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THE FIRST BOUNDARY VALUE PROBLEM FOR

ABREU’S EQUATION

BIN ZHOU

Abstract. In this paper we prove the existence and regularity of solutions to the
first boundary value problem for Abreu’s equation, which is a fourth order nonlinear
partial differential equation closely related to the Monge-Ampère equation. The
first boundary value problem can be formulated as a variational problem for the
energy functional. The existence and uniqueness of maximizers can be obtained by
the concavity of the functional. The main ingredients of the paper are the a priori
estimates and an approximation result, which enable us to prove that the maximizer
is smooth in dimension 2.

1. Introduction

Abreu’s equation was first introduced by M. Abreu [Ab] in the study of existence

of extremal metrics on toric Kähler manifolds. It is a fourth order equation given by

(1.1)
n
∑

i,j=1

∂2uij

∂xi∂xj
= f

where u is a convex function in a bounded domain Ω in R
n, f ∈ L∞(Ω), and (uij) is the

inverse matrix of the Hessian (uij). This equation was later studied by S. Donaldon.

In a series of papers [D1, D2, D3, D4], Donaldon established various a priori estimates

for Abreu’s equation and proved the existence of constant scalar curvature metrics

on toric Kähler surfaces under the assumption of K-stability.

Abreu’s equation can also be written as

(1.2) U ijwij = f,

where (U ij) is the cofactor matrix of (uij) and

(1.3) w = [detD2u]−1.
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The energy functional of Abreu’s equation is given by

(1.4) J0(u) = A0(u)−

∫

Ω

fu dx,

where

(1.5) A0(u) =

∫

Ω

log detD2u dx.

We formulate a variational problem for Abreu’s equation. Let

(1.6) S[ϕ,Ω] = {u ∈ C2(Ω) ∩ C0(Ω) | u is convex u|∂Ω = ϕ(x), Du(Ω) ⊂ Dϕ(Ω)},

where ϕ a smooth, uniformly convex function defined in a neighborhood of Ω. The

problem is to find a function u in S[ϕ,Ω] such that

(1.7) J0(u) = sup{J0(v) | v ∈ S[ϕ,Ω]}.

The main result in this paper is as follows.

Theorem 1.1. Suppose the domain Ω is bounded and smooth. Assume f ∈ C∞(Ω)∩

L∞(Ω). If n = 2, there exists a unique, smooth, locally uniformly convex maximizer

u of the variational problem (1.7).

The variational problem (1.7) corresponds to the first boundary value problem for

equation (1.1),

u = ϕ on ∂Ω,(1.8)

Du = Dϕ on ∂Ω.(1.9)

Indeed, if we have a classical, locally uniformly convex solution u ∈ C4(Ω) ∩ C1(Ω)

to (1.1), (1.8) and (1.9), u will also solve (1.7) uniquely. The uniqueness follows from

the concavity of the functional A0.

A motivation for our investigation of the above problem is that the study of

boundary value problems for elliptic equations has been a focus of attention since

1950s. The Dirichlet problem for Monge-Ampère type equations, which is somehow

related to our boundary condition (1.8) above, has been studied by many people,

see [CNS, GS1, Li, S, TW4, U1]. The second boundary problem for the Monge-

Ampère equation, which is related to our boundary condition (1.9) above, has also

been studied in [Caf2, Del, U2].

Another motivation to study the above problem is due to the increasing interest in

nonlinear fourth order partial differential equations. In recent years, nonlinear fourth

order equations, such as the affine mean curvature equation and Willmore surface
2



equation, have attracted considerable attention. Abreu’s equation is similar to the

affine mean curvature equation, which is given by

(1.10) U ijwij = f,

where

(1.11) w = [detD2u]−(1−θ), θ =
1

n+ 2
.

When f = 0, (1.10) is called the affine maximal surfaces equation. The energy

functional of affine mean curvature equation is

(1.12) Jθ(u) = Aθ(u)−

∫

Ω

fu dx,

where

(1.13) Aθ(u) =

∫

Ω

[detD2u]θ dx

is called affine area functional [Cal, LR]. In [TW2, TW5], N. Trudinger and X.-

J. Wang studied the first boundary value problem for the affine maximail surface

equation, and the more general affine Plateau problem, which can also be reduced to

a similar variational problem. In [TW2], Trudinger and Wang proved the existence

and uniqueness of smooth maximizers of Jθ in S[ϕ,Ω] in dimension 2. Theorem 1.1

above is an analogue to their result. Very recently, they also obtained the regularity

of maximizers to the affine Plateau problem in high dimensions [TW5].

Our proof of Theorem 1.1 is inspired by Trudinger and Wang’s variational approach

and their regularity argument in solving the affine Plateau problem. But due to

the singularity of the function log d near d = 0, the approximation argument in

[TW2, TW5] does not apply directly to our problem. To avoid this difficulty we

introduce in Section 2 a sequence of modified functionals Jk to approximate J0, such

that the integrand in Jk is Hölder continuous at d = 0. We prove the existence and

uniqueness of a maximizer of the functional Jk (Theorem 2.6) in the set S[ϕ,Ω], the

closure of S[ϕ,Ω] under uniform convergence.

The regularity of the maximizer is our main concern. In Section 3 we establish a

uniform (in k) a priori estimates for the corresponding Euler equation of the functional

Jk. Unlike the affine maximal surface equation, Abreu’s equation is not invariant

under linear transformation of coordinates R
n+1. When we rotate the coordinates

in R
n+1 we get a more complicated 4th order pde (§4). In Section 4, we establish

the uniform (in k) a priori estimates for the equations obtained after rotation of

coordinates in R
n+1.
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As the maximizer may not be smooth, to apply the a priori estimates we need to

prove that the maximizer can be approximated by smooth solutions. We cannot prove

the approximation for the functional J0 directly as log d is singular near d = 0. But for

maximizers of Jk, the approximation can be proved similarly as for the affine Plateau

problem [TW2, TW5]. The approximation solutions are constructed by considering

the second boundary value problem, namely the Euler equation of Jk (see (2.6)) subject

to

u = ϕ on ∂Ω,(1.14)

w = ψ on ∂Ω.(1.15)

We can prove the existence of locally smooth solutions to the boundary value prob-

lem (2.6), (1.14) and (1.15), in a way similar to that in [TW2, TW5]. For reader’s

convenience we include a proof in the Appendix.

The a priori estimates in Sections 3 and 4 rely on the strict convexity of solutions.

In Sections 6 and 7 we are devoted to the proof of the strict convexity of solutions. The

proof for one case is similar to that for affine mean curvature equation in [TW1, TW2]

and is included in Section 6. But the proof for the other case uses the a priori

estimates, the Legendre transform and in particular a strong approximation (Theorem

7.1) and is contained in Section 7. 1

Acknowledgement The author would like to thank Xu-Jia Wang for many inspiring

discussions on this problem. He would also like to thank Xiaohua Zhu and Neil

Trudinger for their support and interest in the problem.

2. A modified functional

In this section we introduce a modified functional J and prove the existence and

uniqueness of a maximizer of J .

We begin with some terminologies. Let u be a convex function in a domain Ω ⊂ R
n

and z ∈ Ω be an interior point. The normal mapping of u at z, Nu(x), is the set of

gradients of the supporting functions of u at x, that is

Nu(x) = {p ∈ R
n | u(y) ≥ u(x) + p · (y − x)}.

1This paper was submitted to a journal for publication in June. Recently, Chen-Li-Sheng posted a
related paper [CLS]. In their paper, the boundary value problem for (1.1) with u = ϕ, Du = ∞ and
w = ∞ was studied. They use solutions to the second boundary value problem of Abreu’s equation
directly as the approximating solutions. Their approach does not apply to the case considered in
this paper.
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For any subset Ω′ ⊂ Ω, denote Nu(Ω
′) =

⋃

x∈Ω′ Nu(x). If u is C1, the normal mapping

Nu is exactly the gradient mapping Du.

For a convex function u on Ω, the Monge-Ampère measure µ[u] is a Radon measure

given by

µ[u](E) = |Nu(E)|

for any Borel set E. By a fundamental result of Aleksandrov, µ[u] is weekly continuous

with respect to the convergence of convex functions [P, TW3]. It follows that if {uj}

converges to u in L1
loc, then for any closed E ⊂ Ω,

(2.1) lim sup
j→∞

µ[uj](E) ≤ µ[u](E).

Since the set S[ϕ,Ω] is not closed, we introduce

(2.2) S[ϕ,Ω] = {u ∈ C0(Ω) | u is convex u|∂Ω = ϕ(x), Nu(Ω) ⊂ Dϕ(Ω)}.

Note that S[ϕ,Ω] is closed under the locally uniform convergence of convex functions.

In [ZZ], we proved that A0 is well defined and upper semi-continuous in another set

of convex functions. By a similar argument, we can also prove that A0 is well defined

and upper semi-continuous in S[ϕ,Ω], which implies the existence of a maximizer of

J0 in S[ϕ,Ω].

To apply the a priori estimates to the maximizer, we need a sequence of smooth so-

lutions to Abreu’s equation to approximate the maximizer. Since the penalty method

in [TW2] does not apply to J0, we must have a sequence of modified smooth approx-

imation solutions. For this purpose, we consider a functional of the form

(2.3) J(u) = A(u)−

∫

Ω

fu dx,

where

(2.4) A(u) =

∫

Ω

G(detD2u) dx.

Here G(d) = Gδ(d) is a smooth concave function on [0,∞) which depends on a

constant δ ∈ (0, 1) and satisfies the following conditions.

(a) G(d) = log d when d ≥ δ.

(b) G′(d) > 0 and there exist constants C1, C2 > 0 independent of δ such that for

any d > 0

G′′(d) ≥ −C1d
−2,

∣

∣

∣

∣

dG′′′(d)

G′′(d)

∣

∣

∣

∣

≤ C2.
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(c) The function F (t) = G(d), where t = d
1
n , is smooth in (0,+∞) and satisfies

F (0) > −∞, F ′′(t) < 0,

limt→0F
′(t) = ∞, limt→0 tF

′(t) ≤ C3,

where C3 is a positive constant.

Remark 2.1.

(i) The condition F ′′(t) < 0 in (c) implies that the functional A(u) is concave.

(ii) The concavity of F , F ′′(t) < 0, is equivalent to dG′′(d) + n−1
n
G′(d) < 0; and

limt→0 F
′(t) = ∞ is equivalent to d

n−1
n G′(d) → ∞ as d→ 0.

(iii) We point out the existence of functions G satisfying properties (a)-(c) above. A

function in our mind is

(2.5) G(d) =

{

δ−θ

θ(1−θ)
dθ − θδ−1

1−θ
d+ log δ − 1+θ

θ
, d < δ,

log d, d ≥ δ,

where θ = 1
n+2

. One can check that G ∈ C2,1(0,∞) and C3 except at d = δ. It is

easy to see that G satisfies (a) and (c). We can also check that G satisfies (b) except

at d = δ. Hence, we can always mollify G to have a sequence of smooth functions

satisfying the properties (a)-(c) to approximate it.

The Euler equation of the functional J is

(2.6) U ijwij = f,

where

(2.7) w = G′(detD2u)

and (U ij) is the cofactor matrix of D2u.

Remark 2.2. Equation (2.6) is invariant under unimodular linear transformation.

If we make a general non-degenerate linear transformation T : y = Tx and let

ũ(y) = u(x), then ũ(y) is a solution of

Ũ ijw̃ij = f, w̃ = G̃′(detD2ũ),

where G̃(d̃) = G(|T |2d̃), d̃ = detD2ũ. Here G̃ is a smooth concave function satisfying

(a), (b), (c) with δ̃ = |T |−2δ, C̃1 = C1, C̃2 = C2, C̃3 = C3.

Now we study the existence and uniqueness of maximizers to the functional J(u).

The treatment here is same as that in [TW2, ZZ], so we will only sketch the proof.

First, we extend the functional J to S[ϕ,Ω]. It is clear that the linear part in J is

naturally well-defined. It suffices to extend A(u) to S[ϕ,Ω]. Since u is convex, u is
6



almost everywhere twice-differentiable, i.e., the Hessian matrix (D2u) exists almost

everywhere. Denote the Hessian matrix by (∂2u) at those twice-differentiable points

in Ω. As a Radon measure, µ[u] can be decomposed into a regular part and a singular

part as follows,

µ[u] = µr[u] + µs[u].

It was proved in [TW2] that the regular part µr[u] can be given explicitly by

µr[u] = det ∂2u dx

and det ∂2u is a locally integrable function. Therefore for any u ∈ S[ϕ,Ω], we can

define

(2.8) A(u) =

∫

Ω

G(det ∂2u) dx.

Next, we state an important property of A(u). For any Lebesgue measurable set

E, by the concavity of G and Jensen’s inequality,
∫

E

G(det ∂2u) dx ≤ |E|G

(

∫

E
det ∂2u dx

|E|

)

(2.9)

≤ |E|G(|E|−1µ[u](E)).

By the assumption (a), d−1G(d) → 0 as d → ∞. Note that G is bounded from

below. So the above integral goes to 0 as |E| → 0. With this property, we have an

approximation result for the functional A(u). For u ∈ S[ϕ,Ω], let

uh(x) = h−n

∫

B1(0)

ρ(
x− y

h
)u(y) dy,

where h > 0 is a small constant and ρ ∈ C∞
0 (B1(0)) with

∫

B1(0)
ρ = 1. Suppose that

u is defined in a neighborhood of Ω such that uh is well-defined for any x ∈ Ω. A

fundamental result is that (D2uh) → (∂2u) almost everywhere in Ω [Z]. Combining

it with (2.9), we have therefore obtained as in [TW1],

Lemma 2.3. Let u ∈ S[ϕ,Ω], we have
∫

Ω

G(det ∂2u) dx = lim
h→0

∫

Ω

G(det ∂2uh) dx.

Finally, the existence of maximizers of J in S[ϕ,Ω] follows from the following upper

semi-continuity of the functional A(u) with respect to uniform convergence.

Lemma 2.4. Suppose that un ∈ S[ϕ,Ω] converge locally uniformly to u. Then

lim sup
n→∞

∫

Ω

G(det ∂2un) dx ≤

∫

Ω

G(det ∂2u) dx.

7



Proof. The proof is also inspired by [Lu, TW1], see also [ZZ]. Subtracting G by the

constant G(0), we may suppose that G(0) = 0. By Lemma 2.3, it suffices to prove it

for un ∈ C2(Ω) and we may assume that un converges uniformly to u in Ω.

Denote by S the supporting set of µs[u], whose Lebesgue measure is zero. By the

upper semi-continuity of the Monge-Ampère measure, for any closed subset F ⊂ Ω\S,

(2.10) lim sup
n→∞

∫

F

detD2un dx ≤

∫

F

det ∂2u dx.

For given ǫ, ǫ′ > 0, let

Ωk = {x ∈ Ω \ S | (k − 1)ǫ ≤ det ∂2u < kǫ}, k = 0, 1, 2, ...,

and ωk ⊂ Ωk be a closed set such that

|Ωk\ωk| <
ǫ′

2|k|
.

For each ωk, by concavity of G and (2.10), we have

lim sup
n→∞

1

|ωk|

∫

ωk

G(detD2un) dx ≤ lim sup
n→∞

G

(
∫

ωk
detD2un dx

|ωk|

)

≤ G

(
∫

ωk
det ∂2u dx

|ωk|

)

≤ G(kǫ).

It follows

lim sup
n→∞

∫

ωk

G(detD2un) dx ≤ G(kǫ)|ωk|

≤ G((k − 1)ǫ)|ωk|+G(ǫ)|ωk|

≤

∫

Ωk

G(det ∂2u) dx+G(ǫ)|Ωk|.

Hence,

lim sup
n→∞

∫

⋃
ωk

G(detD2un) dx ≤

∫

Ω

G(det ∂2u) dx+G(ǫ)|Ω|.

By (2.9), letting ǫ go to 0, we can replace the domain of the left hand side integral

by Ω. The lemma is proved. �

For the uniqueness of maximizers, we first prove a lemma.

Lemma 2.5. For any maximizer u of J(·), the Monge-Ampère measure µ[u] has no

singular part.
8



Proof. We use an argument from [TW2] to prove the lemma. Suppose µ[u] has non-

vanishing singular part µs[u]. Then for any M > 0, there must exist a ball Br ⊂ Ω

such that

(2.11) µs[u](Br) ≥M(µr[u](Br) + |Br|).

We consider the following Dirichlet problem for Monge-Ampère operator,
{

µ[v] =Mµr[u] +M in Br,

v = u on ∂Br.

By the Alexander theorem, the above equation has a unique convex solution v. Note

(2.12) det ∂2v =M det ∂2u+M, in Br.

By comparison principle, u ≤ v in Br, and the set E = {v > u} is not empty. Define

another convex function ũ by
{

ũ = u in Ω \ E,

ũ = v in E.

Then ũ ∈ S[ϕ,Ω]. We claim J(ũ) < J(u), so we get a contradiction to the assumption

that u is a maximizer. In fact, using (2.12), we have

J(ũ)− J(u) =

∫

E

G(det ∂2v) dx−

∫

E

G(det ∂2u) dx−

∫

E

f(v − u) dx

=

∫

E

G(det ∂2u)−G(M(1 + det ∂2u)) dx−

∫

E

f(v − u) dx.

By the definition of G, the first integral goes to −∞ as M goes to ∞. The second

integral is bounded since f is bounded. The lemma is proved. �

In conclusion, we have obtained the existence and uniqueness of maximizers of J

in S[ϕ,Ω].

Theorem 2.6. Let Ω be a bounded, Lipschitz domain in R
n. Suppose ϕ is a convex

Lipschitz function defined in a neighborhood of Ω and f ∈ L∞(Ω). There exists a

unique function in S[ϕ,Ω] maximizing J .

Proof. The existence follows from the upper semi-continuity of A(u). For the unique-

ness, note that by the concavity of the functional, if there exist two maximizers u and

v, then ∂2u = ∂2v almost everywhere. Hence by Lemma 2.5 we have µ[u] = µ[v]. By

the uniqueness of generalized solutions to the Dirichlet problem of the Monge-Ampère

equation, we conclude that u = v. �
9



In Theorem 2.6, we only need the Lipschitz condition on Ω and ϕ. But later for

the regularity, we must assume the smoothness as stated in Theorem 1.1. We point

out again that the above argument applies to the functional J0, and the existence

and uniqueness of maximizers also hold for J0. But we will not study the maximizer

of J0 obtained in this way.

For our purpose of studying J0, we choose a sequence of functions Gk = Gδk

satisfying (a)-(c) with δk → 0 as k → ∞, and consider the functionals

(2.13) Jk(u) = Ak(u)−

∫

Ω

fu dx,

where

(2.14) Ak(u) =

∫

Ω

Gk(detD
2u) dx.

By Theorem 2.6, there exists u(k) ∈ S[ϕ,Ω] maximizing the functional Jk in S[ϕ,Ω].

It is clear that u(k) converges to a convex function u0 in S[ϕ,Ω]. We will prove that in

dimension 2, u0 solves the problem (1.7). The main point is to prove the smoothness

of u0. Once we have the regularity of u0, the uniqueness follows immediately by the

concavity of A0 and the uniqueness of generalized solutions to the Dirichlet problem

of the Monge-Ampère equation. Hence, In the rest of this paper, we prove that u0 is

smooth in Ω and satisfies Abreu’s equation.

3. Interior estimates

In this section, we establish the interior estimates for equation (2.6).

Lemma 3.1. Let u be a convex smooth solution to (2.6) in a convex domain Ω.

Assume that u < 0 in Ω and u = 0 on ∂Ω. Then there is a positive constant C

depending only on n, sup |∇u|, sup |u|, sup |f | and independent of δ, such that

(−u)n detD2u ≤ C.

Proof. Let

z = − log d− log (−u)β − |∇u|2,

where β is a positive number to be determined later. Then z attains its minimum at a

point p in Ω. We may assume that d(p) > δ so that w = d−1 in a small neighborhood

of p. Otherwise, the estimate follows directly. Hence, at p, it holds

zi = 0, uijzij ≥ 0.
10



We can rewrite z as

z = logw − log (−u)β − |∇u|2

near p. By computation,

zi =
wi

w
−
βui
u

− 2ukiuk,(3.1)

zij =
wij

w
−
wiwj

w2
−
βuij
u

+
βuiuj
u2

− 2ukijuk − 2ukiukj.(3.2)

On the other hand, since detD2u = w−1,

uabuabi = (− logw)i = −
wi

w
.

Therefore we have

uijzij = uij
wij

w
− uij

wiwj

w2
−
βn

u
+ β

uijuiuj
u2

+ 2
wk

w
uk − 2△u.

By (3.1),

uij
wiwj

w2
= β2uij

uiuj
u2

+
4β|Du|2

u
+ 4uijuiuj,

wk

w
uk =

β|Du|2

u
+ 2uijuiuj.

It follows

uijzij = f −
βn

u
− 2△ u−

2β|Du|2

u
− (β2 − β)uij

uiuj
u2

≥ 0.

Choosing β = n, we have

(−u)[detD2u]
1
n ≤ (−u)△ u ≤ C

at p. The lemma follows. �

For the lower bound estimate of the determinant, we consider the Legendre function

u∗ of u. If u is smooth, u∗ is defined on Ω∗ = Du(Ω), given by

u∗(y) = x · y − u(x),

where x is the point determined by y = Du(x). Differentiating y = Du(x), we have

detD2u(x) = [detD2u∗(y)]−1.

The dual functional with respect to the Legendre function is given by

J∗(u∗) = A∗(u∗)−

∫

Ω∗

f(Du∗)(yDu∗ − u∗) detD2u∗ dy,

where

A∗(u∗) =

∫

Ω∗

G([detD2u∗]−1) detD2u∗ dy.

11



If u is a solution to equation (2.6) in Ω, it is a local maximizer of the functional J .

Hence u∗ is a critical point of J∗ under local perturbation, so it satisfies the Euler

equation of the dual functional J∗, namely in Ω∗

(3.3) u∗ijw∗
ij = −f(Du∗),

where

(3.4) w∗ = G(d∗−1)− d∗−1G′(d∗−1), d∗ = detD2u∗.

Note that on the left hand side of (3.3), it is u∗ij, the inverse of (u∗ij).

Lemma 3.2. Let u∗ be a smooth convex solution to (3.3) in Ω∗ in dimension 2.

Assume that u∗ < 0 in Ω∗ and u∗ = 0 on ∂Ω∗. Then there is a positive constant C

depending only on sup |∇u∗|, sup |u∗|, inf f and independent of δ such that

(−u∗)2 detD2u∗ ≤ C.

Proof. We consider

z = − log d∗ − log(−u∗)β − α|∇u∗|2,

where α, β are positive numbers to be determined below. Since z tends to ∞ on ∂Ω∗,

it must attain its minimum at some point p ∈ Ω∗. At p we have

zi = 0, u∗ijzij > 0.

By (3.4), we compute

w∗
i = G′′(d∗−1)d∗−3d∗i ,(3.5)

w∗
ij = −G′′′(d∗−1)d∗−5d∗id

∗
j − 3G′′(d∗−1)d∗−4d∗id

∗
j +G′′(d∗−1)d∗−3d∗ij.(3.6)

On the other hand, by computation,

zi = −
d∗i
d∗

− β
u∗i
u∗

− 2αu∗kiu
∗
k,(3.7)

zij = −
d∗ij
d∗

+
d∗id

∗
j

d∗2
− β

u∗ij
u∗

+ β
u∗iu

∗
j

u∗2
− 2αu∗kiju

∗
k − 2αu∗kiu

∗
kj.(3.8)

It follows

u∗ijzij = −
u∗ijd∗ij
d∗

+
u∗ijd∗id

∗
j

d∗2
− β

n

u∗
+ β

u∗iju∗iu
∗
j

u∗2
− 2α

d∗k
d∗
u∗k − 2α△ u∗.

By (3.6) and equation (3.3), we have

u∗ijd∗ij
d∗

= −
d∗2

G′′(d∗−1)
f +

d∗−1G′′′(d∗−1)

G′′(d∗−1)

u∗ijd∗id
∗
j

d∗2
+ 3

u∗ijd∗id
∗
j

d∗2
.

We may assume that f(p) < 0. By condition (b) for G,

d∗2

G′′(d∗−1)
≤ −C−1

1 ,

∣

∣

∣

∣

d∗−1G′′′(d∗−1)

G′′(d∗−1)

∣

∣

∣

∣

≤ C2.

12



Hence,
u∗ijd∗ij
d∗

≥ C−1
1 inf f + (3− C2)

u∗ijd∗id
∗
j

d∗2
.

So we have

u∗ijzij ≥ −C−1
1 inf f + (C2 − 2)

u∗ijd∗id
∗
j

d∗2
−
βn

u∗
+ β

u∗iju∗iu
∗
j

u∗2
− 2α

d∗k
d∗
u∗k − 2α△ u∗.

By (3.7),

u∗ijd∗id
∗
j

d∗2
= β2

u∗iju∗iu
∗
j

u∗2
+ 4αβ

|∇u∗|2

u∗
+ 4α2u∗lku

∗
l u

∗
k,

d∗k
d∗
u∗k = −β

|∇u∗|2

u∗
− 2αu∗lku

∗
l u

∗
k.

Therefore

−C−1
1 inf f + [β + (C2 − 2)β2]

u∗iju∗iu
∗
j

u∗2
−
nβ

u∗

+[4(C2 − 2) + 2]αβ
|∇u∗|2

u∗
+ [4(C2 − 2) + 4]α2u∗lku

∗
l u

∗
k − 2α△ u∗ ≥ 0.

Choose α small enough depending on sup |∇u∗| such that

[4(C2 − 2) + 4]α2u∗lku
∗
l u

∗
k ≤ α△ u∗.

Using the fact u∗11 + u∗22 = △u∗

detD2u∗
in dimension 2, we have

u∗iju∗iu
∗
j

u∗2
≤

|∇u∗|2

u∗2
△u∗

detD2u∗
.

It follows

−C−1
1 inf f + C ′ |∇u

∗|2

u∗2
△u∗

detD2u∗
−
βn

u∗
+ C ′′ |∇u

∗|2

u∗
− α△ u∗ ≥ 0,

where C ′, C ′′ are constants depending only on α, β, C1 and C2. If

α

2
△ u∗ − C ′ |∇u

∗|2

u∗2
△u∗

detD2u∗
≤ 0,

we obtain

(−u∗)2 detD2u∗ 6 C

at p. Otherwise, we have

−C−1
1 inf f −

βn

u∗
+ C ′′ |∇u

∗|2

u∗
−
α

2
△ u∗ ≥ 0.

Hence, we also obtain

(−u∗)2 detD2u∗ ≤ (△u∗)2(−u∗)2 6 C

at p. The lemma follows by choosing β = n = 2. �
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Remark 3.3.

(i) The determinant estimates above is independent of δ. This leads us to use the

approximation {Gk};

(ii) The estimate depends only on inf f . This is crucial in Section 7;

(iii) In Lemma 3.2, the estimate only holds in dimension 2. Since if we do not have

the relation u∗11 + u∗22 = △u∗

detD2u∗
, we can not deal with the term

u∗iju∗

i u
∗

j

u∗2 in the proof.

This is why we can not extend Theorem 1.1 to higher dimensions.

To apply the above determinant estimates, we first introduce the modulus of con-

vexity for convex functions. The modulus of convexity of u at x is defined by

(3.9) hu,x(r) = sup{δ ≥ 0 | Sδ,u(x) ⊂ Br(x)}, r > 0

and the modulus of convexity of u on Ω is defined by

(3.10) hu,Ω(r) = inf
x∈Ω

hu,x(r),

where

Sδ,u(x) = {y ∈ Ω | u(y) < δ + ax(y)}

and ax is a tangent plane of u at x. When no confusions arise, we will also write

Sδ,u(x) as Sδ,u or Sδ, for brevity.

Lemma 3.4. Let u ∈ C4(Ω) be a locally uniformly convex solution to (2.6) in dimen-

sion 2.

(i) Assume f ∈ L∞(Ω). Then

‖u‖W 4,p(Ω′) ≤ C

for any p > 1 and Ω′ ⊂⊂ Ω, where C depends on n, p, sup |f |, dist(Ω′, ∂Ω) and the

modulus of convexity of u.

(ii) Assume f ∈ Cα(Ω). Then

‖u‖C4,α(Ω′) ≤ C

for any α ∈ (0, 1) and Ω′ ⊂⊂ Ω, where C depends on n, α, sup |f |, dist(Ω′, ∂Ω) and

the modulus of convexity of u.

Proof. For any x ∈ Ω, by Lemma 3.1, we have

detD2u(x) ≤ C

where C is a constant depending only on f , δ = dist(x, ∂Ω) and hu,Ω. Let y =

Du(x) ∈ Ω∗. By (3.9), (3.10), we have

Sδ∗,u∗(y) ⊂ Ω∗,
14



where δ∗ = hu,Ω(
δ
2
). Furthermore, since |Du∗| ≤ diam(Ω), we also have

dist(y, ∂Ω∗) ≥
δ∗

2diam(Ω)
.

Hence, by Lemma 3.2,

detD2u(x) = [detD2u∗(y)]−1 ≥ C ′,

where C ′ is a constant depending only on f , δ and hu,Ω.

Once the determinant detD2u is bounded, we also have the Holder continuity

of detD2u by Caffarelli-Gutierrez’s Hölder continuity for linearized Monge-Ampère

equation [CG]. Then we have the W 2,p and C2,α regularity for u by Caffarelli’s W 2,p

and C2,α estimates for Monge-Ampère equation [Caf1, JW], respectively. Higher

regularity then follows from the standard elliptic regularity theory [GT]. �

We will estimate in Section 6 and 7 the modulus of convexity for the solution

u in dimension 2. In Section 4 we consider the change of equation (2.6) under a

coordinate transformation and establish the a priori estimates for the equation after

the transformation.

4. Equations after rotations in R
n+1

Equation (2.6) is invariant under transformations of the x-coordinates in R
n, but

it changes when taking transformations in R
n+1. We note that the affine maximal

surface equation is invariant under uni-modular transformations in R
n+1, which plays

an important part [TW1]. In order to establish the estimate of the modulus of

convexity, we also need to consider the equation under rotations in R
n+1. In this

section we will derive the new equation under a rotation in R
n+1 and establish the a

priori estimates for it.

For our purpose it suffices to consider the rotation z = Tx, given by

z1 = −xn+1,(4.1)

z2 = x2, ..., zn = xn,(4.2)

zn+1 = x1,(4.3)

which fixes x2, ..., xn axes. Assume that the graph of u, M = {(x, u(x)) ∈ R
n+1 | x ∈

Ω}, can be represented by a convex function zn+1 = v(z1, ..., zn) in z-coordinates, in

a domain Ω̂. To derive the equation for v, we compute the change of the functional

A0.
15



A(u) =

∫

Ω

G(detD2u) dx(4.4)

=

∫

Ω

G

(

detD2u

(1 + |Du|2)
n+2
2

(1 + |Du|2)
n+2
2

)

dx

=

∫

M

G
(

K(1 + |Du|2)
n+2
2

)

(1 + |Du|2)−
1
2 dΣ,

where K is the Gaussian curvature of M and dΣ the volume element of the hyper-

surface. It is easy to verify that

(4.5) u1 = −
1

v1
, u2 =

v2
v1
, ..., un =

vn
v1
,

where vi =
∂v
∂zi

. So we have

1 + |Du|2 =
1 + |Dv|2

v21
.

Hence we obtain

(4.6) A(u) =

∫

Ω̂

G(v
−(n+2)
1 detD2v)(v21)

1
2 dz := Â(v).

In addition,
∫

Ω

f(x)u(x)dx =

∫

M

f · u · (1 + |Du|2)−
1
2 dΣ

=

∫

Ω̂

f(v, z2, ..., zn) · (−z1) · (v
2
1)

1
2 dz.

Let

Ĵ(v) = Â(v)−

∫

Ω̂

f(v, z2, ..., zn) · (−z1) · (v
2
1)

1
2 dz.

After computing the Euler equation for the functional Ĵ(v), we have

Lemma 4.1. Let u be a solution of (2.6). Let T and v be as above. Then v satisfies

the equation

(4.7) V ij(d−1)ij = g − f1z1v1 + f1z1 + f

in the set {z | v
−(n+2)
1 d > δ}, where (V ij) is the cofactor matrix of (vij), d = detD2v

and

g = 2vklvkl1
1

v1
− (n+ 2)

v11
v21
,

f = f(v, z2, ..., zn),

f1 =
∂f

∂x1
(v, z2, ..., zn).
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Remark 4.2. In the proof of strict convexity in Section 6, we will use the upper bound

estimate for detD2v given below. Since the lower bound for detD2v will not be used,

we do not need the explicit form of the equation for v outside the set {z | v
−(n+2)
1 d > δ}.

Therefore in (4.7), we calculate the Euler equation only in the set {z | v
−(n+2)
1 d > δ}.

Next we prove a determinant estimate for v. Assume v satisfies

(4.8)
v ≥ 0, v ≥ z1, v1 ≥ 0, and v(0) is as small as we want such that

for the positive constants ǫ and c in (0, 1
2
), Ω̂ǫ,c is a nonempty open set,

where

v̂ = v − ǫz1 − c and Ω̂ǫ,c = {z | v̂(z) < 0}.

Then v̂ satisfies

(4.9) V̂ ij(d̂−1)ij = ĝ − f̂1z1(v̂1 + ǫ) + f̂1z1 + f̂

in the set {z | (v̂1 + ǫ)−(n+2)d̂ > δ} ∩ Ω̂ǫ,c, where d̂ = detD2v̂ and

ĝ = 2v̂klv̂kl1
1

v̂1 + ǫ
− (n+ 2)

v̂11
(v̂1 + ǫ)2

,(4.10)

f̂ = f(v̂ + ǫz1 + c, z2, ..., zn),(4.11)

f̂1 =
∂f

∂x1
(v̂ + ǫz1 + c, z2, ..., zn).(4.12)

Lemma 4.3. Let v̂ be as above. Then there exists C > 0 depending only on sup |f̂ |,

sup |∇f̂ |, supΩ̂ǫ,c
|v̂| and supΩ̂ǫ,c

|Dv̂|, but independent of δ, such that

(−v̂)n detD2v̂ ≤ C.

Proof. Consider

η = logw − β log (−v̂)− A|Dv̂|2,

where w = d̂−1, and β, A are positive numbers to be determined below. Then η

attains its minimum at a point p in Ω̂ǫ,c. Hence, at p, it holds

ηi = 0, v̂ijηij ≥ 0.

We can suppose that p ∈ {z | (v̂1 + ǫ)−(n+2)d̂ > δ}. Otherwise, we have

(v̂1 + ǫ)−(n+2)d̂ ≤ δ

and then the estimate follows. By computation,

ηi =
wi

w
−
βv̂i
v̂

− 2Av̂kiv̂k,(4.13)

ηij =
wij

w
−
wiwj

w2
−
βv̂ij
v̂

+
βv̂iv̂j
v̂2

− 2Av̂kij v̂k − 2Av̂kiv̂kj,(4.14)

wk

w
= −v̂ij v̂ijk.(4.15)
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By (4.15),

ĝ = −2
w1

w

1

v̂1 + ǫ
− (n+ 2)

v̂11
(v̂1 + ǫ)2

.

Therefore we have

v̂ijηij = −
v̂ijwiwj

w2
−
w1

w

2

v̂1 + ǫ
−
βn

v̂
− (n+ 2)

v̂11
(v̂1 + ǫ)2

+
βv̂ij v̂iv̂j
v̂2

+ 2A
wk

w
v̂k

−2A△v̂ − f̂1z1(v̂1 + ǫ) + f̂1z1 + f̂ .

By (4.13),

v̂ijwiwj

w2
= β2v̂ij

v̂iv̂j
v̂2

+ 4A2v̂ij v̂iv̂j + 4Aβ
|Dv̂|2

v̂
,

w1

w

2

v̂1 + ǫ
=

2βv̂1
(v̂1 + ǫ)v̂

+ 4A
v̂1kv̂k
v̂1 + ǫ

,

wk

w
v̂k = β

|Dv̂|2

v̂
+ 2Av̂ij v̂iv̂j .

Hence, we have

v̂ijηij = −(n + 2)
v̂11

(v̂1 + ǫ)2
− 4A

(

v̂11v̂1
v̂1 + ǫ

+

n
∑

k=2

v̂1kv̂k
v̂1 + ǫ

)

−
2βv̂1

(v̂1 + ǫ)v̂
− 2A△ v̂

−
βn

v̂
− 2Aβ

|Dv̂|2

v̂
− (β2 − β)v̂ij

v̂iv̂j
v̂2

− f̂1z1(v̂1 + ǫ) + f̂1z1 + f̂ .(4.16)

We choose β > 1 such that β2 − β > 0. By the positive definiteness of v̂ij , it holds

v̂21k ≤ v̂11v̂kk for any k = 2, ..., n, so there is C ′ depending on n and |Dv̂|, such that

(4.17)

n
∑

k=2

|v̂1kv̂k|

v̂1 + ǫ
≤

1

4

n
∑

k=2

v̂kk + C ′ v̂11
(v̂1 + ǫ)2

≤
1

4
△ v̂ + C ′ v̂11

(v̂1 + ǫ)2
.

It follows

−
(n + 2− 4AC ′)v̂11

(v̂1 + ǫ)2
− 4A

v̂11v̂1
v̂1 + ǫ

−
2βv̂1

(v̂1 + ǫ)v̂
−A△ v̂ −

βn

v̂

−2Aβ
|Dv̂|2

v̂
− f̂1z1(v̂1 + ǫ) + f̂1z1 + f̂ ≥ 0.(4.18)

Choosing A small enough such that n+2−4AC ′ > 0. Then by a Schwarz inequality,

there exists a C0 > 0 depending only on |Dv̂| such that

(4.19) −
(n+ 2− 4AC ′)v̂11

(v̂1 + ǫ)2
− 4A

v̂11v̂1
v̂1 + ǫ

≤ C0A
2v̂11.

By (4.18), (4.19), we have

0 ≤ C0A
2v̂11 −

2βv̂1
(v̂1 + ǫ)v̂

−
βn

v̂
− A△ v̂ − 2Aβ

|Dv̂|2

v̂
− f̂1z1(v̂1 + ǫ) + f̂1z1 + f̂ .
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Choosing A small enough furthermore such that C0A
2 ≤ A

2
, and observing that

2βv̂1
(v̂1 + ǫ)v̂

=
2β

v̂
−

2βǫ

(v̂1 + ǫ)v̂
≥

2β

v̂
,

we have

−
β(n+ 2)

v̂
−
A

2
△ v̂ − 2Aβ

|Dv̂|2

v̂
− f̂1z1(v̂1 + ǫ) + f̂1z1 + f̂ ≥ 0,

which implies

(−v̂)△v̂ ≤ C

at p. Hence, choosing β = n, the lemma follows by

eη(x) ≥ eη(p) = d̂−1(−v̂)−ne−A|Dv̂|2 ≥ [
(−v̂)△v̂

n
]−ne−A|Dv̂|2 ≥ C.

�

5. Approximation

We will use a penalty method and solutions to the second boundary value prob-

lem to construct a sequence of smooth convex solutions to (2.6) to approximate the

maximizer of J(u). This section is similar to §6 in [TW2].

First, we consider a second boundary value problem with special non-homogenous

term f . Let B = BR(0) be a ball with Ω ⊂⊂ B and ϕ ∈ C2(B) be a uniformly convex

function in B vanishing on ∂B. Suppose H is a nonnegative smooth function defined

in the interval (−1, 1) such that

(5.1) H(t) =

{

(1− t)−2n, t ∈ (1
2
, 1),

(1 + t)−2n, t ∈ (−1, 1
2
).

Extend the function f to B such that

f(x, u) =

{

f(x) if x ∈ Ω,

h(u− ϕ(x)) if x ∈ B \ Ω,

where h(t) = H ′(t).

Lemma 5.1. Let f(x, u) be as above. Suppose ∂Ω is Lipschitz continuous. Then

there exists a locally uniformly convex solution to the second boundary problem

U ijwij = f(x, u) in B,(5.2)

w = G′(d), in B,

u = ϕ on ∂B,

w = 1 on ∂B
19



with u ∈ W 4,p
loc (B) ∩ C0,1(B), for all p <∞, and w ∈ C0(Ω).

Proof. By the discussion of the second boundary problem in the Appendix, it suf-

fices to prove that for any solution u to (5.2), |f(x, u)| ≤ C for some constant C

independent of u. Note that by our choice of H , a solution to (5.2) is bounded from

below.

First, we prove an estimate of the determinant near the boundary ∂B. By the

definition of H and the convexity of u, f is bounded from above near ∂B. For any

boundary point x0 ∈ ∂B, we suppose by a rotation of axes that x0 = (R, 0, ..., 0).

There exists δ0 > 0 independent of x0 such that f is bounded from above in B∩{x1 >

R − δ0}. Choose a linear function l = ax1 + b such that l(x0) < u(x0) = 0 and l > u

on x1 = R− δ0. Let

z = w + logw − β log(u− l),

where β > 0 is to be determined below. If z attains its minimum at a boundary point

on ∂B, by the boundary condition w = 1, z ≥ −C near ∂B. If z attains its minimum

at a interior point y0 ∈ {u > l}, we have, at y0,

0 = zi = wi +
wi

w
− β

(u− l)i
u− l

,(5.3)

zij = wij +
wij

w
−
wiwj

w2
− β

(u − l)ij
u− l

+ β
(u− l)i(u− l)j

(u− l)2
.(5.4)

By (5.3),
wi

w
=

β

1 + w

(u− l)i
u− l

.

It follows by (5.4) and equation (5.2)

0 ≤ uijzij =
f

d
+

f

dw
−

βn

u− l
+

[

β −
β2

(1 + w)2

]

uij(u− l)i(u− l)j
(u− l)2

.

We may suppose that w ≤ 1. Choose β large enough such that

β −
β2

(1 + w)2
≤ 0.

So we have w(y0) ≥ C. Therefore, detD2u ≤ C near ∂B.

By the above determinant estimate near ∂B, it follows that |Du| is bounded near

∂B. By the convexity of u,

sup
B

|Du| ≤ C.

Next, we prove that f is bounded from below. We note that by the Lipschitz

continuity of ∂Ω, there exists positive constants r, κ such that for any p ∈ B \ Ω,
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there is a unit vector γ such that the round cone Cp,γ,r,κ ⊂ B \ Ω, where

Cp,γ,r,κ := {x ∈ R
n | |x− p| < r, 〈x− p, γ〉 > cosκ}.

Assume that M = − infB f is attained at x0 ∈ B. If x0 ∈ Ω, then M = ‖f‖L∞(Ω). If

x0 ∈ B \ Ω, we have

M = 2n[1 + u(x0)− ϕ(x0)]
−2n−1,

that is,

u(x0)− ϕ(x0) =

(

M

2n

)− 1
2n+1

− 1.

Let l0 be the tangent plane of ϕ at x0. Since we have the gradient estimate of u, there

exists a uniform δ0 such that

0 ≤ 1 + u(x)− ϕ(x) ≤ 2

(

M

2n

)− 1
2n+1

and

0 ≤ 1 + u(x)− l0(x) ≤ 2

(

M

2n

)− 1
2n+1

in the cone C
x0,γ,δ0(M

2n)
−

1
2n+1 ,κ

. Let ω0 = {x | u(x) < l0(x)}. It is clear that when M

is sufficiently large,

C
x0,γ,δ0(M

2n)
−

1
2n+1 ,κ

⊂ ω0.

Integrating by parts, we have
∫

ω0

U ijwij(u− l0) dx = −

∫

ω0

U ijwj(u− l0)i dx

= −

∫

∂ω0

wU ij(u− l0)iγj dS +

∫

ω0

w detD2u dx,

where dS is the volume element of ∂ω0. u− l0 vanishes on the boundary, so U ij(u−

l0)iγj ≥ 0. The first integral on the right-hand side is negative. Hence, we obtain

(5.5)

∫

ω0

f(x, u)(u− l0) dx ≤

∫

ω0

w detD2u dx ≤ C.

Note that the last inequality follows by the condition limt→0 tF
′(t) ≤ C3 in the as-

sumption (c) on G. Estimating the integral in the cone, we have

(5.6)

∫

ω0

f(x, u)(u− l0) dx ≥ 2−2n−1M ·

[

1− 2

(

M

2n

)− 1
2n+1

]

· C ·

(

M

2n

)− n
2n+1

.

Therefore M ≤ C follows from (5.5), (5.6).
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Finally, we prove that f is bounded from above. For any δ > 0, let

Ωδ = {u < −δ} ⊂ B

and γ be the unit outward normal on ∂Ωδ . We have
∫

Ωδ

U ijwij(u+ δ) dx = −

∫

Ωδ

U ijwjui dx

= −

∫

∂Ωδ

wU ijuiγj dS +

∫

Ωδ

w detD2u dx

≥ −

∫

∂Ωδ

wU ijuiγj dS

= −

∫

∂Ωδ

wUγγuγ dS

= −

∫

∂Ωδ

wunγKs dS

≥ −C sup
∂Ωδ

w sup
B

|Du|n,

where dS is the volume element of ∂Ωδ and Ks is the Gaussian curvature of ∂Ωδ.

Letting δ → 0, by w = 1 on ∂B and the gradient estimate,
∫

B

f(x, u)u dx ≥ −C.

By a similar argument as in the proof of lower bound, if u−ϕ is sufficiently close to 1

at some point x ∈ B \ Ω, u−ϕ is sufficiently close to 1 nearby in B \Ω. This implies

the integral can be arbitrary large, which is a contradiction. Hence, f is bounded and

the lemma follows. �

Now we prove that the maximizer of J(u) can be approximated by smooth solutions

to (2.6). This approximation was proved for the affine Plateau problem in [TW2] by

a penalty method. We will also use this method.

Theorem 5.2. Let Ω and ϕ be as in Theorem 2.6. Suppose ∂Ω is Lipschitz contin-

uous. Then there exist a sequence of smooth solutions to equation (2.6) converging

locally uniformly to the maximizer u.

Proof. The proof for this approximation in [TW2] is very complicated, so we use a

simplified proof in [TW5].

Let B = BR(0) be a large ball such that Ω ⊂ BR. By assumption, ϕ is defined in a

neighborhood of Ω, so we can extend u to B such that ϕ is convex in B, ϕ ∈ C0,1(B)
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and ϕ is constant on ∂B. Adding (|x| −R + 1
2
)2+ to ϕ, where

(|x| − R +
1

2
)+ = max{|x| − R +

1

2
, 0},

we assume that ϕ is uniformly convex in {x ∈ R
n | R − 1

2
< |x| < R}. Consider the

second boundary value problem (5.2) with

fj(x, u) =

{

f in Ω,

H ′
j(u− ϕ) in BR \ Ω,

where Hj(t) = H(4jt) and H is defined by (5.1). By Lemma 5.1, there is a solution

uj satisfying

(5.7) |uj − ϕ| ≤ 4−j , x ∈ BR \ Ω.

By the convexity, uj sub-converges to a convex function ū in BR as j → ∞. Note

that ū = ϕ in BR \ Ω. Hence, ū ∈ S[ϕ,Ω] when restricted in Ω. We claim that ū is

the maximizer.

Let vj be an extension of u, given by

vj = sup{l | l ∈ Φj},

where Φj is the set of linear functions in BR satisfying

l(x) ≤ ϕ(x) when |x| = R or |x| ≤ R−
1

j
, and

l(x) ≤ uj(x) when R−
1

j
< |x| < R.

By our assumption, ϕ is uniformly convex in BR \ BR
2
. By (5.7), |uj − ϕ| ≤ 4−j =

o(j−2), x ∈ BR \ Ω. So we have

vj = uj in BR \BR− 1
2j
,(5.8)

vj = ϕ in BR− 2
j
\ Ω,(5.9)

|vj − ϕ| ≤ |uj − ϕ| in BR− 1
2j
\BR− 2

j
:= Dj.(5.10)

Now we consider the functional

Jj(v) =

∫

BR

G(det ∂2v) dx−

∫

Ω

fv dx−

∫

BR\Ω

Hj(v − ϕ) dx.

Subtracting G by the constant G(0), we may assume that G(0) = 0. Note that uj is

the maximizer of Jj in S[uj, BR] and vj ∈ S[uj, BR]. So we have

Jj(vj) ≤ Jj(uj).
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In the following, we denote by Jj(v, E) the functional Jj over the domain E. By (5.8),

we have

(5.11) Jj(vj , BR− 1
2j
) ≤ Jj(uj, BR− 1

2j
).

By (5.9), (5.10), we obtain

(5.12) −

∫

B
R−

1
2j

\Ω

Hj(uj − ϕ) dx ≤ −

∫

B
R−

1
2j

\Ω

Hj(vj − ϕ) dx.

For any ǫ > 0, by the upper semi-continuity of the functional A(u),
∫

B
R−

2
j
\Ω

G(det ∂2uj) dx ≤

∫

B
R−

2
j
\Ω

G(det ∂2ϕ) dx+ ǫ

=

∫

B
R−

2
j
\Ω

G(det ∂2vj) dx+ ǫ(5.13)

provided j is large enough. In addition, by (2.9),

(5.14) 0 ≤

∫

Dj

G(det ∂2v) dx ≤ |Dj|G(|Dj|
−1µ[v](Dj)) → 0

as j → ∞, where v = uj or vj .

Hence, by (5.11)-(5.14) and the upper semi-continuity of the functional A(u),

J(u) = J(vj) ≤ J(uj) + 2ǫ ≤ J(ū) + 3ǫ.

provided j is large enough. By taking ǫ→ 0, this implies ū is the maximizer. By the

uniqueness of maximizers in Theorem 2.6, we obtain ū = u. �

Remark 5.3. We remark that the above approximation does not holds for the maxi-

mizer of the functional J0. The reason is that since log d is not bounded from below,

we do not have the property
∣

∣

∣

∣

∫

E

log det ∂2u dx

∣

∣

∣

∣

−→ 0,

as |E| → 0. This is why we introduce the function G and consider the modified

functional J(u).

By Theorem 5.2, for each k, there exists a smooth solutions u
(k)
j to

(5.15) U ijwij = f,

where

(5.16) w = G′
k(detD

2u),
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which converges locally uniformly to the maximizer u(k) of (2.13). Then we have

(5.17) u
(k)
j −→ u0, j, k → ∞.

As we explained in Section 3, if u0 is strictly convex, the interior a priori estimates

of u
(k)
j will be independent of k and j. Hence, by taking limit, we have the interior

regularity of u0 in Ω. Moreover, by the construction of Gk, u0 will be a solution to

Abreu’s equation (1.1). Therefore we have

Theorem 5.4. Let u0 be as above. Assume that f ∈ C∞(Ω). Then if u0 is a strictly

convex function, u0 ∈ C∞(Ω) and solves (1.7).

In the last two sections, we will show the strict convexity of u0.

6. Strict convexity I

We prove the strict convexity of u0 in dimension 2. Let M0 be the graph of u0. If

u0 is not strictly convex, M0 contains a line segment. Let l(x) be a tangent function

of u0 at the segment and denote by

C = {x ∈ Ω | u0(x) = l(x)}

the contact set.

We first recall the definition of extreme points. Let Ω be a bounded convex domain

in R
n, n ≥ 2. A boundary point x ∈ ∂Ω is an extreme point of Ω if there is a

hyperplane H such that {x} = H ∩ ∂Ω, namely x is the unique point in H ∩ ∂Ω.

According to the distribution of extreme points of C, we consider two cases as

follows.

Case (a) C has an extreme point x0 which is an interior point of Ω.

Case (b) All extreme points of C lie on ∂Ω.

In this section, we exclude Case (a).

Proposition 6.1. C contains no extreme points in the interior of Ω.

Proof. We prove this proposition by contradiction arguments as in [TW1]. By (5.17),

we can choose a sequence of smooth functions uk = u
(k)
jk

converging to u0 such that

uk is the solution to (5.15). Let Mk be the graph of uk. Then Mk converges in

Hausdorff distance to M0. There is no loss of generality in assuming that l(x) = 0,

x0 is the origin and the segment {(x1, 0) | 0 ≤ x1 ≤ 1} ⊂ C.

For any ǫ > 0, we consider a linear function

lǫ = −ǫx1 + ǫ
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and a subdomain Ωǫ = {u < lǫ}. Let Tǫ be the coordinates transformation that

normalizes Ωǫ. Define

(6.1) uǫ(y) =
1

ǫ
u(x), uk,ǫ =

1

ǫ
uk(x), y ∈ Ω̃ǫ

where y = Tǫx and Ω̃ǫ = Tǫ(Ωǫ). After this transformation, we have the following

observations:

(i) By Remark 2.2, uk,ǫ satisfies the equation (2.6) with

G = Gk,ǫ(d) = Gk(ǫ|Tǫ|
2d), δ = δk,ǫ =

δk
ǫ|Tǫ|2

and the right hand term ǫf . Note that |Tǫ| ≥ Cǫ−1, so δk,ǫ ≤ Cδk → 0 for a constant

C independent of ǫ.

(ii) Denote by Mǫ, Mk,ǫ the graphs of uǫ, uk,ǫ, respectively. Taking k → ∞, it is

clear that uk,ǫ → uǫ and Mk,ǫ converges in Hausdorff distance to Mǫ. Then taking

ǫ→ 0, we have that the domains Ω̃ǫ sub-converges to a normalized domain Ω̃ and uǫ
sub-converges to a convex function ũ defined in Ω̃. We also have Mǫ sub-converges

in Hausdorff distance to a convex surface M̃0 ∈ R
3.

(iii) The convex surface M̃0 satisfies

(6.2) M̃0 ⊂ {y1 ≥ 0} ∩ {y3 ≥ 0}

and M̃0 contains two segments

(6.3) {(0, 0, y3) | 0 ≤ y3 ≤ 1}, {(y1, 0, 0) | 0 ≤ y1 ≤ 1}.

Hence, by (i), (ii), (iii), we can suppose that there is a solution ũk to

(6.4) U ijwij = ǫkf in Ω̃k,

where

(6.5) w = G̃′
δ̃k
(detD2u),

and δ̃k, ǫk → 0, such that the normalized domain Ω̃k converges to Ω̃, ũk converges

to ũ and the graph of ũk, denoted by M̃k converges in Hausdorff distance to M̃0.

It is clear that in y-coordinates, M̃0 is not a graph of a function near the origin,

so we need to rotate the R
3 coordinates. Since the equation (2.6) is invariant under

unimodular transformation, we may suppose

Ω̃ ⊂ {y1 ≥ 0}.

Adding a linear function to ũ, ũk, we replace (6.2), (6.3) by

(6.6) M̃0 ⊂ {y1 ≥ 0} ∩ {y3 ≥ −y1}
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and M̃0 contains two segments

(6.7) {(0, 0, t) | 0 ≤ t ≤ 1}, {(t, 0,−t) | 0 ≤ t ≤ 1}.

Let

L = {(y1, y2, y3) ∈ M̃0 | y1 = y3 = 0}.

L must be a single point (Case I) or a segment (Case II). In Case II, we may also

suppose that 0 is an end point of the segment which is

{(0, t, 0) | − 1 < t < 0}.

Later, we will discuss the two cases separately.

Now we make the rotation

z1 = −y3, z2 = y2, z3 = y1

such that M̃0 can be represented by a convex v near the origin. By convexity, M̃k

can also be represented by z3 = v(k)(z1, z2) near p0, respectively. v
(k) is a solution of

the equation given in Lemma 4.1 near the origin. As we know that M̃k converges in

Hausdorff distance to M̃0, in new coordinates, v(k) converges locally uniformly to v.

It is clear that

v(0) = 0, v ≥ 0, when − 1 ≤ z1 ≤ 0 and

v ≥ z1, when 0 ≤ z1 ≤ 1

and the two line segments

{(t, 0, 0) | − 1 ≤ t ≤ 0}, {(t, 0, t) | 0 ≤ t ≤ 1}

lie on the graph of v.

As in (4.9), let v̂(k) = v(k) − 1
2
z1 and v̂ = v − 1

2
z1. In the following computation we

omit the hat for simplicity. Then

(6.8) v ≥
1

2
|z1| and v(z1, 0) =

1

2
|z1|.

Let

C̃ = {z | v(z) = 0}.

Observe that

L = {(z1, z2, 0) | (z1, z2) ∈ C̃}

in z-coordinates.

Case I. In this case, v is strictly convex at (0, 0). The strict convexity implies that

Dv is bounded on Sh,v(0) for small h > 0. Hence, by locally uniform convergence,
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Dv(k) are uniformly bounded on Sh
2
,v(k)(0). By Lemma 4.3, we have the determinant

estimate

(6.9) detD2v(k) ≤ C

near the origin.

For δ ≤ h
2
, by (6.8), Sδ,v(0) ⊂ {− δ

2
≤ y1 ≤ δ

2
} and (± δ

2
, 0) ∈ ∂Sδ,v(0). In the z2

direction, we define

κδ = sup{|z2| | (z1, z2) ∈ Sδ,v(0)}.

By comparing the images of Sδ,v(0) under normal mapping of v and the cone with

bottom at ∂Sδ,v(0) and top at the origin,

|Nv(Sδ,v(0))| ≥ C
δ

κδ
.

By the lower semi-continuity of normal mapping,

Nv(Sδ,v(0)) ⊆ lim infk→∞Nvk(Sδ,v(0)),

then

Nv(Sδ,v(0)) = Nv(Sδ,v(0)) ⊆ lim infk→∞Nv(k)(Sδ,v(0)).

By (6.9),

|Nv(S(δ))| ≤ lim infk→∞|Nv(k)(Sδ,v(0))|

= lim infk→∞

∫

Sδ,v(0)

detD2v(k) dz

≤ C|Sδ,v(0)|

≤ Cδκδ.(6.10)

Hence, κδ ≥ C > 0, where C is independent of δ. Again by the strict convexity,

κδ → 0 as δ → 0. The contradiction follows.

Case II. In this case,

C̃ = {(0, z2) | − 1 < z2 < 0}.

We define the following linear function:

lǫ(z) = δǫz2 + ǫ

and ωǫ = {z | v(z) ≤ lǫ}, where δǫ is chosen such that

v(0,
ǫ

δǫ
) = l(0,

ǫ

δǫ
) = 2ǫ, v(0,−

ǫ

δǫ
) = l(0,−

ǫ

δǫ
) = 0.
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We can suppose that ǫ is small enough such that ωǫ is contained in a small ball near

the origin. Hence, Dv(k) is uniformly bounded. By comparing the image of ωǫ under

normal mapping of v and the cone with bottom at ∂ωǫ and top at the origin,

(6.11) |Nv(ωǫ)| ≥ Cδǫ.

On the other hand, ωǫ ⊂ {−ǫ ≤ z1 ≤ ǫ} since v ≥ |z1|. By the convexity and the

assumption above, ωǫ ⊂ {− ǫ
δǫ
≤ z2 ≤

ǫ
δǫ
}. Therefore,

|ωǫ| ≤ C
ǫ2

δǫ
.

Furthermore, subtracting all v(k) by lǫ, they still satisfy the same equation. By the

determinant estimate in Lemma 4.3 and a similar argument as in (6.10),

(6.12) |Nv(ωǫ ∩ {z | ξ1 ≥ 0})| ≤ C
ǫ2

δǫ
.

Combining (6.11) and (6.12),
ǫ2

δ2ǫ
≥ C.

However, according to our construction, ǫ
δǫ
goes to 0 as ǫ goes to 0. The contradiction

follows. �

Remark 6.2. The following property has been used in the above proof. Assume that

u is a 2-dimensional convex function satisfying

(6.13) u(0) = 0, u(x) > 0 for x 6= 0 and u(x1, 0) ≥ C|x1|.

Then
|Nu(Sh,u(0))|

|Sh,u(0)|
→ ∞ as h→ 0.

In other words, if

detD2u ≤ C

and u vanishes on boundary, then u is C1 in Ω. This property can be extended to high

dimension if

(6.14) u(0) = 0, u(x′, xn) ≥ C|xn| and u(x
′, xn) ≥ C|x′|2,

where x′ = (x1, ..., xn−1).

It is also known that a generalized solution to

detD2u ≥ C

in a domain in R
2 must be strictly convex. This result was first proved by Aleksandrov

but a simple proof can be found in [TW3].
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7. Strict convexity II

In this section, we rule out the Case (b) that all extreme points of C lie on the

boundary ∂Ω.

First, we need a stronger approximation. In the case of the affine Plateau problem,

this approximation was obtained by [TW5]. Here, we extend it to our functional

J(u).

Theorem 7.1. Let ϕ, Ω be as in Theorem 2.6 and u be the maximizer of the functional

J in S[ϕ,Ω]. Assume that ∂Ω is lipschitz continuous. Then there exist a sequence of

smooth solutions um ∈ W 4,p(Ω) to

(7.1) U ijwij = fm = f + βmχDm
in Ω

such that

(7.2) um −→ u uniformly in Ω,

where Dm = {x ∈ Ω | dist(x, ∂Ω) < 2−m}, χ is the characteristic function, and βm
is a constant. Furthermore, we can choose βm sufficient large (βm → ∞ as m→ ∞)

such that for any compact subset K ⊂ Nϕ(Ω),

(7.3) K ⊂ Num
(Ω)

provided m is sufficient large.

Proof. By subtracting the constant G(0), we assume that G(0) = 0 and G ≥ 0. The

proof is divided into four steps.

(i) Let B = BR(0) be a large ball such that Ω ⊂ BR. By assumption, ϕ is defined in

a neighborhood of Ω, so we can extend u to B such that ϕ is convex in B, ϕ ∈ C0,1(B)

and φ is constant on ∂B. Consider the second boundary value problem with

fm,j =

{

f + βmχDm
in Ω,

H ′
j(u− ϕ) in BR \ Ω,

where Hj(t) = H(4jt) is given by (5.1). By Lemma 5.1, there is a solution um,j

satisfying

(7.4) |um,j − ϕ| ≤ 4−j , x ∈ BR \ Ω.

(ii) By the convexity, um,j sub-converges to a convex function um as j → ∞ and

um = ϕ in BR \ Ω. Note that um ∈ S[ϕ,Ω] when restricted in Ω. By Theorem 5.2,
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um is the maximizer of the functional

(7.5) Jm(v) =

∫

Ω

G(det ∂2v) dx−

∫

Ω

(f + βmχDm
)v dx

in S[ϕ,Ω].

(iii) Since um ∈ S[ϕ,Ω], um converges to a convex function u∞ in S[ϕ,Ω] asm→ ∞.

We claim that u∞ is the maximizer u. The proof is as follows.

Define

ϕ∗ = sup{l(x) | l is a tangent plane of ϕ at some point in BR \ Ω}.

Then ϕ∗ ∈ S[ϕ,Ω] and v ≥ ϕ∗ for any v ∈ S[ϕ,Ω]. We consider the maximizer u.

Let

ũm = sup{l(x) | l is linear, l ≤ u in Ω and l ≤ ϕ∗ in Dm}.

Then ũm ∈ S[ϕ,Ω] and ũm = ϕ∗ in Dm. Since u is convex, it is twice differentiable

almost everywhere. By the definition of ũm, ũm = u at any point where D2u > 0

when m is sufficiently large. Therefore, we have det ∂2ũm → det ∂2u a.e.. By the

upper semi-continuity of the functional A(u) and Fatou lemma,

lim
m→∞

∫

Ω

G(det ∂2ũm) dx =

∫

Ω

G(det ∂2u) dx.

It follows that for a sufficiently small ǫ0 > 0,

(7.6) J(u) ≤ J(ũm) + ǫ0

provided m is sufficiently large.

On the other hand, we consider the functional Jm. By (ii), um is the maximizer of

Jm in S[ϕ,Ω], so we have

(7.7) Jm(ũm) ≤ Jm(um).

Note that um ≥ ϕ∗ = ũm in Dm. Hence, we obtain
∫

Dm

βmum dx ≥

∫

Dm

βmũm dx.

By the definition of Jm, it follows

(7.8) J(ũm) ≤ J(um) + ǫ0.

for sufficiently large m.
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Finally, by (7.6), (7.8) and the upper semi-continuity of A(u),

J(u) ≤ J(ũm) + ǫ0

≤ J(um) + ǫ0

≤ J(u∞) + 2ǫ0.

By taking ǫ0 → 0, this implies that u∞ is the maximizer. By the uniqueness of

maximizers, u∞ = u.

(iv) It remains to prove (7.3). We claim that for any fixed m,

(7.9) lim
βm→∞

um(x) ≤ ϕ∗(x).

We prove it by contradiction. Suppose that there is x0 ∈ Dm such that um(x0) ≥

ϕ∗(x0) + ǫ0 for some ǫ0 > 0. Since um and ϕ∗ are uniformly Lipschitz continuous,

um(x) ≥ ϕ∗(x) +
ǫ0
2
in a ball BCǫ0(x0) for some constant C. Let

um∗ = sup{l(x) | l is linear, l ≤ um in Ω and l ≤ ϕ∗ in Dm}.

Then um∗ ∈ S[ϕ,Ω], and satisfies

um∗ ≤ um in Ω, um∗ = ϕ∗ in BCǫ0(x0).

Hence,

Jm(um)− Jm(um∗) = J(um)− J(um∗)− βm

∫

Dm

um − um∗ dx

becomes negative when βm is sufficiently large. This is a contradiction to that um is

a maximizer of Jm. �

Remark 7.2. If ϕ ∈ C1, we can restate (7.3) in the theorem as

(7.10) |D(um − ϕ)| → 0 uniformly on ∂Ω.

Now we deal with Case (b). By Theorem 7.1, there exists a solution u
(k)
m to

(7.11) U ijwij = fm,

where

(7.12) w = G′
k(detD

2u),

such that

u(k)m −→ u(k), m→ ∞.

and for any compact set K ⊂ Dϕ(Ω),

(7.13) K ⊂ Du(k)m (Ω)
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for large m. Hence, we can choose a sequence mk → ∞ such that

(7.14) uk := u(k)mk
−→ u0.

Lemma 7.3. Assume that Ω and ϕ are smooth. Then M0 contains no line segments

with both endpoints on ∂M0.

Proof. Suppose that L is a line segment in M0 with both end points on ∂M0. By

subtracting a linear function, we suppose that u0 ≥ 0 and l lies in {x3 = 0}. By a

translation and a dilation of the coordinates, we may further assume that

(7.15) L = {(0, x2, 0) | − 1 ≤ x2 ≤ 1}

with (0,±1) ∈ ∂Ω. Note that by Remark 2.2, these transformations do not change

the essential properties of equation (2.6).

Since ϕ is a uniformly convex function in a neighborhood of Ω and ϕ = u0 at

(0,±1), L must be transversal to ∂Ω at (0,±1). Hence, by u0 = ϕ on ∂Ω and the

smoothness of ϕ and ∂Ω, we have

u0(x) = ϕ(x) ≤
C

2
x21, x ∈ ∂Ω.

By the convexity of u0,

(7.16) u0(x) ≤
C

2
x21, x ∈ Ω.

Now we consider the Legendre function u∗0 of u0 in Ω∗ = Dϕ(Ω), given by

u∗0(y) = sup{x · y − u0(x), x ∈ Ω}, y ∈ Ω∗.

Note that (0,±1) ∈ ∂Ω. By the uniformly convexity of ϕ, 0 /∈ Dϕ(∂Ω). Hence,

0 ∈ Ω∗. By (7.15), (7.16) and the smoothness of ϕ, we have

u∗(0, y2) ≥ |y2|,(7.17)

u∗(y) ≥
1

2C
y21.(7.18)

On the other hand, by the approximation (7.13), (7.14), the Legendre function of

uk, denoted by u∗k, is smooth in

Ω∗
ǫk
= {y ∈ Ω∗ | dist(y, ∂Ω∗) > ǫk}.

with ǫk → 0 as k → ∞ and satisfies the equation

(7.19) u∗ijw∗
ij = −fmk

(Du∗)

in Ω∗
ǫk
, where

(7.20) w∗ = Gk(d
∗−1)− d∗−1G′

k(d
∗−1).
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By (7.17), (7.18), u∗0 is strictly convex at 0. Then {y | u∗0 < h} ⊂ Ω∗
ǫk

providing

m is sufficiently large. Note that u∗k converges to u∗0. By Lemma 3.2, we have the

estimate

detD2u∗k ≤ C

near the origin in Ω∗. Note also that in Lemma 3.2, C depends on inf f but not on

sup f . In other words, the large constant βmk
in (7.1) does not affect the bound C.

Therefore sending k → ∞, we obtain

detD2u∗0 ≤ C

in the sense that the Monge-Ampère measure of u∗0 is an L∞ function. This is a

contradiction with (7.17), (7.18) according to Remark 6.2. �

In conclusion, we have proved that u0 is strictly convex in Ω in dimension 2. The-

orem 1.1 follows from Theorem 5.4.

8. Appendix: Second boundary value problem

In order to construct approximation solutions to the maximizer of J(u), we employ

the second boundary value problem for equation (2.6). This section is just a modifica-

tion of the second boundary problem in [TW2]. We include it here for completeness.

Throughout this section, we will denote by d the determinant detD2u for simplicity.

We study the existence of smooth solutions to the following problem.

U ijwij = f(x, u), in Ω,(8.1)

w = G′(d), in Ω,(8.2)

w = ψ, on ∂Ω,(8.3)

u = ϕ, on ∂Ω,(8.4)

where Ω is a smooth, uniformly convex domain in R
n, ϕ, ψ are smooth functions on

∂Ω with

0 < C−1
0 ≤ ψ ≤ C0.

f ∈ L∞(Ω× R) is nondecreasing in u and there is t0 ≤ 0 such that

f(x, t) ≤ 0, t ≤ t0.

We note that this condition is not needed if u is bounded from below.

By Inverse Function Theorem, w = G′(d) has an inverse function d = g(w). g is

an decreasing function which goes to 0 as w → ∞ and goes to ∞ as w → 0. To solve
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the problem (8.1)-(8.4), we first consider the approximating problem

U ijwij = f, in Ω,(8.5)

detD2u = ηkg(w) + (1− ηk), in Ω,(8.6)

where ϕ and ψ satisfy (8.3), (8.4) and ηk ∈ C∞
0 (Ω) is the cut-off function satisfying

ηk = 1 in Ωk = {x ∈ Ω | dist(x, ∂Ω) > 1
k
}.

Lemma 8.1. Suppose that f ∈ L∞ satisfies the condition above. If (u, w) is the C2

solution of (8.5), (8.6), there is a constant depending only on diam(Ω), f , ϕ, ψ and

independent of k, such that

C−1 ≤ w ≤ C, in Ω,(8.7)

|w(x)− w(x0)| ≤ C|x− x0|, for any x ∈ Ω, x0 ∈ ∂Ω.(8.8)

Proof. The proof of the upper bound for w is totally the same as that for affine

maximal surface equation in [TW2] by considering the auxiliary function

z = logw + A|x|2,

where A > 0 is a constant to be determined later. Suppose that z attains its minimum

at the point x0. If x0 is a boundary point, then z(x0) ≥ C, and hence w ≥ C. If x0
lies in the interior of Ω, we have, at x0,

0 = zi =
wi

w
+ 2Axi,

0 ≥ zij =
wij

w
−
wiwj

w2
+ 2Aδij .

Then

0 ≥ uijzij

=
f

dw
− 4A2uijxixj + 2Auii

≥
f

dw
+ Ad−

1
n .

Note here we choose A small. Therefore,

d
n−1
n w ≤ C.

combining with the definition of d, w and using the condition F ′(0) = ∞ in (c), we

obtain w ≤ C.

By w ≤ C, we have detD2u ≥ C. Suppose that v is a smooth, uniformly convex

function such that D2v ≥ K > 0 and v = ψ on ∂Ω. Then, if K is large,

U ijvij ≥ KU ii ≥ K[detD2v]
n−1
n ≥ CK ≥ f,

35



which implies U ij(v − w)ij ≥ 0. By maximum principle, v − w ≤ 0. We thus obtain

(8.9) w(x)− w(x0) ≥ −C|x− x0|, for any x ∈ Ω, x0 ∈ ∂Ω.

To prove the lower bound of w, let

z = logw + w − αh(u),

where α > 0 is a constant to be determined later and h is a convex, monotone

increasing function such that,

h(t) = t, when t ≥ −t0 and h ≥ −t0 − 1, when t ≤ −t0.

Assume that z attains its minimum at x0. If x0 is near ∂Ω, by (8.9), z(x0) ≥ −C.

Otherwise, x0 is away from the boundary. Hence, we have, at x0,

0 = zi =
wi

w
+ wi − αh′(u)ui,

0 ≤ zij =
wij

w
−
wiwj

w2
+ wij − αh′′(u)uiuj − αh′(u)uij.

By maximum principle,

0 ≤ uijzij =
f

dw
−
uijwiwj

w2
+
f

d
− αh′′(u)uijuiuj − αh′(u)n

≤
f

dw
+
f

d
− αh′(u)n.

If u(x0) ≤ t0, f ≤ 0, which immediately induces a contradiction. Hence, u(x0) ≥ t0,

and h′(u(x0)) ≥ h′(t0). Then choosing α large enough, we obtain d ≤ C at x0 by

the assumption (a). Using the relation between w and d, we have w(x0) ≥ C. By

definition,

z = logw + w − αh(u) ≥ z(x0) ≥ −C.

This implies w ≥ C.

Similarly, with the upper bound of the determinant, we can construct a barrier

function v from above for w and prove

w(x)− w(x0) ≤ C|x− x0|.

In conclusion, the lemma has been proved. �

Proposition 8.2. There is a solution u ∈ C2,α(Ω) ∩W 4,p(Ω) to the approximation

problem (8.5), (8.6). If furthermore f ∈ Cα(Ω), then u ∈ C4,α(Ω).

Proof. By (8.7), using Caffarelli-Gutierrez’s Hölder continuity for linearized Monge-

Ampère equation [CG] we have the interior Cα estimate for detD2u, for some α ∈

(0, 1). Then by Caffarelli’s W 2,p and C2,α estimates for Monge-Ampère equation
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[?, JW], we have interior W 2,p estimate for u for some p > 1 and C2,α estimate when

f ∈ Cα(Ω). Then the interior W 4,p and C4,α estimates follow from the standard

elliptic regularity theory. Note that detD2u is constant near the boundary of Ω, we

also have the boundary W 4,p and C4,α estimates by [CNS, GT, K]. In conclusion, we

have

(8.10) ‖u‖W 4,p(Ω) ≤ C,

where C depends on n, p, ϕ, ψ and f . and

(8.11) ‖u‖C4,α(Ω) ≤ C

when f ∈ Cα(Ω), where C depends on n, α, ϕ, ψ and f .

Now we use the degree theory to prove the existence of solutions to the approxi-

mating problem (8.5), (8.6).

For any positive w ∈ C0,1(Ω), let u = uw be the solution of (8.6) with u = ϕ on

∂Ω. Next, let wt, t ∈ [0, 1], be the solution of

(8.12) U ijwij = tf in Ω, wt = tψ + (1− t) on ∂Ω.

Therefore, we have a compact mapping

Tt : w ∈ C0,1(Ω) −→ wt ∈ C0,1(Ω).

By estimate (8.10), the degree deg(Tt, BR, 0) is well defined, where BR is the set of all

functions satisfying ‖w‖C0,1(Ω) ≤ R. When t = 0, T0 has a unique fixed point w = 1

by (8.12). Hence, deg(T0, BR, 0) = 1. By degree theory, we have deg(T1, BR, 0) = 1.

Namely, there is a unique solution when t = 1. The proposition follows. �

Finally, taking k → ∞, we obtain

Theorem 8.3. The second boundary problem (8.1)-(8.4) admits a solution u ∈ W 2,p
loc ∩

C0,1(Ω)(p > 1) with detD2u ∈ C0(Ω). Moreover, if f ∈ Cα(Ω× R) (0 < α < 1),

then u ∈ C4,α(Ω) ∩ C0,1(Ω).

Remark 8.4. The second boundary problem we consider here is for the equation

(2.6). By checking the proof, it is easy to see that Theorem 8.3 also holds for Abreu’s

equation.
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