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GENERATION OF CLASS FIELDS BY SIEGEL-RAMACHANDRA INVARIANTS

JA KYUNG KOO AND DONG HWA SHIN

ABSTRACT. Let K be an imaginary quadratic field and f be a nontrivial integral ideal of K. We show that
the Siegel-Ramachandra invariant could be a primitive generator of the ray class field modulo § over K (or,
over the Hilbert class field of K).

1. INTRODUCTION

Let K be an imaginary quadratic field. For a nonzero integral ideal f of K we denote by CI(f) the ray
class group modulo § and write Cy for its unit class. Then, there exists an abelian extension of K whose
Galois group is isomorphic to CI(f) via the Artin map by class field theory ([5] or [12]). The field, denoted
by Kj, is called the ray class field modulo § of K. In particular, the ray class field modulo O is called the
Hilbert class field of K and is simply written as Hg.

For (r1,72) € Q? — Z2, the Siegel function 9(r1,rs)(7) on the complex upper half-plane $ = {7 € C :
Im(7) > 0} is defined by

1 T mire(r1— n —
g(rl,rz)(T) = _q2B2( l)e 2(m=1) 1 — 4z H 1_ q QZ 1_ qq 1) (11)

where Bo(X) = X2 — X +1/6 is the second Bernoulli polynomial, ¢ = 2™ and ¢, = €*>™%* with z = r17+79.
If f is nontrivial (that is, # Ok) and C' € CI(f), then we take any integral ideal ¢ in C so that fe=! = [21, 22]
(= Zz1 + Zz3) with z = 21 /29 € $. Now we define the Siegel-Ramachandra invariant (of conductor § at C)
by

9i(C) = g% () (1.2)
where N is the smallest positive integer in f and a, b are integers such that 1 = (a/N)z; + (b/N)z2. This
value depends only on the class C' and lies in K;. Furthermore, we have a well-known transformation formula

91(C1)7( = gi(C1Ca)  (Ch, Cn € CA(f) (1.3)

where o is the Artin map ([I0] Chapter 11 §1).

Ramachandra ([I4]) constructed a primitive generator of Kj over K for any nontrivial f in terms of
certain elliptic unit, but his invariant involves overly complicated product of Siegel-Ramachandra invariants
and singular values of the modular A-function. Thus, Lang ([I3] p. 292) and Schertz ([15]) conjectured that
the simplest invariant g;(Co) is a primitive generator of Kj over K (or, over H ), and Schertz conditionally
proved the assertion. Recently, Jung et al. ([6]) proved that if K # Q(v/—1), Q(v/=3) and | = (N)
(= NOk) for an integer N (> 2), then g;(Cy) generates Kj over Hi by showing that |g;(Co)| < |g;(Co)? |
for all nonidentity element o € Gal(K;/H).

In this paper we shall first give another proof of a weak version of the result of Jung et al., namely, for
a given integer N (> 2), g(n)(Co) generates K () over Hg except for N7/2 imaginary quadratic fields K
(Theorem 3.3]). Furthermore, we shall develop a simple criterion of f for g;(Co) to be a primitive generator
of Kj over K by adopting Schertz’s idea (Theorem .3 and Remark [.4]). In the last section we shall give
some applications when f = (2) (Proposition 5.4 and Theorem [B.6]).
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2. PRELIMINARIES

In this section we shall review basic properties of Siegel functions and Shimura’s reciprocity law.

For each positive integer NV let Fn be the field of meromorphic modular functions of level N whose Fourier
coefficients belong to the N*' cyclotomic field Q(e?™/N). Then Fy is a Galois extension of F; = Q(j(7)),
where

G(T) = ¢~ + 744 + 196884q + 214937604 + - - -

is the modular j-function, whose Galois group Gal(Fy /F1) is represented by GLo(Z/NZ)/{£12} ([13] Chap-
ter 6 Theorem 3).
Let g(7) be an element of Fy. If both g(7) and g(7)~! are integral over Q[j(7)], then g(7) is called a

modular unit (of level N) . As is well-known, g(7) is a modular unit if and only if it has no zeros and poles
on $ ([10] Chapter 2 §2).

Proposition 2.1. Let (r1,r2) € &Z* — Z* for some integer N (> 2).
(i) We have the order formula

1
OI’dq g(T17T2)(T) = §B2(<T‘1>)

where (r1) is the fractional part of r1 in the interval [0,1).
(11) 12N/ ged(6,N)

(r1.72) (1) is a modular unit of level N.

(iii) Furthermore, <(Z 2) € GLy(Z/NZ)/{£12} ~ Gal(Fn/F1) acts on g(lf%%cd(G,N)(T) by
12N/ ged(6,N) ab) _ 12N/ged(6,N), \ _ 12N/ged(6,N)
(r1,72) (T)( d) - (T) — J(riatrze,r1b+rad) (T)

ror(24)

Proof. (i) See [10] p. 31.
(ii) See [I0] Chapter 3 Theorems 5.2 and 5.3.
(iii) See [13] Chapter 6 Theorem 3, [10] Chapter 2 Proposition 1.3 and [9] Proposition 2.4. O

12N/ ged(6,N)
(r1,r2)

Remark 2.2. Note that (iii) implies that g (1) is determined by +(ry,72) mod Z2.

In the following two propositions we let K be an imaginary quadratic field with discriminant dx and
o { N ifdg =0 (mod 4) 1)
(-1+Vdg)/2 ifdg =1 (mod 4),
which generates Ok over Z.
Proposition 2.3 (Main theorem of complex multiplication). For every positive integer N we have
Ky =KFn(Ok) = K(h(GK) : h € Fy is defined and finite at HK).
Proof. See [13] Chapter 10 Corollary to Theorem 2 or [I6] Chapter 6. O

Furthermore, we have the following explicit description of Shimura’s reciprocity law due to Stevenhagen
which connects the class field theory with the theory of modular functions.

Proposition 2.4 (Shimura’s reciprocity law). Let min(fx, Q) = X? + BX + C € Z[X]. For each positive

integer N the matriz group

Gr.n = { (t _SBS _fs> € GL2(Z/NZ) : t, s€ Z/NZ}

gives rise to the surjection
GK,N — Gal(K(N)/HK)
a = (h(0k) = h*(0k) : h(1) € Fy is defined and finite at k)
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(<000 =(0 ) A
ey = {i<(1) (1)>’i<_11 _01>,j:<(1) _11>} if K =Q(v/=3)

1 0 .
{ + (0 1) } otherwise.

Proof. See [18] §3. O

whose kernel is

3. PRIMITIVE GENERATORS OVER HILBERT CLASS FIELDS

Throughout this section we let K be an imaginary quadratic field and 0k be as in 21)). If f = NOg for
an integer N (> 2), then we get
9i(Co) = 9(102,]\,%)(9K)
by the definition (2.
Lemma 3.1. Let (s,t) € Z* — NZ? for an integer N (> 2). If (s,t) # £(0,1) (mod N), then g(uN )( T) #
12N
9is ¢ )( 7).

Proof. Assume on the contrary that g(lomi )(T) (13 L)(7'). Since
) NN

ord, g(lgﬁ)( 7) = 6NB2(0) = ord, g( A )(7) = 6NB2((%))

by the graph of Bo(X) = X? — X + 1/6. Now, since
—1

ord, <g(1027N (1

0

1

by Proposition 2Ii), we must have s = 0 (mod
N)
—1
= ord, (g(lgjzg)(T)( 0 )

ord, g(lg\fo) (1) = 6NB2((%))

(mod N). This proves the lemma. (]

)

)
) td, 913 (r) = 6NBa(2)
)=
+1

by Proposition 2.IIiii) and (i), it follows that ¢ =

Lemma 3.2. (i) j(7) induces a bijective map j : SLo(Z)\$H — C.
(ii) If K1 and Ko are distinct imaginary quadratic fields, then Ok, and Ok, are not equivalent under the
action of SLy(Z).
Proof. (i) See [I3] Chapter 3 §3.
(ii) One can readily prove the assertion by observing the standard fundamental domain of SLy(Z)\$ ([13]
Chapter 3 §1). O

12N

Theorem 3.3. For a given integer N (> 2), g 01 )(HK) generates Ky over Hy except for (less than)

N7 /2 imaginary quadratic fields K.
Proof. Let
S={(s,t)€Z* : 0<s, t<N—1and (s,t) # (0,0), (0,1), (0,N —1)}.

For each (s,t) € S we consider the function

9(r) = 950 (1) = 93y (7) (€ Fn),

i
which is a zero of the polynomial

fX)= I &E=9()")=X"+puaGE)NX" 4+ poli(7))

pEGal(Fn /F1)
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where n = [Fn : F1] and pp—1(X), -+, po(X) € Q(X). Note that f(X) is a power of min(g(7), F1) and
po(X) # 0 because g(7) # 0 by Lemma [BIl Furthermore, since ¢g(7) is integral over Q[j(7)] by Proposition
2I1(1), pn—1(X), - -+, po(X) are polynomials over Q. Let

Z(s4) = {imaginary quadratic fields K : g(fx) = 0}.

If K belongs to this set, then we get po(j(0x)) = 0, since g(7) is a zero of f(X) and j(7) is holomorphic
on §). Hence we obtain |Z(, 4| < degpo(X) by Lemma [B.2(i) and (ii). On the other hand, any conjugate of
g(7) under the action of Gal(Fy/Fi) is of the form

G (1) = g2 (1) ((a,0), (c,d) € 22 — NZ?)

g( d
fok NN

by Proposition 2I(iii). Since

ordq(g(uﬁj\f%)( T)— 9(112\,]\,,]\, (7)) = min{6NBy((%)), 6NB2((£))} by Proposition ZIIi)
1

> 6NBy(3) by the graph of Bo(X) = X* — X + G

_ N

= R
we deduce that

Ol"dq pO(](T)) = Ol"dq N]'—N/]'—l (g(T))
N N
> Norym) = -2 oL@z ()
N N°®
AV
- 2 2
Thus we get |Z( 4| < degpo(X) < N5/2 by the fact ordgj(r) = —1. It follows that if we let
U Zeo:
(s,t)eS
then
N3 N7
HES> 2] < 5 181 < =
(s,t)€S
Now, let K be an imaginary quadratic field not in Z. Suppose that g(lomi )(HK) does not generate Ky
N

—C's

. t—B
over Hy. Then there exists a = ( s 5 .

) € Gk n/Kerg n (~ Gal(K(ny/H)) in Proposition 2.4

12N

which fixes 90.1)
N

(A ). Hence we derive that
0= g(lozﬁNﬁ)(eK) - g(l(iN%)(eK) = 9(0 1 (HK) (9(102]\i )( 7)) (0k) = 9(0 L )(HK) 9(12%]\7[%)(910
by Propositions 2.4 and 2.1[(iii). But this implies that K belongs to Z(, s (C Z), which yields a contradiction.
Therefore, if K is an imaginary quadratic field not in a finite set Z, then 9(10211 )(GK) generates K(y) over
N
Hy . This completes the proof. ([

Remark 3.4. We permitted rather rough inequalities in the above proof because the theorem actually holds
true for all K (# Q(v/—1), Q(+/—3)) and N (> 2) without any exception ([@]).
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4. PRIMITIVE GENERATORS OF RAY CLASS FIELDS

In this section we shall show that Siegel-Ramachandra invariants play a role of primitive generators of
ray class fields over imaginary quadratic fields under certain condition by utilizing Schertz’s idea ([15]).

Throughout this section we let K be an imaginary quadratic field with discriminant dx and § be a nonzero
integral ideal of K. For a character x of CI(f) we let §, be the conductor of x and xo be the proper character
of Cl(fy) corresponding to x. If f is nontrivial (that is, # Ok ) and x is a nontrivial character of CI(f), then
we define the Stickelberger element

Silg) = > x(C)loglgi(C)l,
CeCi(f)
and the L-function
x(class of a)
= Nk/gla)®

where a runs over all nonzero integral ideals of K prime to §f. Then, from the second Kronecker limit formula
we get the following proposition.

Li(s,x) = (s €C)

Proposition 4.1. Let x be a character of CI(f). If f, is nontrivial, then

[T 0= (o) = 5ot (00

p : nonzero prime ideals of K

pIf, piix

where w(f) is the number of roots of unity in K which are =1 (mod §), N(f) is the smallest positive integer
n § and

T(Xo) = —Z Xo(class of zy0kf, )e? ™ Trx/a(®)
z€O0K
z (mod f)
ged(zOk ,fx)=0x

with ¥ the different of K/Q and v any element of K such that Y0 xfy is an integral ideal relatively prime
to f.

Proof. See [13] Chapter 22 Theorem 2 and [10] Chapter 11 Theorem 2.1. O

Remark 4.2. (i) The product factor leﬁ ol (1 —Xo(p)) is called the Euler factor of x. If there is no

prime ideal p such that p|f and p 1 f,, then it is understood to be 1.
(ii) Asis well-known ([5] Chapter IV Proposition 5.7), Ly, (1, x0) # 0.

Theorem 4.3. Let f be a nontrivial integral ideal of K whose prime ideal factorization is
n
j=]1»
k=1
Assume that

K : K] > 22”%;% . K. (4.1)
k=1

Then g5(Cy) generates Ky over K.
Proof. Set F' = K(g;(Co)). We derive that

|{characters x of Gal(K;/K) : X|gai(x,/r) # 1}
= |{characters x of Gal(Kj/K)}| — |{characters x of Gal(F/K)}|
= [Kj:K]-[F:K] (4.2)
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Furthermore, we have
|{characters x of Gal(K/K) : pj1tfy for some k}|
= |{characters x of Gal(K;/K) : fy|fp, " for some k}|

n

; |[{characters x of Gal(Kfp;ck JK)} = ;[Kfp;ck : K. (4.3)

IN

Now, suppose that F' is properly contained in Kj. Then we get from the assumption (&I) that

[Kﬁkj—mwkauq;K(l—ﬁa%ﬂ>>2§:M%J%LKK1—%>=§:M%;kJq
k=1 k=1

This, together with ([@2) and (£3]), implies that there exists a character x of Gal(Kj/K) such that
Xlcai(x;/F) # 1,

pilfy forall k=1, -+, n.
Identifying CI(f) and Gal(Kj/K) via the Artin map, we obtain from Proposition €Il and ([H) that
0 # Ly, (1, x0) = TSj(X; 95) (4.6)

for certain nonzero constant 7'. On the other hand, we achieve that

Si(%-9) = Y X(C)loglg;(Co)°| by (L3)

CeCI(f)

= - > X(CiC2)loggi(Co) |

Ci1€Gal(K;/K) Cy€Gal(K;/F)
Cl (mod Gdl(Kf/F))

Z Z Y(Cl )Y(O2) 10g |(gf(CO)C2)Cl |

Cp Csq
= > X(C1)loglg;(Co) |(ZY(C2)) by the fact g;(Co) € I
Cl CQ
= 0 by @34),
which contradicts (£.0). Therefore, we conclude that F' = Kj; as desired. O
Remark 4.4. For a nontrivial integral ideal f of K we have a degree formula
hi o (f)w(f)
K : K| = ————= (4.7)
WK

where h is the class number of K, ¢ is the Euler function for ideals, namely

p(p") = (Nxjo®) = )Nigg(p)"
for a prime ideal power p™ (n > 1), w(f) is the number of roots of unity in K which are = 1 (mod f) and
wg is the number of roots of unity in K ([I2] Chapter VI Theorem 1).
Let N (> 2) be an integer whose prime factorization is given by

A B C
N:HpZqustTg}C (A5 Baczoa ua; Ub, wc>0)
a=1 b=1 =1

where each p, (respectively, g, and r.) splits (respectively, is inert and ramified) in K. One can readily verify
that the condition

1 1

<
(re — D)r2wet " 2uwg

A 1 B 1 C
22 =t Z 2 2(vp—1) +
1)% —

=
i=1 (Pa = Lpa =1 (@ —
implies the assumption @) with f = NOk.

c=1
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Remark 4.5. In a recent paper ([7]) Jung et al. showed that if K # Q(v/—1), Q(v/=3) and f = NOg (N > 2),
then g;(Co) is indeed a primitive generator of K; over K. They manipulated actions of Gal(Hg /K) and
Gal(K;/Hp) separately rather than working with actions of Gal(Kj/K) directly by (IL3). It is worth noting
that g;(Co) has the smallest absolute value among all other conjugates because the conjugates of a large
power of 1/g;(Cp) become a normal basis of K; over K ([§]).

5. SIEGEL-RAMACHANDRA INVARIANTS OF CONDUCTOR 2

Let K be an imaginary quadratic field and 0 be as in (Z1)). If f = 20, then g;(Co) = g?é l)(HK). Note
2
that g(lg)%)(ﬁK), which is a square root of g;(Cp), also lies in K3y by Propositions 2.11(ii) and 23l In this
section we shall examine some applications of g(lo2 1) (Ox).
)
By the definition (L] we have

g () = 2% [T +q™
n=1
_1 o1
9l = az [Ja-a2)* (5.1)
n=1
_1 no1l
g (1) = —¢72 ]1(1+q 7).

Obviously, the above functions are all distinct and nonconstant. We have the following useful identities:

! (1) = —212,

Lemma 5.1. (i) 92021%)(7)9(1;0) (7')9(;

(i)

1
2

(9.1 +16)* (g3 (1) +16)* (g% 1)(7) +16)°
9(137%)(7') 9(1021%)(7') 9(102% (1)
Proof. See [1] p. 256 and Theorem 12.17. O

Proposition 5.2. Let K be an imaginary quadratic field of discriminant di and Ok be as in (21]).

(i) §(0k) is an algebraic integer which generates Hy over K.
(ii) If p is a prime dividing the discriminant of min(j(0x), K), then (df) #1 and p < |dg|.

Proof. (i) See [I3] Chapter 5 Theorem 4 and Chapter 10 Theorem 1.
(ii) See [3] and [2]. O

Remark 5.3. (i) g2, (), 9(1;0) (1) and g(lg

©0.1) )(T) are (distinct) roots of the cubic equation
2

(X +16)* —j(n)X =0

by Lemma [5.1](ii). Hence g(lg 1 (0x), g(102 l)(19K)g(1f 0)(0x) and g(102 l)(GK)g(lf 1)(0x) are all algebraic
)3 )3 2 2 33
integers dividing 2'? by Proposition E.2(i) and Lemma [51i). Furthermore, one can easily check by
(EI) and the definition 21 that g(lgl)(t?;() is always a real number, but g(lgl)(t?;()g(lf 0)(9K) and
'3 2 2
g(102 l)(19K)g(1f 1)(0x) are real numbers when dx =0 (mod 4).
12 272
(i) In [9] authors showed in general that if (r1,72) € §Z? — Z? for some integer N (> 2), then g(,, ,,)(T)
is integral over Z[j(7)]. Hence g(,, ,,)(fx) is an algebraic integer by Proposition B.2[i).

Proposition 5.4. Let K (# Q(v/—-1), Q(v/=3)) be an imaginary quadratic field of discriminant dxg = 1
(mod 8) or =0 (mod 4), and Ok be as in (21). Set ¥ = Ny, s, (g(lgl)(ﬁK)).
i)

(i) @ is a (nonzero) real algebraic integer dividing 2'2 which generates Hy over K. And, min(x, K) has
integer coefficients.
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(ii) If p is an odd prime dividing the discriminant of min(z, K), then (dTK) #1 and d < |dg]|.

Proof. (i) We have
' [ 1 ifdxk=1 (mod8)
Ky  Hicl = { 2 ifdxk =0 (mod 4)

{ ((1) (1)) } ifdg =1 (mod 8)

Gal(K )/ Hy) = {((1) (1)) ((1) é)} ifde =4 (mod 8)

(30 (9] ta=0 woas)

by (@), and

by Proposition 241 Hence we obtain

9302)%)(91() if dK =1 (HlOd 8)
L= NK(Q)/HK (g(lg,%)(l%()) = 9(1021%)(91()9(1;0) (0rx) ifdxk =4 (mod 8) (5.2)
92, (0k)gt? 1 (0x) ifdxk =0 (mod 8)
0,3) (3:3)

by Propositions 2.4 and Z.11(iii). Note that x is a real algebraic integer dividing 2'? by Remark B.3(i). It
follows from Lemma [5.1] that

Jj(0k) =

T 3/x i = mo
{( +16)3/ fdg=1 (mod8) 5.3)

(256 — z)3 /2% ifdg =0 (mod 4).
Therefore x generates Hyi over K by Proposition[5.2[(i). On the other hand, since x is a real number, we get
[K(x) : Q(x)] - [Q(2) : Q]
(K : Q]

This implies that min(z, K') = min(z, Q), which has integer coefficients because x is an algebraic integer.
(ii) If K has class number one, then there is nothing to prove. If o; and o2 are distinct elements of
Gal(Hgi /K), then we derive from (5.3) that

J(0x)7 —3(0x)
(11 — x2) (2322 + 2123 + 483179 — 4096) /2172 ifdg =1 (mod 8)
(21 — 22)(—a222 + 1966082122 — 167772162, — 1677721622) /2223 if dx =0 (mod 4)

[K(z): K] =

= [Q(=) : QJ.

where 21 = 27! and x2 = z°2. Note from Remark [5.3(i) that there is no prime ideal p of Hx which contains
x122 and lies above an odd prime. Therefore, if p is an odd prime dividing the discriminant of min(x, K),
then (dTK) # 1 and |p| < dx by Proposition B2((ii). O

Remark 5.5. If K (# Q(v/—3)) is an imaginary quadratic field of discriminant dx = 5 (mod 8), then one
can readily verify that Ny, /m, (g(lg 1,(0k)) = —212 by Propositions Z.4] Z1(iii) and Lemma [E.)i). Hence
)
one cannot develop Theorem 5.4l for N, /1, (g(lg 1y(0x)) in this case.
'3

By adopting the idea of the proof of Theorem we can partially reprove Gauss’ class number one
problem for imaginary quadratic fields.

Theorem 5.6. There are only finitely many imaginary quadratic fields K of discriminant dg =1 (mod 8)
or =0 (mod 4) with class number one.
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Proof. Let K (# Q(v/—1), Q(+/—3)) be such an imaginary quadratic field and 0 be as in (2I]). Since
Nk o) /Hr (g(l(i%)(HK)) is a (nonzero) real algebraic integer dividing 22 by Proposition [5.4(i), it should be

one of £1, £21, £22 ... 4212, Consider the function
9(1027%)(7) ifde =1 (mod 8)
G(r) = _212/9(1;% (r) ifdgk =4 (mod )

_212/9(15 0(7) ifdg =0 (mod 8)

3

which belongs to F> by Proposition 2.Iii), and satisfies G(0x) = Nk, /m, (9(1021)(9}()) by Lemma [
2

and (£2)). Since G(7) is not a constant, there are only finitely many points 79 on the modular curve of level 2

such that G(rp) = £1, £21, £22 ... +2!2 Tt follows form Lemma[3.2(ii) that there are only finitely many
imaginary quadratic fields K such that G(0x) = 41, £2!, £22 ... +212 This proves the theorem. [
Remark 5.7. (i) By using (5I) and the definition ([2.I) one can directly show that |G(0k)| < 1 if

dg < —40 ([I7]). This fact gives another proof of Theorem .6
(ii) In 1903, Landau ([I1]) presented a simple proof of Theorem The complete determination of
imaginary quadratic fields of class number one was first accomplished by Heegner ([]) in 1952.
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