, we have the following explicit description of Shimura’s reciprocity law due to Stevenhagen
which connects the class field theory with the theory of modular functions.

Proposition 2.4 (Shimura’s reciprocity law). Let min(θK , Q) = X2 +BX + C ∈ Z[X ]. For each positive
integer N the matrix group

GK,N =

{(

t−Bs −Cs
s t

)

∈ GL2(Z/NZ) : t, s ∈ Z/NZ

}

gives rise to the surjection

GK,N −→ Gal(K(N)/HK)

α 7→
(

h(θK) 7→ hα(θK) : h(τ) ∈ FN is defined and finite at θK
)
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whose kernel is

KerK,N =







































{

±
(

1 0
0 1

)

, ±
(

0 −1
1 0

)}

if K = Q(
√
−1)

{

±
(

1 0
0 1

)

, ±
(

−1 −1
1 0

)

, ±
(

0 −1
1 1

)}

if K = Q(
√
−3)

{

±
(

1 0
0 1

)}

otherwise.

Proof. See [18] §3. �

3. Primitive generators over Hilbert class fields

Throughout this section we let K be an imaginary quadratic field and θK be as in (2.1). If f = NOK for
an integer N (≥ 2), then we get

gf(C0) = g12N(0, 1
N )(θK)

by the definition (1.2).

Lemma 3.1. Let (s, t) ∈ Z2 −NZ2 for an integer N (≥ 2). If (s, t) 6≡ ±(0, 1) (mod N), then g12N
(0, 1

N )
(τ) 6=

g12N
( s
N , t

N )
(τ).

Proof. Assume on the contrary that g12N
(0, 1

N )
(τ) = g12N

( s
N

, t
N

)
(τ). Since

ordq g12N(0, 1
N )(τ) = 6NB2(0) = ordq g12N( s

N , t
N )(τ) = 6NB2(〈 s

N 〉)

by Proposition 2.1(i), we must have s ≡ 0 (mod N) by the graph of B2(X) = X2 −X + 1/6. Now, since

ordq

(

g12N(0, 1
N )(τ)

(

0 −1
1 0

)
)

= ordq g12N( 1
N ,0)(τ) = 6NB2(

1
N )

= ordq

(

g12N(0, t
N )(τ)

(

0 −1
1 0

)
)

= ordq g12N( t
N ,0)(τ) = 6NB2(〈 t

N 〉)

by Proposition 2.1(iii) and (i), it follows that t ≡ ±1 (mod N). This proves the lemma. �

Lemma 3.2. (i) j(τ) induces a bijective map j : SL2(Z)\H → C.
(ii) If K1 and K2 are distinct imaginary quadratic fields, then θK1 and θK2 are not equivalent under the

action of SL2(Z).

Proof. (i) See [13] Chapter 3 §3.
(ii) One can readily prove the assertion by observing the standard fundamental domain of SL2(Z)\H ([13]
Chapter 3 §1). �

Theorem 3.3. For a given integer N (≥ 2), g12N
(0, 1

N )
(θK) generates K(N) over HK except for (less than)

N7/2 imaginary quadratic fields K.

Proof. Let

S = {(s, t) ∈ Z2 : 0 ≤ s, t ≤ N − 1 and (s, t) 6= (0, 0), (0, 1), (0, N − 1)}.
For each (s, t) ∈ S we consider the function

g(τ) = g12N(0, 1
N )(τ) − g12N( s

N , t
N )(τ) (∈ FN ),

which is a zero of the polynomial

f(X) =
∏

ρ∈Gal(FN/F1)

(X − g(τ)ρ) = Xn + pn−1(j(τ))X
n−1 + · · ·+ p0(j(τ))
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where n = [FN : F1] and pn−1(X), · · · , p0(X) ∈ Q(X). Note that f(X) is a power of min(g(τ),F1) and
p0(X) 6= 0 because g(τ) 6= 0 by Lemma 3.1. Furthermore, since g(τ) is integral over Q[j(τ)] by Proposition
2.1(ii), pn−1(X), · · · , p0(X) are polynomials over Q. Let

Z(s,t) = {imaginary quadratic fields K : g(θK) = 0}.

If K belongs to this set, then we get p0(j(θK)) = 0, since g(τ) is a zero of f(X) and j(τ) is holomorphic
on H. Hence we obtain |Z(s,t)| ≤ deg p0(X) by Lemma 3.2(i) and (ii). On the other hand, any conjugate of
g(τ) under the action of Gal(FN/F1) is of the form

g12N
( a
N , b

N )
(τ) − g12N

( c
N , d

N )
(τ) ((a, b), (c, d) ∈ Z2 −NZ2)

by Proposition 2.1(iii). Since

ordq
(

g12N
( a
N , b

N )
(τ) − g12N

( c
N , d

N )
(τ)

)

≥ min
{

6NB2(〈 a
N 〉), 6NB2(〈 c

N 〉)
}

by Proposition 2.1(i)

≥ 6NB2(
1
2 ) by the graph of B2(X) = X2 −X +

1

6

= −N

2
,

we deduce that

ordq p0(j(τ)) = ordq NFN/F1
(g(τ))

≥ −N

2
· [FN : F1] = −N

2
· |GL2(Z/NZ)/{±12}|

> −N

2
·N4 = −N5

2
.

Thus we get |Z(s,t)| ≤ deg p0(X) < N5/2 by the fact ordqj(τ) = −1. It follows that if we let

Z =
⋃

(s,t)∈S

Z(s,t),

then

|Z| ≤
∑

(s,t)∈S

|Z(s,t)| <
N5

2
· |S| < N7

2
.

Now, let K be an imaginary quadratic field not in Z. Suppose that g12N
(0, 1

N )
(θK) does not generate K(N)

over HK . Then there exists α =

(

t−Bs −Cs
s t

)

∈ GK,N/KerK,N (≃ Gal(K(N)/HK)) in Proposition 2.4

which fixes g12N
(0, 1

N )
(θK). Hence we derive that

0 = g12N(0, 1
N )(θK)− g12N(0, 1

N )(θK)α = g12N(0, 1
N )(θK)− (g12N(0, 1

N )(τ)
α)(θK) = g12N(0, 1

N )(θK)− g12N( s
N , t

N )(θK)

by Propositions 2.4 and 2.1(iii). But this implies that K belongs to Z(s,t) (⊆ Z), which yields a contradiction.

Therefore, if K is an imaginary quadratic field not in a finite set Z, then g12N
(0, 1

N )
(θK) generates K(N) over

HK . This completes the proof. �

Remark 3.4. We permitted rather rough inequalities in the above proof because the theorem actually holds
true for all K (6= Q(

√
−1), Q(

√
−3)) and N (≥ 2) without any exception ([6]).
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4. Primitive generators of ray class fields

In this section we shall show that Siegel-Ramachandra invariants play a role of primitive generators of
ray class fields over imaginary quadratic fields under certain condition by utilizing Schertz’s idea ([15]).

Throughout this section we let K be an imaginary quadratic field with discriminant dK and f be a nonzero
integral ideal of K. For a character χ of Cl(f) we let fχ be the conductor of χ and χ0 be the proper character
of Cl(fχ) corresponding to χ. If f is nontrivial (that is, 6= OK) and χ is a nontrivial character of Cl(f), then
we define the Stickelberger element

Sf(χ, gf) =
∑

C∈Cl(f)

χ(C) log |gf(C)|,

and the L-function

Lf(s, χ) =
∑

a

χ(class of a)

NK/Q(a)s
(s ∈ C)

where a runs over all nonzero integral ideals of K prime to f. Then, from the second Kronecker limit formula
we get the following proposition.

Proposition 4.1. Let χ be a character of Cl(f). If fχ is nontrivial, then
∏

p : nonzero prime ideals of K
p|f, p∤fχ

(1− χ0(p))Lfχ(1, χ0) =
π

3w(f)N(f)τ(χ0)
√
−dK

Sf(χ, gf)

where w(f) is the number of roots of unity in K which are ≡ 1 (mod f), N(f) is the smallest positive integer
in f and

τ(χ0) = −
∑

x∈OK

x (mod f)
gcd(xOK ,fχ)=OK

χ0(class of xγdK fχ)e
2πiTrK/Q(xγ)

with dK the different of K/Q and γ any element of K such that γdK fχ is an integral ideal relatively prime
to f.

Proof. See [13] Chapter 22 Theorem 2 and [10] Chapter 11 Theorem 2.1. �

Remark 4.2. (i) The product factor
∏

p|f, p∤fχ

(

1− χ0(p)
)

is called the Euler factor of χ. If there is no

prime ideal p such that p|f and p ∤ fχ, then it is understood to be 1.
(ii) As is well-known ([5] Chapter IV Proposition 5.7), Lfχ(1, χ0) 6= 0.

Theorem 4.3. Let f be a nontrivial integral ideal of K whose prime ideal factorization is

f =

n
∏

k=1

pekk .

Assume that

[Kf : K] > 2
n
∑

k=1

[K
fp

−ek
k

: K]. (4.1)

Then gf(C0) generates Kf over K.

Proof. Set F = K(gf(C0)). We derive that

|{characters χ of Gal(Kf/K) : χ|Gal(Kf/F ) 6= 1}|
= |{characters χ of Gal(Kf/K)}| − |{characters χ of Gal(F/K)}|
= [Kf : K]− [F : K]. (4.2)
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Furthermore, we have

|{characters χ of Gal(Kf/K) : pk ∤ fχ for some k}|
= |{characters χ of Gal(Kf/K) : fχ|fp−ek

k for some k}|

≤
n
∑

k=1

|{characters χ of Gal(K
fp

−ek
k

/K)}| =
n
∑

k=1

[K
fp

−ek
k

: K]. (4.3)

Now, suppose that F is properly contained in Kf. Then we get from the assumption (4.1) that

[Kf : K]− [F : K] = [Kf : K]

(

1− 1

[Kf : F ]

)

> 2

n
∑

k=1

[K
fp

−ek
k

: K]

(

1− 1

2

)

=

n
∑

k=1

[K
fp

−ek
k

: K].

This, together with (4.2) and (4.3), implies that there exists a character χ of Gal(Kf/K) such that

χ|Gal(Kf/F ) 6= 1, (4.4)

pk|fχ for all k = 1, · · · , n. (4.5)

Identifying Cl(f) and Gal(Kf/K) via the Artin map, we obtain from Proposition 4.1 and (4.5) that

0 6= Lfχ(1, χ0) = TSf(χ, gf) (4.6)

for certain nonzero constant T . On the other hand, we achieve that

Sf(χ, gf) =
∑

C∈Cl(f)

χ(C) log |gf(C0)
C | by (1.3)

=
∑

C1∈Gal(Kf/K)

C1 (mod Gal(Kf/F ))

∑

C2∈Gal(Kf/F )

χ(C1C2) log |gf(C0)
C1C2 |

=
∑

C1

∑

C2

χ(C1)χ(C2) log |(gf(C0)
C2)C1 |

=
∑

C1

χ(C1) log |gf(C0)
C1 |

(

∑

C2

χ(C2)

)

by the fact gf(C0) ∈ F

= 0 by (4.4),

which contradicts (4.6). Therefore, we conclude that F = Kf as desired. �

Remark 4.4. For a nontrivial integral ideal f of K we have a degree formula

[Kf : K] =
hKϕ(f)w(f)

wK
(4.7)

where hK is the class number of K, ϕ is the Euler function for ideals, namely

ϕ(pn) =
(

NK/Q(p)− 1
)

NK/Q(p)
n−1

for a prime ideal power pn (n ≥ 1), w(f) is the number of roots of unity in K which are ≡ 1 (mod f) and
wK is the number of roots of unity in K ([12] Chapter VI Theorem 1).

Let N (≥ 2) be an integer whose prime factorization is given by

N =

A
∏

a=1

pua
a

B
∏

b=1

qvbb

C
∏

c=1

rwc
c (A, B, C ≥ 0, ua, vb, wc > 0)

where each pa (respectively, qb and rc) splits (respectively, is inert and ramified) in K. One can readily verify
that the condition

2

A
∑

a=1

1

(pa − 1)pua−1
a

+

B
∑

b=1

1

(q2b − 1)q
2(vb−1)
b

+

C
∑

c=1

1

(rc − 1)r2wc−1
c

<
1

2wK

implies the assumption (4.1) with f = NOK .
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Remark 4.5. In a recent paper ([7]) Jung et al. showed that ifK 6= Q(
√
−1), Q(

√
−3) and f = NOK (N ≥ 2),

then gf(C0) is indeed a primitive generator of Kf over K. They manipulated actions of Gal(HK/K) and
Gal(Kf/HK) separately rather than working with actions of Gal(Kf/K) directly by (1.3). It is worth noting
that gf(C0) has the smallest absolute value among all other conjugates because the conjugates of a large
power of 1/gf(C0) become a normal basis of Kf over K ([8]).

5. Siegel-Ramachandra invariants of conductor 2

Let K be an imaginary quadratic field and θK be as in (2.1). If f = 2OK , then gf(C0) = g24
(0, 12 )

(θK). Note

that g12
(0, 12 )

(θK), which is a square root of gf(C0), also lies in K(2) by Propositions 2.1(ii) and 2.3. In this

section we shall examine some applications of g12
(0, 12 )

(θK).

By the definition (1.1) we have

g12(0, 12 )
(τ) = 212q

∞
∏

n=1

(1 + qn)24

g12( 1
2 ,0)

(τ) = q−
1
2

∞
∏

n=1

(1− qn−
1
2 )24

g12( 1
2 ,

1
2 )
(τ) = −q−

1
2

∞
∏

n=1

(1 + qn−
1
2 )24.

(5.1)

Obviously, the above functions are all distinct and nonconstant. We have the following useful identities:

Lemma 5.1. (i) g12
(0, 12 )

(τ)g12
( 1
2 ,0)

(τ)g12
( 1
2 ,

1
2 )
(τ) = −212.

(ii)

j(τ) =
(g12

(0, 12 )
(τ) + 16)3

g12
(0, 12 )

(τ)
=

(g12
( 1
2 ,0)

(τ) + 16)3

g12
(0, 12 )

(τ)
=

(g12
( 1
2 ,

1
2 )
(τ) + 16)3

g12
(0, 12 )

(τ)
.

Proof. See [1] p. 256 and Theorem 12.17. �

Proposition 5.2. Let K be an imaginary quadratic field of discriminant dK and θK be as in (2.1).

(i) j(θK) is an algebraic integer which generates HK over K.

(ii) If p is a prime dividing the discriminant of min(j(θK),K), then (dK

p ) 6= 1 and p ≤ |dK |.

Proof. (i) See [13] Chapter 5 Theorem 4 and Chapter 10 Theorem 1.
(ii) See [3] and [2]. �

Remark 5.3. (i) g12
(0, 12 )

(τ), g12
( 1
2 ,0)

(τ) and g12
( 1
2 ,

1
2 )
(τ) are (distinct) roots of the cubic equation

(X + 16)3 − j(τ)X = 0

by Lemma 5.1(ii). Hence g12
(0, 12 )

(θK), g12
(0, 12 )

(θK)g12
( 1
2 ,0)

(θK) and g12
(0, 12 )

(θK)g12
( 1
2 ,

1
2 )
(θK) are all algebraic

integers dividing 212 by Proposition 5.2(i) and Lemma 5.1(i). Furthermore, one can easily check by
(5.1) and the definition (2.1) that g12

(0, 12 )
(θK) is always a real number, but g12

(0, 12 )
(θK)g12

( 1
2 ,0)

(θK) and

g12
(0, 12 )

(θK)g12
( 1
2 ,

1
2 )
(θK) are real numbers when dK ≡ 0 (mod 4).

(ii) In [9] authors showed in general that if (r1, r2) ∈ 1
NZ2−Z2 for some integer N (≥ 2), then g(r1,r2)(τ)

is integral over Z[j(τ)]. Hence g(r1,r2)(θK) is an algebraic integer by Proposition 5.2(i).

Proposition 5.4. Let K ( 6= Q(
√
−1), Q(

√
−3)) be an imaginary quadratic field of discriminant dK ≡ 1

(mod 8) or ≡ 0 (mod 4), and θK be as in (2.1). Set x = NK(2)/HK
(g12

(0, 12 )
(θK)).

(i) x is a (nonzero) real algebraic integer dividing 212 which generates HK over K. And, min(x,K) has
integer coefficients.
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(ii) If p is an odd prime dividing the discriminant of min(x,K), then (dK

p ) 6= 1 and d ≤ |dK |.

Proof. (i) We have

[K(2) : HK ] =

{

1 if dK ≡ 1 (mod 8)
2 if dK ≡ 0 (mod 4)

by (4.7), and

Gal(K(2)/HK) ∼=







































{(

1 0
0 1

)}

if dK ≡ 1 (mod 8)

{(

1 0
0 1

)

,

(

0 1
1 0

)}

if dK ≡ 4 (mod 8)

{(

1 0
0 1

)

,

(

1 0
1 1

)}

if dK ≡ 0 (mod 8).

by Proposition 2.4. Hence we obtain

x = NK(2)/HK
(g12(0, 12 )

(θK)) =



















g12
(0, 12 )

(θK) if dK ≡ 1 (mod 8)

g12
(0, 12 )

(θK)g12
( 1
2 ,0)

(θK) if dK ≡ 4 (mod 8)

g12
(0, 12 )

(θK)g12
( 1
2 ,

1
2 )
(θK) if dK ≡ 0 (mod 8)

(5.2)

by Propositions 2.4 and 2.1(iii). Note that x is a real algebraic integer dividing 212 by Remark 5.3(i). It
follows from Lemma 5.1 that

j(θK) =

{

(x+ 16)3/x if dK ≡ 1 (mod 8)

(256− x)3/x2 if dK ≡ 0 (mod 4).
(5.3)

Therefore x generates HK over K by Proposition 5.2(i). On the other hand, since x is a real number, we get

[K(x) : K] =
[K(x) : Q(x)] · [Q(x) : Q]

[K : Q]
= [Q(x) : Q].

This implies that min(x,K) = min(x,Q), which has integer coefficients because x is an algebraic integer.
(ii) If K has class number one, then there is nothing to prove. If σ1 and σ2 are distinct elements of
Gal(HK/K), then we derive from (5.3) that

j(θK)σ1 − j(θK)σ2

=

{

(x1 − x2)(x
2
1x2 + x1x

2
2 + 48x1x2 − 4096)/x1x2 if dK ≡ 1 (mod 8)

(x1 − x2)(−x2
1x

2
2 + 196608x1x2 − 16777216x1 − 16777216x2)/x

2
1x

2
2 if dK ≡ 0 (mod 4)

where x1 = xσ1 and x2 = xσ2 . Note from Remark 5.3(i) that there is no prime ideal p of HK which contains
x1x2 and lies above an odd prime. Therefore, if p is an odd prime dividing the discriminant of min(x,K),

then (dK

p ) 6= 1 and |p| ≤ dK by Proposition 5.2(ii). �

Remark 5.5. If K (6= Q(
√
−3)) is an imaginary quadratic field of discriminant dK ≡ 5 (mod 8), then one

can readily verify that NK(2)/HK
(g12

(0, 12 )
(θK)) = −212 by Propositions 2.4, 2.1(iii) and Lemma 5.1(i). Hence

one cannot develop Theorem 5.4 for NK(2)/HK
(g12

(0, 12 )
(θK)) in this case.

By adopting the idea of the proof of Theorem 3.3 we can partially reprove Gauss’ class number one
problem for imaginary quadratic fields.

Theorem 5.6. There are only finitely many imaginary quadratic fields K of discriminant dK ≡ 1 (mod 8)
or ≡ 0 (mod 4) with class number one.
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Proof. Let K (6= Q(
√
−1), Q(

√
−3)) be such an imaginary quadratic field and θK be as in (2.1). Since

NK(2)/HK
(g12

(0, 12 )
(θK)) is a (nonzero) real algebraic integer dividing 212 by Proposition 5.4(i), it should be

one of ±1, ±21, ±22, · · · ,±212. Consider the function

G(τ) =



















g12
(0, 12 )

(τ) if dK ≡ 1 (mod 8)

−212/g12
( 1
2 ,

1
2 )
(τ) if dK ≡ 4 (mod 8)

−212/g12
( 1
2 ,0)

(τ) if dK ≡ 0 (mod 8)

which belongs to F2 by Proposition 2.1(ii), and satisfies G(θK) = NK(2)/HK
(g12

(0, 12 )
(θK)) by Lemma 5.1(i)

and (5.2). Since G(τ) is not a constant, there are only finitely many points τ0 on the modular curve of level 2
such that G(τ0) = ±1, ±21, ±22, · · · ,±212. It follows form Lemma 3.2(ii) that there are only finitely many
imaginary quadratic fields K such that G(θK) = ±1, ±21, ±22, · · · ,±212. This proves the theorem. �

Remark 5.7. (i) By using (5.1) and the definition (2.1) one can directly show that |G(θK)| < 1 if
dK ≤ −40 ([17]). This fact gives another proof of Theorem 5.6.

(ii) In 1903, Landau ([11]) presented a simple proof of Theorem 5.6. The complete determination of
imaginary quadratic fields of class number one was first accomplished by Heegner ([4]) in 1952.
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