
ar
X

iv
:1

00
9.

17
99

v3
  [

m
at

h.
C

V
] 

 8
 O

ct
 2

01
0

Quasisymmetrically minimal homogeneous

perfect sets∗

Yingqing Xiao †

October 11, 2010

Abstract:In [6], the notion of homogenous perfect set as a generalization
of Cantor type sets is introduced. Their Hausdorff, lower box-counting, upper
box-counting and packing dimensions are studied in [6] and [8]. In this paper,
we show that the homogenous perfect set be minimal for 1-dimensional qua-
sisymmetric maps, which generalize the conclusion in [3] about the uniform
Cantor set to the homogenous perfect set.
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1 Introduction

GivenM ≥ 1, a homeomorphism f : R → R is said to beM−quasisymmetric
if and only if

M−1 ≤
|f(I)|

|f(J)|
≤ M

for all pairs of adjacent intervals I, J of equal length, here and in sequel | · |
stands for the 1-dimensional Lebesgue measure. A map is quasisymmetric if
it is M−quasisymmetric for some M ≥ 1. More generally a homeomorphism
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between metric spaces (X, dX) and (Y, dY ). If there is a homeomorphism
η : [0,+∞) → [0,+∞) such that

dX(a, x)

dX(b, x)
≤ t ⇒

dY (f(a), f(x))

dY (f(b), f(x))
≤ η(t) (1)

for all triples a, b, x of distinct points in X and t ∈ [0,+∞), then we call
f is a quasisymmetric map. When X = Y = R

n, we also say that f is an
n-dimensional quasisymmetric map.

Let QS(X) denote the collection of all quasisymmetric maps defined on
X . Conformal dimension of a metric space, a concept introduced by Pansu
in [5], is the infimal Hausdorff dimension of quasisymmetric images of X ,

C dimX = inf
f∈QS(X)

dimH f(X).

We say X is minimal for conformal dimension or just minimal if C dimX =
dimH X . Euclidean spaces with standard metric are the simplest examples
of minimal spaces. Basic analytic definitions and results about the conformal
dimension and the quasisymmetric map are contained in [4].

Now, we introduce the notion of the homogeneous perfect set. The general
references on the homogeneous perfect set are [6, 8]. In these paper, the
authors obtained the Hausdorff, lower box-counting, upper box-counting and
packing dimensions of the homogeneous perfect set.

Homogeneous perfect sets. Let J0 = [0, 1] ⊂ R be the fixed closed
interval which we call the initial interval. Let {nk}

∞
k=1 be a sequence of

positive integers and {ck} a sequence of positive real numbers such that for
any k ≥ 1, nk ≥ 2 and 0 < ck < 1. For any k ≥ 1, let Dk = {(i1, i2, · · ·, ik) :
1 ≤ ij ≤ nj, 1 ≤ j ≤ k}, D =

⋃

k≥0Dk, where D0 = {0}. We assume if
σ = (σ1, σ2, ···, σk) ∈ Dk, 1 ≤ j ≤ nk+1, then σ∗j = (σ1, σ2, ···, σk, j) ∈ Dk+1.

Suppose that J0 is the initial interval and J = {Jσ : σ ∈ D} is a col-
lection of closed subintervals of J0. We say that the collection J fulfills the
homogenous perfect structure provided:

1. For any k ≥ 0, σ ∈ Dk, Jσ∗1, Jσ∗2, · · ·, Jσ∗nk+1
are subintervals of Jσ.

Furthermore, max{x : x ∈ Jσ∗i} ≤ min{x : x ∈ Jσ∗(i+1)}, 1 ≤ i ≤ nk+1 − 1,
that is the interval Jσ∗i is located at the left of Jσ∗(i+1) and the interiors of
the intervals Jσ∗i and Jσ∗(i+1) are disjoint.

2. For any k ≥ 1, σ ∈ Dk−1, 1 ≤ j ≤ nk, we have

|Jσ∗i|

|Jσ|
= ck.
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3. There exists a sequence of nonnegative real numbers {ηk,j, k ≥ 1, 0 ≤
j ≤ nk} such that for any k ≥ 0, σ ∈ Dk, we have min(Jσ∗1) − min(Jσ) =
ηk+1,0,max(Jσ)−max(Jσ∗nk+1

) = ηk+1,nk+1
, and min(Jσ∗(i+1))−max(Jσ∗i) =

ηk+1,i(1 ≤ i ≤ nk+1 − 1).
Suppose that the collection of intervals J = {Jσ : σ ∈ D} satisfies the

homogeneous perfect structure.
Let

Ek =
⋃

σ∈Dk

Jσ

for every k ≥ 1. The set

E := E(J0, {nk}, {ck}, {ηk,j}) =
⋂

k≥1

⋃

σ∈Dk

Jσ =
⋂

k≥0

Ek

is called a homogeneous perfect set and the intervals Jσ, σ ∈ Dk, the funda-
mental intervals of order k.

For any k ≥ 1, if ηk,0 = ηk,nk
= 0 and ηk,l = ek|Jσ| for all 1 ≤ l ≤

nk −1, σ ∈ Dk−1. Then E is called a uniform Cantor set. This case has been
considered by M.D. Hu and S.Y.Wen in [3]. They obtained

Theorem 1 ([3]). Let E be a uniform Cantor set. If the sequence {nk} is

bounded and if dimH E = 1. Then dimH f(E) = 1 for all 1-dimensional

quasisymmetric maps f .

In this paper, we generalize Theorem 1 to the homogeneous perfect set
and show how the techniques of [3] can be applied to the homogeneous perfect
set and obtain the following theorem.

Theorem 2. Let E := E(J0, {nk}, {ck}, {ηk,j}) be a homogeneous perfect set.

If the sequence {nk} is bounded and if dimH E = 1, then dimH f(E) = 1 for

all 1-dimensional quasisymmetric map f .

This paper is organized as following. In section 2 we introduce the basic
general definitions and results in fractal geometry. The proof of Theorem 2
appears in section 3.

2 Preliminary

In order to obtain our result, we need the following lemma from [9], the
lemma can also be found in [2] or [3].
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Lemma 1 ([9]). Let f be an M-quasisymmetric map. Then

(1 +M)−2(
|J |

|I|
)q ≤

|f(J)|

|f(I)|
≤ 4(

|J |

|I|
)p (2)

for all pairs J, I of intervals with J ⊂ I, where

0 < p = log2(1 +M−1) ≤ 1 ≤ q = log2(1 +M). (3)

Hausdorff dimension. In this subsection, we recall the definition of
Hausdorff dimension. For more details we refer to [1, 7].

Let K ⊂ R
d. For any s ≥ 0, the s−dimensional Hausdorff measure of K

is given in the usual way by

Hs(K) = lim inf
δ→0

{
∑

i

|Ui|
s : K ⊂

⋃

i

Ui, 0 < |Ui| < δ}.

This leads to the definition of the Hausdorff dimension of K:

dimH K = inf{s : Hs(K) < ∞} = sup{s : Hs(K) > 0}.

The Hausdorff dimension of the homogeneous perfect set E, which de-
pends on {nk}, {ck} and {ηk,j} have been obtained in [6] as follows

Theorem 3 ([6]). Let E = E(J0, {nk}, {ck}, {ηk,j}) be a homogeneous perfect

set. Suppose nk ≤ D for all k, where D is a constant, then

dimH E = lim inf
k→∞

log(n1n2 · · · nk)

− log(
∑nk+1−1

l=1 ηk+1,l + nk+1c1c2 · · · ck+1)
. (4)

Denote by Nk the number of component intervals of Ek and by δk their
common length. Let ek,l = ηk,l/δk−1 ≥ ηk,l for all k ≥ 1 and 0 ≤ l ≤ nk.
From the definition we obtain

nkck ≤ 1, Nk = nknk−1 · · · n1 and δk = ckck−1 · · · c1

for all k ≥ 1. So we have the total length of Ek is

Nkδk =
k
∏

i=1

nici,

and
δk = Σ

nk+1

l=0 ηk+1,l + nk+1δk+1 = Σ
nk+1

l=0 ek+1,lδk + nk+1δk+1. (5)
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Lemma 2. Let E = E(J0, {nk}, {ck}, {ηk,j}) be a homogeneous perfect set.

Suppose the sequence {nk} is bounded and dimHE = 1 then:

(1) limk→∞(Nkδk)
1/k = 1.

(2) limk→∞
1
k

∑k
i=1 e

p
i = 0 for any 0 < p ≤ 1, where ei = max0≤l≤ni

ei,l.
(3) limk→∞ ♯{i : 0 ≤ i ≤ k, ei ≥ ǫ}/k = 0 for any ǫ ∈ (0, 1), where ♯

denotes the cardinality.

Proof. (1) Since

Nk(δk − ηk,0 − ηk,nk+1
) ≤ Nkδk ≤ 1,

Thus, we have

logNk

− log(δk − ηk,0 − ηk,nk+1
)
≤

logNk

− log δk
≤ 1.

As dimHE = 1, we get from Theorem 3

1 = dimH E = lim inf
k→∞

logNk

− log(δk − ηk,0 − ηk,nk+1
)

≤ lim
k→∞

logNk

− log δk
≤ 1.

(6)

Thus we obtain

lim
k→∞

logNk

− log δk
= lim

k→∞

logNk

logNk − logNkδk
= 1,

and

lim
k→∞

logNkδk
logNk

= 0.

Let N = 1 + supk nk < ∞. We obtain Nk ≤ Nk, so

lim
k→∞

logNkδk
k logN

= 0,

that gives the the conclusion (1) of the lemma.
(2) Since

(Nkδk)
1/k = (

k
∏

i=1

nici)
1/k ≤

1

k

k
∑

i=1

nici ≤ 1.
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Thus, we have

lim
k→∞

1

k

k
∑

i=1

nici = 1. (7)

From the equation (5), we have

δk = Σ
nk+1

l=0 ek+1,lδk + nk+1ck+1δk. (8)

Thus
ek+1 ≤ 1− nk+1ck+1,

so
1

k

k
∑

i

ei ≤
1

k

k
∑

i

(1− nici).

Since the equation (7), we obtain

lim
i

1

k

k
∑

i

ei = 0,

which together with Jensen’s inequality yields

lim
k→∞

1

k

k
∑

i=1

epi ≤ lim
k→∞

(
1

k

k
∑

i=1

ei)
p = 0

for any 0 < p ≤ 1. This proves the conclusion (2).
(3) Fixed ǫ ∈ (0, 1), we obtain from the conclusion (2)

1

k
♯{i : 0 ≤ i ≤ k, ei ≥ ǫ} =

1

k

∑

i:1≤i≤k,ei≥ǫ

1 ≤
1

kǫ

k
∑

i=1

ei → 0

as k tends to ∞. This proves the conclusion (3).

3 The proof of Theorem 2

In order to obtain our result, we need the following mass distribution
principle to estate the lower bound.
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Lemma 3 ([1]). Let µ be a mass distribution supported on E. Suppose that

for some t there are numbers c > 0 and η > 0 such that for all sets U with

|U | ≤ η we have µ(U) ≤ c|U |t. Then dimH E ≥ t.

The proof of Theorem 2: Let E =
⋂∞

k=0Ek be a homogeneous perfect
set satisfying the conditions of Theorem 2. Let f : R → R be an M-
quasisymmetric map and q is the number defined as in (3). Without loss
of generality assume that f([0, 1]) = [0, 1]. Then f(E) =

⋂∞
k=1 f(Ek). The

images of component intervals of Ek are component intervals of f(Ek).
We define a mass distribution µ on f(E) as follows: Let µ([0, 1]) = 1. For

every k ≥ 1 and for every component interval J of f(Ek−1), let Jk1, Jk2, · ·
·, Jknk

denote the nk component intervals of f(Ek) lying in J . Define

µ(Jki) =
|Jki|

d

||J ||d
µ(J), i = 1, 2, · · ·, nk,

where

||J ||d =

nk
∑

i=1

|Jki|
d

and

d ∈

{

(0, 1) when q = 1,
(1/q, 1) when q > 1.

(9)

we are going to prove that the measure µ satisfy

µ(J) ≤ C|J |d (10)

for any interval J ⊂ [0, 1], where C is a positive constant independent of J .
We do this as following two steps.

Step 1. Suppose that J is a component interval of f(Ek), For every
i, 0 ≤ i ≤ k, let Ji be the component interval of f(Ei) such that

J = Jk ⊂ Jk−1 ⊂ · · ·J1 ⊂ J0 = [0, 1] (11)

By the definition of µ, we have

µ(J)

|J |d
=

1

||Jk−1||d

|Jk−1|
d

||Jk−2||d
· · ·

|J1|
d

||J0||d
=

|Jk−1|
d

||Jk−1||d
· · ·

|J1|
d

||J1||d

|J0|
d

||J0||d
.

Let

ri =
||Ji||d
|Ji|d

, i = 0, 1, 2, · · ·, k − 1. (12)
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So the above equality can be rewritten as

µ(J)

|J |d
= (

k
∏

i=1

ri−1)
−1. (13)

In order to prove (10), it suffices to show

lim
k→∞

k
∏

i=1

ri−1 = ∞. (14)

Given an i, 1 ≤ i ≤ k, we are going to estimate ri−1. Let Ji−1 be the
component interval of f(Ei−1) in the sequence (11). Let Ji1, Ji2, · · ·, Jini

be
the ni component intervals of f(Ei) lying in Ji−1. Recall that Ji ⊂ Ji−1 is
a component interval of f(Ei). So there must exist 1 ≤ i0 ≤ ni such that
Ji = Jii0 . Let Gi0, Gi1, · · ·, Gini

be the ni + 1 gaps in the Ji−1. Put

Ii−1 = f−1(Ji−1), Ii = f−1(Ji) = f−1(Jii0) and Iij = f−1(Jij),

for j = 1, 2, · · ·, ni. Then Ii1, · · ·, Iini
are component intervals of Ei lying in

the component interval Ii−1 of Ei−1. Since f is M-quasisymmetric, it follows
Lemma 1 and the construction of E that

|Gij|

|Ji−1|
≤ 4(

|f−1(Gij)|

|f−1(Ji−1)|
)p ≤ 4epi , j = 0, 1, 2, · · ·, ni, (15)

where ei = max0≤l≤ni
ei,l and that

|Jij|

|Ji−1|
≥ (1 +M)−2(

|Iij|

|Ii−1|
)q = (1 +M)−2cqi . (16)

Here p, q are numbers defined in Lemma 1. The inequality (15) yields

|Ji1|+ · · ·+ |Jini
|

|Ji−1|
=

|Ji−1| − |Gi0| − · · · − |Gini
|

|Ji−1|
≥ 1− 4(ni + 1)epi . (17)

From inequality (16), we have

ri−1 =
|Ji1|

d + · · ·+ |Jini
|d

|Ji−1|d

≥ ni(
|Jij|

|Ji−1|
)d

≥
ni

(1 +M)2d
cdqi .

(18)
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Let
S(k, p) = {i : 1 ≤ i ≤ k, epi ≤ min{a, |Ii|

p}

where a = 1 − 4N+4

√

4N+4
4N+5

, where N = 1 + supl nl. Since ηi,l ≤ ei,l. Thus, If

i ∈ S(k, p) we have

ci =
|Iij|

|Ii−1|
=

|Iij|

ni|Iij |+
∑ni

l=0 ηi,l

≥
|Iij|

ni|Iij|+ (ni + 1)ηi

≥
1

2ni + 1

≥
1

2N

(19)

for j = 1, · · ·, ni, where ηi = max0≤l≤ni
ηi,l.

From the conclusion (3) of Lemma 2, we obtain

lim
k→∞

♯S(k, p)

k
= 1. (20)

Then follows from the left hand inequality of (2) that

1 ≥
|Jij|

|Ji|
=

|f(Iij)|

|f(Ii)|
≥ (1 +M)−2(

|Iij|

|Ii−1|
)q ≥ A

for j = 1, 2, · · ·, ni, where A = (1+M)−2

(2N)q
. Therefore,

|Ji|
d + |Ji1|

d + · · ·+ |Jini
|d

(|Ji|+ |Ji1|+ · · ·+ |Jini
|)d

=
1 + xd

1 + · · ·+ xd
ni

(1 + x1 + · · ·+ xni
)d

≥ (1 + A)1−d,

(21)

where xj =
|Jij |

|Ji|
∈ [A, 1].

Note that the equality (17) and (21), for any i ∈ S(k, p) we obtain

ri−1 =
|Ji|

d + |Ji1|
d + · · ·+ |Jini

|d

|Ji−1|d

=
|Ji|

d + |Ji1|
d + · · ·+ |Jini

|d

(|Ji|+ |Ji1|+ · · ·+ |Jini
|)d

(|Ji|+ |Ji1|+ · · ·+ |Jini
|)d

|Ji−1|d

≥ α2(1− 4(ni + 1)epi )
d,

(22)
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where α2 = (1 + A)1−d > 1.
Since

1−mx ≥ (1− x)m+1

for all x ∈ (0, 1− m
√

m
m+1

), so we have

1− 4mx ≥ (1− x)4m+1

for all x ∈ (0, a)where a = 1− 4N+4

√

4N+4
4N+5

and all positive inters m ≤ N .

Note that ni < N and epi ∈ (0, a) for all i ∈ S(k, p), thus we obtain

ri−1 ≥ α2(1− epi )
(4ni+4)d (23)

Using the estimate (18) and (23), we obtain

k
∏

i=1

ri−1 ≥
∏

i 6∈S(k,p)

nic
dq
i

(1 +M)2d

∏

i∈S(k,p)

α2(1− 4(ni + 1)epi )
d

≥
∏

i 6∈S(k,p)

nic
dq
i

(1 +M)2d

∏

i∈S(k,p)

α2(1− epi )
(4ni+4)d

= α
♯S(k,p)
2 [(1 +M)−2d]k−♯S(k,p)

∏

i 6∈S(k,p)

nic
dq
i

∏

i∈S(k,p)

(1− epi )
(4ni+4)d.

(24)

If q = 1, since nici ≤ 1 then we have

∏

i 6∈S(k,p)

nic
dq
i =

∏

i 6∈S(k,p)

nic
d
i ≥

∏

i 6∈S(k,p)

nici ≥

k
∏

i=1

nici = Nkδk.

If q > 1, we have

∏

i 6∈S(k,p)

nic
dq
i =

k
∏

i 6∈S(k,p)

(nici)
dqn1−dq

i ≥
k
∏

i=1

(nici)
dq

∏

i 6∈S(k,p)

n1−dq
i

=

k
∏

i=1

(nici)
dq

∏

i 6∈S(k,p)

n1−dq
i ≥ (Nkδk)

dq
∏

i 6∈S(k,p)

N1−dq

= (Nkδk)
dq(N1−dq)k−♯S(k,p)

(25)
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for d ∈ (1/q, 1).
Let

ξk = α
♯S(k,p)
2 ((1 +M)−2d)k−♯S(k,p)(Nkδk)

dq(N1−dq)k−♯S(k,p) (26)

and
ζk =

∏

i∈S(k,p)

(1− epi )
(4ni+4)d.

Thus, we have
k
∏

i=1

ri−1 ≥ ξkζk. (27)

It is obvious that
lim
k→∞

ξ
1/k
k = α2 > 1. (28)

due to the conclusion (1) of Lemma 2 and the equality (20) . On the other
hand, since log(1− x) ≥ −2x when 0 < x < 1, the conclusion (2) of Lemma
2, we obtain

1

k
log ζk =

1

k
log

∏

i∈S(k,p)

(1− epi )
(4ni+4)d

=
1

k

∑

i∈S(k,p)

log(1− epi )
(4ni+4)d

=
1

k

∑

i∈S(k,p)

(4ni + 4)d log(1− epi )

≥
(4N + 4)d

k

∑

i∈S(k,p)

log(1− epi )

≥ −2
(4N + 4)d

k

∑

i∈S(k,p)

epi

≥ −2
(4N + 4)d

k

k
∑

i=1

epi → 0.

(29)

as k → ∞. This show that

lim
k→∞

ζ
1/k
k = 1. (30)
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From (27), (28), (30), we obtain

lim inf
k→∞

(

k
∏

i=1

ri−1)
1/k ≥ α2 > 1.

This implies

lim
k→∞

(
k
∏

i=1

ri−1) = ∞.

Step 2. Let J ⊂ [0, 1] be any interval. For such J , let k be the unique
positive inter such that

δk ≤ |f−1(J)| ≤ δk−1,

where δk denotes the lengthen of component intervals of Ek. Then the set
f−1(J) meets at most two component intervals of Ek−1 and hence at most
2nk+1 component intervals of Ek. Thus, the set J meets at most 2nk+1

component intervals of f(Ek).
Let J1, J2, ···, Jl, l ≤ 2nk+1, be those component intervals of f(Ek) meeting

J . Using the conclusion of step 1. we obtain

µ(J) ≤

l
∑

i=1

µ(Ji) ≤ C

l
∑

i=1

|Ji|
d. (31)

Since δk ≤ |f−1(J)|, we obtain

f−1(Ji) ⊂ 3f−1(J), i = 1, 2, 3 · · · l,

where 3f−1(J) denote the interval of lengthen 3|f−1(J)| concentric with
f−1(J). Thus we obtain

|Ji| ≤ f(3f−1(J)) ≤ K|J |, i = 1, 2, 3 · · · l,

where K is a positive constant depending on M only. This together with
gives

µ(J) ≤ ClKd|J |d ≤ 2NCKd|J |d.

This show that (10).
By Lemma (3), it follows from that dimH f(E) ≥ d for d. As d could be

chosen as closed to 1 as one would. Hence dimH f(E) = 1. This completes
the proof of Theorem 2.
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