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Abstract:In [6], the notion of homogenous perfect set as a generalization
of Cantor type sets is introduced. Their Hausdorff, lower box-counting, upper
box-counting and packing dimensions are studied in [6] and [8]. In this paper,
we show that the homogenous perfect set be minimal for 1-dimensional qua-
sisymmetric maps, which generalize the conclusion in [3] about the uniform
Cantor set to the homogenous perfect set.
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1 Introduction

Given M > 1, a homeomorphism f : R — R is said to be M —quasisymmetric
if and only if
o< @l
£ ()]
for all pairs of adjacent intervals I, J of equal length, here and in sequel | - |
stands for the 1-dimensional Lebesgue measure. A map is quasisymmetric if
it is M —quasisymmetric for some M > 1. More generally a homeomorphism

*This work is supported by NNSF No.11071059
tCollege of Mathematics and Economics, Hunan University, Changsha 410082, China
E-mail address: ouxyq@yahoo.cn (Yingging Xiao)


http://arxiv.org/abs/1009.1799v3

between metric spaces (X,dy) and (Y,dy). If there is a homeomorphism
n : [0, +00) — [0,400) such that

dx(a,z) dy(f(a), f(x))
o) T H0), @)

for all triples a, b,z of distinct points in X and ¢t € [0,+00), then we call
f is a quasisymmetric map. When X =Y = R", we also say that f is an
n-dimensional quasisymmetric map.

Let @S(X) denote the collection of all quasisymmetric maps defined on
X. Conformal dimension of a metric space, a concept introduced by Pansu
in [5], is the infimal Hausdorff dimension of quasisymmetric images of X,

CdimX = inf dimgy f(X).
mX = B, dima f(X)

<n(t) (1)

We say X is minimal for conformal dimension or just minimal if C dim X =
dimg X. Euclidean spaces with standard metric are the simplest examples
of minimal spaces. Basic analytic definitions and results about the conformal
dimension and the quasisymmetric map are contained in [4].

Now, we introduce the notion of the homogeneous perfect set. The general
references on the homogeneous perfect set are [0 8. In these paper, the
authors obtained the Hausdorff, lower box-counting, upper box-counting and
packing dimensions of the homogeneous perfect set.

Homogeneous perfect sets. Let Jy = [0,1] C R be the fixed closed
interval which we call the initial interval. Let {n;}?2, be a sequence of
positive integers and {cx} a sequence of positive real numbers such that for
any k > 1,n; > 2and 0 < ¢, < 1. For any k > 1, let Dy, = {(i1,49, - -, ix) :
1 <i; <n;l<j<k},D=UysqDk, where Dy = {0}. We assume if
o= (01,09,-+,0k) € Dy, 1 < j <y, then oxj = (01,09, 0k, j) € Dy

Suppose that Jy is the initial interval and J = {J, : ¢ € D} is a col-
lection of closed subintervals of J;. We say that the collection J fulfills the
homogenous perfect structure provided:

1. For any k > 0,0 € Dy, Jou1, Jow2,* * *, Josn,,, are subintervals of J,.
Furthermore, max{z : € Jyp\i} < min{z : x € Join}, 1 <@ <ngg — 1,
that is the interval J,,; is located at the left of .J,,;+1) and the interiors of
the intervals J,.; and Jg.(i41) are disjoint.

2. Forany k> 1,0 € Dy_1,1 < 5 < ny, we have

|Jcr*i‘ o
| o]

= Ck.



3. There exists a sequence of nonnegative real numbers {n; ;,k > 1,0
Jj < ng} such that for any £ > 0,0 € Dy, we have min(J,,;) — min(.J,)
Nit1,0, MaxX(Jy) — MaxX(Jouny 1) = Mot1npsr> A0 MIN(Jgyig1)) — max(Jow)
Met1,i(1 <@ < myyq — 1).

Suppose that the collection of intervals J = {J, : ¢ € D} satisfies the
homogeneous perfect structure.

Let

[IVAN

Ek: U Jo

oeDy
for every k > 1. The set

E = E(Jo, {n}, {ee ) Ames}) = m U Jo = ﬂ Ei

k>10€Dy k>0

is called a homogeneous perfect set and the intervals J,,o € Dy, the funda-
mental intervals of order k.

For any k > 1, if nyo = Mgy, = 0 and gy, = ex|J,| for all 1 < 1 <
ng—1,0 € Di_1. Then E is called a uniform Cantor set. This case has been
considered by M.D. Hu and S.Y.Wen in [3]. They obtained

Theorem 1 ([3]). Let E be a uniform Cantor set. If the sequence {n;} is
bounded and if dimy E = 1. Then dimy f(E) = 1 for all 1-dimensional
quasisymmetric maps f.

In this paper, we generalize Theorem [I] to the homogeneous perfect set
and show how the techniques of [3] can be applied to the homogeneous perfect
set and obtain the following theorem.

Theorem 2. Let E := E(Jy, {n},{ck},{nk;}) be a homogeneous perfect set.
If the sequence {n;} is bounded and if dimy E = 1, then dimy f(E) =1 for
all 1-dimensional quasisymmetric map f.

This paper is organized as following. In section 2 we introduce the basic
general definitions and results in fractal geometry. The proof of Theorem
appears in section 3.

2 Preliminary

In order to obtain our result, we need the following lemma from [9], the
lemma can also be found in [2] or [3].



Lemma 1 ([9]). Let f be an M-quasisymmetric map. Then

o || 1/ (J)] /]
T+ M) ()1 < w22 <4 )P 2
U= Jrn =) ?
for all pairs J, I of intervals with J C I, where
0<p=logy(1+ M) <1< qg=log,y(l+ M). (3)

Hausdorff dimension. In this subsection, we recall the definition of
Hausdorff dimension. For more details we refer to [L [7].

Let K C R? For any s > 0, the s—dimensional Hausdorff measure of K
is given in the usual way by

H*(K) = hgri)%lf{;|Ui| K C LZJUi,O < |U;| < 6}.

This leads to the definition of the Hausdorff dimension of K:
dimy K = inf{s : H*(K) < oo} = sup{s : H*(K) > 0}.

The Hausdorff dimension of the homogeneous perfect set E, which de-
pends on {ng}, {cx} and {n; ;} have been obtained in [6] as follows

Theorem 3 ([0]). Let E = E(Jo, {nx},{ck}, {mk;}) be a homogeneous perfect
set. Suppose np < D for all k, where D is a constant, then

] .
dimy E = lim inf - l_ﬂg(m”? ) Y
koo —log(D 51" Mkg1g + Nir1C1C2 - - - Crgr)

Denote by Nj the number of component intervals of Ey and by d; their
common length. Let ey; = ng;/dp—1 > nyy for all & > 1 and 0 < [ < ny.
From the definition we obtain

nper <1, Ny =npng_y---ny and 0 = cpr1 - - 1
for all £ > 1. So we have the total length of Ej, is
k
Ny oy, = an’%
i=1

and
_ MNEk41 o NEk41
Ok = .20 M 10 + Ney10k41 = 520" €rq 1,00k + Nag 10841 (5)



Lemma 2. Let E = E(Jo, {ni}, {ck}, {me;}) be a homogeneous perfect set.
Suppose the sequence {ny} is bounded and dimyE =1 then:

(1) hmk_,oo(Nkék)l/k =1.

(2) limp_yo0 + T ZZ 60 =0 for any 0 < p <1, where e; = maxo<i<n, €i,-

(3) limgoot{i : 0 < i < k,e; > €}/k = 0 for any € € (0,1), where £
denotes the cardinality.

Proof. (1) Since
Nie(Ok = Mo = Mg r) < N < 1,

Thus, we have

10gNk < 10gNk

< <L
- lOg((Sk — Nk,o — nk,nk+1) - lOg 5]6

As dimg E = 1, we get from Theorem

1 =dimg £ = liminf tog N

k—oo —log (8 — Mo — 77k7nk+1) (6)
10g Nk

< lim <1

~ koo — log Oy,

Thus we obtain
log N log N
lim —SE — fiyy 08k

k—oo —log 0p  k—oo log Ni, — log Ni0y

and
10g Nkék o

m
Koo log Ny,
Let N =1+ sup, n, < co. We obtain N, < N*, so

m 10g Nk(;k
1 - =
k—oo klog N

that gives the the conclusion (1) of the lemma.

(2) Since
k
1
1k _
(Nyox) / H n; cl E Z::



Thus, we have

k
1
lim z ;nlcz = 1. (7)

k—o00

From the equation (), we have
O = X5 err 1.0k + Mgy 1Crr1 0% (8)

Thus
epr1 < 1— Ng+1Ck+1,

SO | |
Since the equation (7)), we obtain
1t

which together with Jensen’s inequality yields

for any 0 < p < 1. This proves the conclusion (2).
(3) Fixed € € (0,1), we obtain from the conclusion (2)

k
1, . . 1 1
Eﬂ{Z:OSZSk’eiZE}:E Z k_z

1:1<i<k,e;>e

as k tends to co. This proves the conclusion (3).

3 The proof of Theorem

In order to obtain our result, we need the following mass distribution
principle to estate the lower bound.



Lemma 3 ([I]). Let i be a mass distribution supported on E. Suppose that
for some t there are numbers ¢ > 0 and n > 0 such that for all sets U with
\U| < n we have u(U) < c|U|". Then dimy E > t.

The proof of Theorem 2k Let £ = (,—, £ be a homogeneous perfect
set satisfying the conditions of Theorem Let f : R — R be an M-
quasisymmetric map and ¢ is the number defined as in ([B). Without loss
of generality assume that f([0,1]) = [0,1]. Then f(E) = (=, f(Ex). The
images of component intervals of Fj are component intervals of f(FEy).

We define a mass distribution p on f(E) as follows: Let u([0,1]) = 1. For
every k > 1 and for every component interval J of f(Ej_1), let Jyi, Jia, - -
-, Jgn, denote the ny component intervals of f(Ej) lying in J. Define

Tkl .
w(Jyi) = w(J), =12, ny,
I[J]]a
where
n
1 T1a = 1Tl
i=1
and

(1/q,1) when g > 1.

we are going to prove that the measure p satisfy

Jec { (0,1) when ¢ = 1, (9)

p(J) < ClJ) (10)

for any interval J C [0, 1], where C' is a positive constant independent of J.
We do this as following two steps.

Step 1. Suppose that J is a component interval of f(FEj), For every
i,0 <i <k, let J; be the component interval of f(F;) such that

J:JkCJk_1C"'J1CJ0:[O,1] (11)

By the definition of u, we have

pl) b et AT [Tt A Al
I W e=lla [ Te=2lla [ Jolla W Je=alla (il l[Jolla
- 1]
illd .
= A= 02 koL (12)



So the above equality can be rewritten as

k

1(J) -
e = Lm0 (13)
i=1
In order to prove ([I0), it suffices to show
k
lim ri—1 = OQ. (14)
k—o0 ey

Given an 7, 1 < i < k, we are going to estimate r;_;. Let J;_1 be the
component interval of f(E;_ 1) in the sequence ([I)). Let J;1, Jia, - - -, Jin, be
the n; component intervals of f(E;) lying in J;_;. Recall that J; C J;_4 is
a component interval of f(F;). So there must exist 1 < ig < n; such that
Ji = Jii,- Let Gy, Gix, - - -, Gip, be the n; + 1 gaps in the J;_;. Put

I = f_l(Ji—l)a I; = f_l(Ji) = f_l(Jiio) and [; = f_l(Jij)a

for j =1,2,---,n;. Then [;,- - -, I;,, are component intervals of E; lying in
the component interval I;_; of F;_ ;. Since f is M-quasisymmetric, it follows
Lemma [l and the construction of E that

|Gl |f1(Gyy)l .
<4 P<gel j=0,1,2, - n 15
Tl = ) o)
where e; = maxg<;<y, €;; and that
| Jij oy Mgl g 2.4
> (14+ M)~( )= (1+ M) =c. (16)
| i1l [ Zi-1]
Here p, g are numbers defined in Lemma [Il. The inequality (I5) yields
alt -+ [, = ioa] = [Giol = -+ = |G, >1—4(n; +1)eb.  (17)
| Ji1] | Ji1]

From inequality (I6]), we have

a4 [
| Ji1|®
| Jij]
n; dq

> — 0.
= 1+ M)2°

ri—1

> n(

8



Let
S(k,p)={i:1<i<k,e <min{a, |L"}

AN+4 [ 4N+4
AN+57

where a = 1 — where N = 1 + sup; n;. Since 7;; < e;;. Thus, If

i € S(k,p) we have

o Myl _ | Zi5]
L] nal Ll + D000 M
|43
- 1
1
> _—
— 2N
for j =1,---,n,;, where 1, = maxo<i<p, ;-
From the conclusion (3) of Lemma 2 we obtain
. 4S(k,p)
L )
Then follows from the left hand inequality of ([2]) that
1Sl ()] o, 4]
1> = > 1+ M) ()= A
il ()] [£i-1]
for y =1,2,-- -, n;, where A = (M)~ Therefore,

@N)s

il 4 Tl 44 T | Lty

(| L] + [Jal + -+ [T, D (A A2+ A+ 2, (21)
> (1+ A7

where z; = “Jjﬂ € [A,1].

Note that the equality (I7) and (1), for any i € S(k,p) we obtain
A Tl A i
i-1 = ]
e O e
(I [Tal A+ i,
> as(1 = 4(n; + 1)e?),

C(T + | Tal + - + [ i,
)e | Ji1|®

) (22)




where ay = (1 + A)17% > 1
Since
1—mz > (1—2)"

for all x € (0,1 — x/;75), so we have
1 —4max > (1 —x)*mH!

for all x € (0,a)where a =1 — *N+/ 3%1‘; and all positive inters m < N.

Note that n; < N and e € (0,a) for all i € S(k, p), thus we obtain
Ti—1 > 062(1 - 6?)(4m+4)d (23)
Using the estimate (I8) and (23]), we obtain

dq

k

n;c; p\d
Hm‘—l > | H W H as(1 —4(n; + 1)el)
i=1 1€S(k,p)
dq

ni¢; _ P \(Ani+4)d
= H (1+ M) H a1 - €;)

i1ZS(k,p) 1€S(k,p)
:agS(k,p)[(l_I_M)—2d]k—tiS(k,p) H n,-c?q H (1_6€)(4ni+4)d‘

12S(k,p) 1€S5(k,p)
(24)

If g =1, since n;c; < 1 then we have

k
H n;c; e H nicd > H nic; > Hnici:Nk(Sk.
i—1

12S(k,p) 1ZS(k,p) 12S(k,p)
If ¢ > 1, we have

k

k
H nict dq _ H (nici)dqng—dqzn(nici)dq H nil—dq
=1

i#S(k,p) i¢S(k,p) i¢S(k.p)

k
= [[(ic)y® ] n" =)™ J[ N
i=1 i€S(k,p) iZS(k,p)
= (N, )dq(Nl—dq)k—ﬁS(k,p)

(25)

10



ford € (1/q,1).
Let

i = af™ 7 (1 M) ISED (N g (N s (26)

and

=[] @—ehiimtor.

i€S(k,p)
Thus, we have
k
H Tic1 2> ExCr- (27)
i=1
It is obvious that
lim aF =ay>1. (28)
—00

due to the conclusion (1) of Lemma [ and the equality (20) . On the other
hand, since log(1 — ) > —2z when 0 < = < 1, the conclusion (2) of Lemma
2l we obtain

1
- o (4n1+4)d
klogék = log ||

i1€S(k,p)

Z log(1 (4m+4)

ZES (k,p)
1

== > (4n; +4)dlog(1 — €?)
1€S5(k,p)
(4N + 4)d (29)
Z log(1 — €?
i€S(k,p)

_2(4N+4)d T o

[

1€S(k,p)

(AN +4)d &

1=1

as k — oo. This show that

lim Cl/k (30)

k—00

11



From (27), [28), (30), we obtain
k
hggloglf([[l ric1) 't > > 1.

This implies
k

lim (H Ti_1) = 00.

k—oo 4
=1

Step 2. Let J C [0, 1] be any interval. For such J, let k be the unique
positive inter such that

S < N < 0k,

where 9, denotes the lengthen of component intervals of Ey. Then the set
f7YJ) meets at most two component intervals of Ej_; and hence at most
2np,1 component intervals of Ejy. Thus, the set J meets at most 2ng,,
component intervals of f(Ej).

Let Jy, Jo, -+, Ji, I < 2ng4q, be those component intervals of f(Fj) meeting
J. Using the conclusion of step 1. we obtain

p(J) < ZM(JZ-) < CZ il (31)

Since 0, < |f~(J)|, we obtain
S C3f7N), i=1,2,81 0,

where 3f71(J) denote the interval of lengthen 3|f~1(J)| concentric with
f7YJ). Thus we obtain

|l < FBFHI) S K], i=1,2,3--1,

where K is a positive constant depending on M only. This together with
gives

w(J) < CLKYJ|* < 2NCK?|J|*.
This show that (I0).

By Lemma (@), it follows from that dimy f(FE) > d for d. As d could be
chosen as closed to 1 as one would. Hence dimy f(E) = 1. This completes
the proof of Theorem O

Acknowledgments. I would like to thank my advisor Professor Qiu
Weiyuan for introducing me to the theory of fractal geometry.

12



References

1]

2]

K.J.Faconer, Fractal Geometry: Mathematical Foundations and Appli-
cations, John Wile Sons (1990).

H.Hakobyan, Cantor sets minimal for quasisymmetric maps, J.Contemp.
Math.Anal. 41(2), 2006, 5-13.

M.D.Hu, S.Y.Wen, Quasisymmetrically minimal uniform cantor sets,
Topology and its Applications, 155, 2008, no.6,515-521.

J.Heinonen, Lectures on Analysis in Metric Spaces. Universitext.
Springer-Verlag, New York, 2001.

P.Pansu, Dimension confrome et sphere a 'infini des variétés a courbure
négative, Ann.Acad.Sci.Fenn. 14(2)14 177-212.

7.Y .Wen, J.Wu, Hausdorff dimension of homogeneous perfect sets, Acta
Math.Hungar.,107,2005,35-44.

7.Y .Wen, Mathematical Foundations of Fractal geometry, Shanghai Sci-
entific and Technological Education Publishing House, 2000.

X.Y.Wang, J.Wu, Packing dimensions of homogeneous perfect sets, Acta
Math.Hungar., 118(1-2),2008,29-39.

JM.Wu, Null sets for doubling and dyadic doubling measures,
Ann.Acad.Sci.Fenn.Math.18, 1993,77-91.

13



	1 Introduction
	2 Preliminary
	3 The proof of Theorem ??

