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A SINGULAR LIMIT FOR COMPRESSIBLE

ROTATING FLUIDS

EDUARD FEIREISL, ISABELLE GALLAGHER, AND ANTONÍN NOVOTNÝ

Abstract. We consider a singular limit problem for the Navier-
Stokes system of a rotating compressible fluid, where the Rossby
and Mach numbers tend simultaneously to zero. The limit problem
is identified as the 2-D Navier-Stokes system in the “horizontal”
variables containing an extra term that accounts for compressibility
in the original system.

1. Introduction

Consider a scaled Navier-Stokes system in the form

(1.1) ∂t̺+ divx(̺u) = 0,

(1.2) ∂t(̺u) + divx(̺u⊗ u) +
1

ε
(g × ̺u) +

1

ε2
∇xp(̺) = divxS(∇xu),

with the viscous stress tensor

(1.3) S(∇xu) = µ
(

∇xu+∇t
xu− 2

3
divxuI

)

, µ > 0,

and
g = [0, 0, 1].

Here ̺ = ̺(t, x) ≥ 0 denotes the density and u(t, x) = [u1, u2, u3](t, x)
denotes the velocity of the fluid. Problem (1.1 - 1.2) arises in meteo-
rological applications, modeling rotating compressible fluids with the
rotation axis determined by g and the Rossby and Mach number pro-
portional to a small parameter ε.
We consider a very simple geometry of the underlying physical space,

namely an infinite slab Ω bounded above and below by two parallel
planes,

(1.4) Ω = R
2 × (0, 1).
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The velocity u satisfies the complete slip boundary conditions,

(1.5) u · n = u3|∂Ω = 0, [Sn]× n|∂Ω = [S2,3,−S1,3, 0]|∂Ω = 0.

For the initial data

(1.6) ̺(0, ·) = ̺0,ε, u(0, ·) = u0,ε,

our goal is to study the asymptotic behavior of the corresponding solu-
tions ̺ε, uε for ε → 0. We focus on the interplay between the Coriolis
force, here proportional to a singular parameter 1/ε, and the acous-
tic waves created in the low Mach number regime. In particular, we
neglect:

• stratification due to the presence of gravitation, here assumed
in equilibrium with the centrifugal force; accordingly the action
of the centrifugal force is also neglected;

• the effect of a boundary layer (Ekman layer), here eliminated
by the choice of the complete slip boundary conditions.

We consider ill-prepared initial data, specifically,

(1.7)























̺0,ε = ̺+ εr0,ε, with {r0,ε}ε>0 bounded in L2 ∩ L∞(Ω),

for some positive constant ̺,

{u0,ε}ε>0 bounded in L2 ∩ L∞(Ω;R3).























Because of the prominent role of the “vertical” direction g in the
problem, we introduce the “horizontal” component vh = [v1, v2, 0] of
a vector field v, together with the corresponding differential opera-
tors ∇h, divh, and, notably, curlh, which is represented by the scalar
field

curlh[v] = ∂x1
v2 − ∂x2

v1.

Let ̺ε, uε be a solution of problem (1.1-1.6). Introducing a new quan-
tity

rε =
̺ε − ̺

ε
which satisfies

∂trε +
1

ε
divx(̺u) + divx(rεu) = 0,

we easily check that if

rε → r, uε → U in some sense,

then, at least formally, the limits satisfy a diagnostic equation

(1.8) g×U+
p′(̺)

̺
∇xr = 0,
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which in turn implies that

(1.9) r = r(x1, x2), U = [Uh, 0], Uh = Uh(x1, x2).

Moreover, as we will see below, divxU = divhUh = 0, and denot-
ing ∇⊥

h r the vector (∂x2
r,−∂x1

r),

(1.10) ∂t

(

∆hr −
1

p′(̺)
r
)

+∇⊥
h r · ∇h(∆hr) =

µ

̺
∆2

hr.

Thus r may be interpreted as a stream function associated to the vec-
tor field Uh, therefore (1.10) can be viewed as a 2D Navier-Stokes sys-
tem describing the motion of an incompressible fluid in the horizontal
plane R

2, supplemented with an extra term (1/p′(̺))∂tr.
The main goal of the present paper is to provide a rigorous justifi-

cation of the target system (1.10) in the framework of weak solutions
to the primitive equations (1.1), (1.2). In Section 2, we introduce the
weak solutions to both systems, recall their basic properties, and state
our main result. In Section 3, we derive the necessary uniform bounds
on the family of solutions {̺ε,uε}ε>0, and pass formally to the limit
when ε → 0. In Section 4, the associated wave equation describing
propagation of the acoustic waves in the low Mach number regime is
introduced. Using the celebrated RAGE theorem, we show that the
acoustic energy tends to zero, at least locally in space. The proof of
the main result is completed in Section 5.

2. Preliminaries

To begin, we point out that system (1.1 - 1.3), endowed with the
boundary conditions (1.5) can be recast as a purely periodic problem
with respect to the vertical coordinate x3 provided ̺, u1, u2 were ex-
tended as even functions in the x3−variable defined on

Ω = R
2 × T 1, T 1 ≡ [−1, 1]|{−1,1},

while u3 is extended to be odd in x3 on the same set. A similar con-
vention is adopted for the initial data.

2.1. Weak solutions. We shall say that functions ̺, u represent a
weak solution to problem (1.1 - 1.6) in (0, T )× Ω if:

• ̺ ≥ 0, ̺ ∈ L∞(0, T ;Lγ(Ω)) for a certain γ > 3/2,
u ∈ L2(0, T ;W 1,2(Ω;R3));

• equation of continuity (1.1) is satisfied in the sense of renormal-
ized solutions, namely

(2.1)
∫ T

0

∫

Ω

(

(̺+b(̺))∂tϕ+(̺+b(̺))u ·∇xϕ+(b(̺)−b′(̺)̺)divxuϕ
)

dx dt
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= −
∫

Ω

(

̺0,ε + b(̺0,ε)
)

ϕ(0, ·) dx

for any b ∈ C∞[0,∞), b′ ∈ C∞
c [0,∞), and any test function

ϕ ∈ C∞
c ([0, T )× Ω);

• p = p(̺) ∈ L1((0, T )×Ω), momentum equation (1.2) is replaced
by a family of integral identities

(2.2)
∫ T

0

∫

Ω

(

̺u ·∂tϕ+̺(u⊗u) : ∇xϕ+
1

ε
(g×̺u) ·ϕ+ 1

ε2
p(̺)divxϕ

)

dx dt

=

∫ T

0

∫

Ω

S(∇xu) : ∇xϕ dx dt−
∫

Ω

̺0,εu0,ε · ϕ(0, ·) dx

for any ϕ ∈ C∞
c ([0, T )× Ω;R3);

• the energy inequality

(2.3)

∫

Ω

(

1

2
̺|u|2 + 1

ε2
E(̺, ̺)

)

(τ, ·) dx+
∫ τ

0

∫

Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

(

1

2
̺0,ε|u0,ε|2 +

1

ε2
E(̺0,ε, ̺)

)

dx

holds for a.a. τ ∈ (0, T ), where

E(̺, ̺) = H(̺)−H ′(̺)(̺− ̺)−H(̺),

with

H(̺) = ̺

∫ ̺

1

p(z)

z2
dz.

Note that, by virtue of hypothesis (1.7), the quantity on the right-
hand side of (2.3) is bounded uniformly for ε→ 0.
Existence of global-in-time weak solutions to problem (1.1 - 1.6)

can be established by the method developed by P.-L. Lions [10], with
the necessary modifications introduced in [8] in order to accommodate
a larger class of physically relevant pressure-density state equations,
specifically,
(2.4)

p ∈ C1[0,∞), p(0) = 0, p′(̺) > 0 for ̺ > 0, lim
̺→∞

p′(̺)

̺γ−1
= p∞ > 0,

for a certain γ > 3/2.
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2.2. Main result. The main result of the present paper can be stated
as follows.

Theorem 2.1. Assume that the pressure p satisfies (2.4).
Let {̺ε,uε}ε>0 be a family of weak solutions to problem (1.1 - 1.6)

in (0, T )× Ω, where Ω is specified through (1.4), with the initial data
satisfying (1.7), where

r0,ε → r0 weakly in L2(Ω), u0,ε → U0 weakly in L2(Ω;R3).

Then after taking a subsequence, the following results hold

rε ≡
̺ε − ̺

ε
→ r weakly-(*) in L∞(0, T ;L2(Ω) + Lγ(Ω)),

uε → U weakly in L2(0, T ;W 1,2(Ω;R3)),

and uε → U strongly in L2
loc((0, T )× Ω;R3),

where r and U satisfy (1.8), divxU = 0, and, moreover, the stream
function r solves equation (1.10) in the sense of distributions, supple-
mented with the initial datum

(2.5) r(0, ·) = r̃,

where r̃ ∈ W 1,2(R2) is the unique solution of

−∆hr̃ +
1

p′(̺)
r̃ = ̺

∫ 1

0

curlhU0,h dx3 +

∫ 1

0

r0dx3.

If, in addition, curlhU0,h ∈ L2(Ω), then the solution r of (1.10) is
uniquely determined by (2.5) and the convergence holds for the whole
sequence of solutions.

The remaining part of the paper is devoted to the proof of The-
orem 2.1. The crucial point of the proof is, of course, the strong
(a.a. pointwise) convergence of the velocity field that enables us to
carry out the limit in the convective term. Here, the desired point-
wise convergence will follow from the celebrated RAGE theorem, to-
gether with the fact that the wave propagator in the associated acoustic
equation commutes with the Fourier transform in both the horizontal
variables (x1, x2) and the vertical variable x3.

2.3. Related results. This work is a contribution to a general re-
search direction consisting in studying singular limits in PDEs aris-
ing in fluid mechanics. Without giving an extensive bibliography, one
should refer for the first works in this line to Klainerman and Majda
[9] and Ukai [11] for the incompressible limit (actually [11] is probably
the first work in which dispersive estimates were established in order to
prove strong convergence in the whole space), followed by Desjardins et
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al. [5] and [6]. In the context of rotating fluids one should mention the
important work of Babin, Mahalov and Nicolaenko [1], as well as the
book [3] and references therein; one also refers to [7] for a survey. Few
studies combine both rotation and compressible effects. We refer to
Bresch, Desjardins and Gérard-Varet [2] for an analysis in a cylinder,
where the well prepared case is studied precisely; the ill prepared case
is also addressed but only a conditional result is proved.

3. Uniform bounds

We start reviewing rather standard uniform bounds that follow di-
rectly from the energy inequality (2.3). To this end, it is convenient to
introduce a decomposition

h = [h]ess + [h]res, where [h]ess = ψ(̺ε)h,

ψ ∈ C∞
c (0,∞), 0 ≤ ψ ≤ 1, ψ ≡ 1 in a neighborhood of ̺

for any function h defined on (0, T )× Ω. It is understood that the es-
sential part [h]ess is the crucial quantity that determines the asymptotic
behavior of the system while the residual component [h]res “disappears”
in the limit ε → 0.
As already pointed out, our choice of the initial data (1.7) guaran-

tees that the right-hand side of energy inequality (2.3) remains bounded
for ε → 0. After a straightforward manipulation, we deduce the fol-
lowing estimates:

(3.1) {√̺εuε}ε>0 bounded in L∞(0, T ;L2(Ω;R3)),

(3.2) {[rε]ess}ε>0 bounded in L∞(0, T ;L2(Ω)),

(3.3) ess sup
t∈(0,T )

‖[̺ε]res‖γLγ(Ω) ≤ ε2c,

(3.4) ess sup
t∈(0,T )

‖[1]res‖L1(Ω) ≤ ε2,

and
(3.5)

{

∇xuε +∇t
xuε −

2

3
divxuεI

}

ε>0

bounded in L2((0, T )× Ω;R3×3).

In addition, it is easy to observe that (3.2), (3.3) yield

(3.6) ̺ε → ̺ in L∞(0, T ;Lγ + L2(Ω)),

which, together with (3.1), (3.6) and the standard Korn inequality,
gives rise to

(3.7) {uε}ε>0 bounded in L2(0, T ;W 1,2(Ω;R3)).
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In accordance with (3.2), (3.3), we may assume that

(3.8) [rε]ess → r weakly-(*) in L∞(0, T ;L2(Ω)),

and, taking (3.4) into account,

(3.9) [rε]res → 0 in L∞(0, T ;Lq(Ω)) for any 1 ≤ q < min{γ, 2}.
Moreover, by virtue of (3.7),

(3.10) uε → U weakly in L2(0, T ;W 1,2(Ω;R3)),

passing to suitable subsequences as the case may be.
Letting ε → 0 in the weak formulation of the continuity equation

(2.1), with b ≡ 0, we obtain

(3.11) divxU = 0 a.a. in (0, T )× Ω.

Finally, multiplying momentum balance (2.2) by ε, we recover (1.8)

(3.12) ̺

[

−U2

U1

]

= p′(̺)∇hr, ∂3r = 0,

in particular, r = r(x1, x2) is independent of the vertical variable, and

(3.13) Uh = Uh(x1, x2), divhUh = 0,

which, together with (3.11), implies U3 is independent of x3. However,
as U satisfies the complete-slip boundary conditions (1.5) on ∂Ω, we
may infer that

(3.14) U3 ≡ 0.

4. Propagation of acoustic waves

Assume from now on, to simplify notation, that p′(̺) = 1. Sys-
tem (2.1), (2.2) can be written in the form

(4.1) ε∂trε + divxVε = 0,

(4.2) ε∂tVε + (g ×Vε +∇xrε) = εfε,

where we have set

rε =
̺ε − ̺

ε
, Vε = ̺εuε,

and

fε = divxS(∇xuε)−divx(̺εuε⊗uε)−
1

ε2
∇x

(

p(̺ε)−p′(̺)(̺ε−̺)−p(̺)
)

.

More precisely, system (4.1), (4.2) should be understood in the weak
sense:

(4.3)

∫ T

0

∫

Ω

(

εrε∂tϕ +Vε · ∇xϕ
)

dx dt = −ε
∫

Ω

r0,εϕ(0, ·) dx
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for any ϕ ∈ C∞
c ([0, T )× Ω),

(4.4)
∫ T

0

∫

Ω

(

εVε ·∂tϕ−(g×Vε)·ϕ+rεdivxϕ
)

dx dt = −ε
∫ T

0

< fε, ϕ > dt

−ε
∫

Ω

̺0,εu0,ε · ϕ(0, ·) dx,

for any test function ϕ ∈ C∞
c ([0, T )× Ω;R3), ϕ · n|∂Ω = 0, where

− < fε, ϕ >=

∫

Ω

(

S(∇xuε) : ∇xϕ− (̺εuε ⊗ uε) : ∇xϕ

− 1

ε2

(

p(̺ε)− p′(̺)(̺ε − ̺)− p(̺)
)

divxϕ
)

dx.

It follows from the uniform bounds established in (3.1 - 3.7) that

(4.5) < fε, ϕ >=

∫

Ω

(

F
1
ε : ∇xϕ+ F

2
ε : ∇xϕ

)

dx,

with

(4.6) {F1
ε}ε>0 bounded in L∞(0, T ;L1(Ω;R3×3)),

(4.7) {F2
ε}ε>0 bounded in L2(0, T ;L2(Ω;R3×3)).

4.1. Point spectrum of the acoustic propagator. Consider an op-
erator B defined, formally, in L2(Ω)× L2(Ω;R3),

B
[

r
V

]

≡
[

divxV
g×V +∇xr

]

.

As a matter of fact, it is more convenient to work in the frequency
space, meaning, we associate to a function v its Fourier transform ṽ

ṽ = ṽ(ξh, k), ξh ≡ (ξ1, ξ2) ∈ R
2, k ∈ Z,

where

ṽ(ξh, k) =

∫ 1

0

∫

R2

exp
(

− i(ξh · xh)
)

v(xh, x3) dxh exp(−ikx3) dx3.

We investigate the point spectrum of B, meaning, we look for solu-
tions of the eigenvalue problem

(4.8) divxV = λr, ∇xr + g ×V = λV,

or, in the Fourier variables,

i
(

2
∑

j=1

ξjṼj + kṼ3

)

− λr̃ = 0, i[ξ1, ξ2, k]r̃ − [Ṽ2,−Ṽ1, 0]− λṼ = 0.
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After a bit tedious but straightforward manipulation, we obtain

(4.9) λ2 = −µ, µ =
1 + |ξ|2 + k2 ±

√

(1 + |ξ|2 + k2)2 − 4k2

2
;

whence the only eigenvalue is λ = 0, for which k = 0, and consequently,
the space of eigenvectors coincides with the null-space of B,

(4.10) Ker(B) =
{

[r,V]
∣

∣

∣
r = r(x1, x2),

V = [V1(x1, x2), V2(x1, x2), V3(x1, x2)], divhVh = 0, ∇hr = [V2,−V1]
}

.

4.2. RAGE theorem. Our goal is to show that the component of the
field [rε,Vε], orthogonal to the null space Ker(B) decays to zero on
any compact subset of Ω. To this end, we use the celebrated RAGE
theorem in the following form (see Cycon et al. [4, Theorem 5.8]):

Theorem 4.1. Let H be a Hilbert space, A : D(A) ⊂ H → H a self-
adjoint operator, C : H → H a compact operator, and Pc the orthogonal
projection onto Hc, where

H = Hc ⊕ clH

{

span{w ∈ H | w an eigenvector of A}
}

.

Then
∥

∥

∥

∥

1

τ

∫ τ

0

exp(−itA)CPc exp(itA) dt

∥

∥

∥

∥

L(H)

→ 0 for τ → ∞.

In addition to the hypotheses of Theorem 4.1, suppose that C is
non-negative and self-adjoint in H . Thus we may write

1

T

∫ T

0

〈

exp

(

−i
t

ε
A

)

C exp

(

i
t

ε
A

)

PcX, Y

〉

H

dt ≤ h(ε)‖X‖H‖Y ‖H ,

where h(ε) → 0 as ε→ 0. Taking Y = PcX we deduce

(4.11)
1

T

∫ T

0

∥

∥

∥

∥

√
C exp

(

i
t

ε
A

)

PcX

∥

∥

∥

∥

2

H

dt ≤ h(ε)‖X‖2H.

Similarly, for X ∈ L2(0, T ;H), we have

1

T 2

∥

∥

∥

∥

√
CPc

∫ t

0

exp

(

i
t− s

ε
A

)

X(s) ds

∥

∥

∥

∥

2

L2(0,T ;H)

(4.12)

≤ 1

T

∫ T

0

∫ T

0

∥

∥

∥

∥

√
C exp

(

i
t− s

ε
A

)

PcX(s)

∥

∥

∥

∥

2

H

dt ds

≤ h(ε)

∫ T

0

∥

∥

∥
exp

(

−i
s

ε
A
)

X(s)
∥

∥

∥

2

H
ds = h(ε)

∫ T

0

‖X(s)‖2 ds.
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4.3. Application of RAGE theorem. For a fixed M > 0, we intro-
duce a Hilbert space

H = HM ≡ {[r,V] | r̃(ξh, k) = 0, Ṽ(ξh, k) = 0 whenever |ξh|+|k| > M}.
Let

PM : L2(Ω)× L2(Ω;R3) → HM

denote the associated orthogonal projection onto HM .
Our goal is to apply RAGE theorem to the operators

A = iB, C[v] = PM [χv], χ ∈ C∞
c (Ω), 0 ≤ χ ≤ 1,

considered on the Hilbert space HM .
Going back to system (4.3), (4.4), we obtain that

(4.13) ε
d

dt

[

rε,M
Vε,M

]

+ B
[

rε,M
Vε,M

]

= ε

[

0
fε,M

]

,

where
[rε,M ,Vε,M ] = PM [rε,Vε],

and
[

0
fε,M

]

∈ H∗
M ≈ HM ,

〈[

0
fε,M

]

,

[

s
w

]〉

HM

= −
∫

Ω

(

F
1
ε : ∇xw + F

2
ε : ∇xw

)

dx

whenever (s, w) ∈ HM . Since

‖w‖Wm,∞∩Wm,2(Ω;R3) ≤ c(m)‖w‖Wm+2,2(Ω;R3) ≤ cMm+2‖w‖L2(Ω;R3),

we may use the uniform bounds (4.6), (4.7) in order to conclude that
∥

∥

∥

∥

[

0
fε,M

]
∥

∥

∥

∥

L2(0,T ;HM )

≤ c(M)

uniformly for ε→ 0.
Writing solutions to (4.13) by means of Duhamel’s formula we get

(4.14)
[

rε,M
Vε,M

]

= exp(iA
t

ε
)

[

rε,M(0)
Vε,M(0)

]

+

∫ t

0

exp

(

i
t− s

ε
A

)[

0
fε,M

]

ds;

whence a direct application of (4.11), (4.12), recalling that the only
point spectrum is reduced to 0, yields

(4.15) Q⊥

[

rε,M
Vε,M

]

→ 0 in L2((0, T )×K;R4)) as ε→ 0,

for any compact K ⊂ Ω and any fixed M , where we have denoted

Q : L2(Ω)× L2(Ω;R3) → Ker(B)
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the orthogonal projection onto the null space of B. Indeed observe that
∥

∥

∥

∥

√
CQ⊥

[

rε,M
Vε,M

]
∥

∥

∥

∥

2

HM

=

〈

CQ⊥

[

rε,M
Vε,M

]

, Q⊥

[

rε,M
Vε,M

]〉

HM

=

∫

Ω

χ

∣

∣

∣

∣

Q⊥

[

rε,M
Vε,M

]
∣

∣

∣

∣

2

dx,

where we have used the fact that PM and Q commute.
Finally, a direct inspection of (4.14) yields

(4.16) Q

[

rε,M
Vε,M

]

→
[

rM
̺UM

]

in L2((0, T )×K;R4)) as ε→ 0,

where r and U are the asymptotic limits identified through (3.8 - 3.12).

4.4. Strong convergence of the velocity fields. Relations (4.15),
(4.16), together with (3.7 - 3.10), may be used to obtain the desired
conclusion

(4.17) uε → U in L2((0, T )×K;R3) for any compact K ⊂ Ω.

Indeed, by virtue of (3.8), (3.9), (4.15), (4.16), we obtain

PM [uε] → PM [U] in L2((0, T )×K;R3)

for any fixed M , which, together with (3.10) and compactness of the
embedding W 1,2(K) →֒ L2(K), yields (4.17).

5. The limit system

5.1. Identifying the limit system. With the convergence estab-
lished in (3.8 - 3.10), and (4.17), it is not difficult to pass to the limit
in the weak formulation (2.1), (2.2). To this end, we take

ϕ ≡ [∇⊥
hψ, 0], ψ ∈ C∞

c ([0, T )× Ω)

as a test function in momentum equation (2.2) to obtain

(5.1)

∫ T

0

∫

Ω

(

̺εuε · ∂tϕ+ ̺εuε ⊗ uε : ∇xϕ− 1

ε
̺ε[uε]h · ∇xψ

)

dx dt

= −
∫

Ω

̺0,εu0,ε · ϕ(0, ·) dx+
∫ T

0

∫

Ω

S(∇xuε) : ∇xϕ dx dt.

Moreover, (4.3) yields

(5.2)

∫ T

0

∫

Ω

(

rε∂tψ +
1

ε
̺ε[uε]h · ∇xψ

)

dx = −
∫

Ω

r0,εψ(0, ·) dx.
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Letting ε→ 0 in (5.1), (5.2) we may infer that
∫ T

0

∫

Ω

(

̺Uh · ∂t∇⊥
hψ + ̺[Uh ⊗Uh] : ∇x(∇⊥

hψ) + r∂tψ
)

dx

= −
∫

Ω

(

̺U0,h · ∇⊥
hψ(0, ·) + r0ψ(0, ·)

)

dx

+

∫ T

0

∫

Ω

µ∇hUh : ∇(∇⊥
hψ) dx dt.

Moreover, as the limit functions are independent of x3, we get,

(5.3)

∫ T

0

∫

R2

(

̺Uh · ∂t∇⊥
hψ+ ̺[Uh⊗Uh] : ∇h(∇⊥

hψ) + r∂tψ
)

dxh dt

= −
∫

R
2

(

̺

(
∫ 1

0

U0,h dx3

)

· ∇⊥
hψ(0, ·) +

(
∫ 1

0

r0 dx3

)

ψ(0, ·)
)

dxh

+

∫ T

0

∫

R2

µ∇hUh : ∇h(∇⊥
hψ) dxh dt

for all ψ ∈ C∞
c ([0, T )× R

2).
Finally, by virtue of (1.8), Uh = ∇⊥

h r, and (5.3) coincides with a
weak formulation of (1.10), (2.5). We have completed the proof of the
convergence result, up to a subsequence, of Theorem 2.1.

5.2. Uniqueness for the limit system. In this final section we shall
prove that the limit system has a unique solution provided the initial
data are more regular. In order to do so we shall simply write an
energy-type estimate on the difference of two solutions, called r1 and r2,
associated with two initial data r̃1 and r̃2. This will provide a stability
estimate, whose immediate consequence will be a uniqueness result.
Notice that the diagnostic equation (1.8) implies that r̃ should be taken
in W 1,2(R2).
The limit system writes

∂t(∆hr − r) +∇⊥
h r · ∇h(∆hr) =

µ

̺
∆2

hr

recalling that for simplicity we have chosen p′(̺) = 1. Multiplying
(formally) this equation by ∆hr and integrating over R2 yields

d

dt

(

‖∆hr‖2L2 + ‖∇hr‖2L2

)

+
µ

̺
‖∇h∆hr‖2L2 = 0,

whence the estimate

‖∆hr(t)‖2L2 + ‖∇hr(t)‖2L2 +
2µ

̺

∫ t

0

‖∇h∆hr(t
′)‖2L2 dt′

= ‖∆hr̃‖2L2 + ‖∇hr̃‖2L2.



A SINGULAR LIMIT FOR COMPRESSIBLE ROTATING FLUIDS 13

Now suppose r1 and r2 are two solutions as described above, and de-
fine δ := r1 − r2. Then of course δ satisfies

∂t(∆hδ − δ) +∇⊥
h δ · ∇h(∆hr2) +∇⊥

h r1 · ∇h(∆hδ) =
µ

̺
∆2

hδ

with initial data δ0 = r̃1 − r̃2. Writing a similar energy estimate to the
one above yields formally

d

dt

(

‖∆hδ‖2L2 + ‖∇hδ‖2L2

)

+
2µ

̺
‖∇h∆hδ‖2L2

= −
∫

R2

∇⊥
h δ · ∇h(∆hr1)∆hδ dx.

Then we simply write, by Hölder’s inequality followed by Gagliardo-
Nirenberg’s inequality

∣

∣

∣

∫

R2

∇⊥
h δ · ∇h(∆hr1)∆hδ dx

∣

∣

∣
≤ ‖∇⊥

h δ‖L4‖∇h∆hr1‖L2‖∆hδ‖L4

≤ C‖∇hδ‖
1

2

L2‖∆hδ‖
1

2

L2‖∇h∆hr1‖L2‖∆hδ‖
1

2

L2‖∇h∆hδ‖
1

2

L2.

This implies that
∣

∣

∣

∫

R2

∇⊥
h δ · ∇h(∆hr1)∆hδ dx

∣

∣

∣
≤ µ

̺
‖∇h∆hδ‖2L2 + ‖∇hδ‖2L2

+C

√

̺

µ
‖∆hδ‖2L2‖∇h∆hr1‖2L2.

Finally Gronwall’s inequality allows to obtain

‖∆hδ(t)‖2L2 + ‖∇hδ(t)‖2L2 +
µ

̺

∫ t

0

‖∇h∆hδ(t
′)‖2L2 dt′

≤
(

‖∆hδ
0‖2L2 + ‖∇hδ

0‖2L2

)

exp
(

C

√

̺

µ

∫ t

0

‖∇h∆hr1(t
′)‖2L2 dt′ + Ct

)

.

This allows to conclude to stability, hence uniqueness for the limit
system (leaving the usual regularization procedure to make the above
arguments rigorous to the reader) provided the initial datum enjoys
the extra regularity stated in Theorem 2.1.
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