
ar
X

iv
:1

00
9.

18
98

v3
  [

m
at

h.
A

G
]  

8 
O

ct
 2

01
0

KURANISHI SPACES OF MEROMORPHIC CONNECTIONS

FRANCOIS-XAVIER MACHU

ABSTRACT. We construct the Kuranishi spaces, or in other words, the versal
deformations, for the following classes of connections with fixed divisor of polesD:
all such connections, as well as for its subclasses of integrable, integrable logarithmic
and integrable logarithmic connections with a parabolic structure overD . The tangent
and obstruction spaces of deformation theory are defined as the hypercohomology of
an appropriate complex of sheaves, and the Kuranishi space is a fiber of the formal
obstruction map.
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INTRODUCTION

We construct the Kuranishi space, or in other words, the versal deformation, of
connections belonging to each one of the following classes:
meromorphic connections with fixed divisor of polesD;
integrable meromorphic connections with fixed divisor of polesD;
integrable logarithmic connections with fixed divisor of polesD;
integrable logarithmic connections on curves with parabolic structure at singular points.

The interest in versal deformations is twofold. First, a versal deformation is a kind of
a local moduli space which exists in a much wider range of situations than the moduli
spaces in the proper sense do. Second, versal deformations are usually easier to write
down than the moduli spaces, and one can use the versal deformation to determine the
germ of the moduli space up to analytic, formal or étale equivalence.

Historically, versal deformations were introduced for thefirst time in late50’s in
the work of Kodaira and Spencer ([KS-1],[KS-2]), and Kuranishi ([Ku-1],[Ku-2]). In
the beginning, this theory was only concerned with deformations of compact complex
manifolds and was viewed as a replacement for Riemann’s insight of moduli of compact
complex curves in higher dimensions. But since then the theory has been significantly
formalized and extended to a much wider range of domains: singularities [Ar], [Schl-2],
[AGZV], vector bundles and sheaves [Rim-1], [Rim-2], [Artam-1], [Artam-2], singular
complex spaces [Gro], [Illu-1],[Illu-2], [Pa-1],[Pa-2],and morphisms of varieties or
complex spaces [Fl], [Bi], [Ran-1], [Ran-2].

Recently, many people believe that a deformation theory over a field of characteristic0
should be taken over by a differential graded Lie algebra (denoted DGLA). This principle
deriving from researches regarding homotopy theory, quantization, mirror symmetry, etc.
(see, for instance, [Kon]). One prototype example to this principle is the deformation
theory of compact complex manifold via Maurer-Cartan equation on the vector field
valued(0, 1) forms. This is the Newlander-Nirenberg theorem (or rather Kuranishi’s proof

Partially supported by grant FWF-AP19667.
1

http://arxiv.org/abs/1009.1898v3


of the existence of the Kuranishi space). If we restrict to infinitesimal deformations, we
can describe the situation as a bijection between

{Maurer-Cartan solutions inKS1
X ⊗mA}

gauge equivalence ≃ { deformations ofX onA}
isomorphisms , whereA is a local artinianC-

algebra andKS•

X = (A0,•
X (ΘX), ∂, [−,−]) the Kodaira-Spencer algebra onX. This

isomorphism is functorial inA. The left-hand side is the deformation functor associated
to the Kodaira-Spencer DGLAKS•

X , denoted byDefKSX
, and the right-hand side is the

usual deformation functorDefX of X.
All the constructions are enclosed in the paradigm of the Kuranishi space associated

to a ”good” deformation theory. A ”good” deformation theoryfor some type of object
X consists in determining a triple(T 1

X , T
2
X , f), where T 1

X is the tangent space to
deformations ofX, T 2

X is the obstruction space,f : T̂ 1
X→T̂ 2

X a formal map without
linear terms, called the Kuranishi map (ˆdenotes the formal completion at zero). Then the
formal schemef−1(0) is the Kuranishi space, or a formal germ of the versal deformation
of X.

We provide the triples(T 1
X , T

2
X , f) for the above four classes of connections. In all the4

cases,T i
X = Hi(C•), the hypercohomology of an appropriate complex of sheaves,and the

initial componentf2 of f is the Yoneda square map. For instance, in the caseX = (E,∇)
is a meromorphic connection with fixed divisor of polesD, the complexC• is a two-term
one and is

C• = [End(E)
∇

//End(E)⊗ Ω1(D)].

A similar situation occurs in the deformation theory of Higgs bundles or Hitchin pairs
[B-R], whereT 1

X = H1(C•) with complex

C• = [End(E)
adϕ

//End(E)⊗ Ω1(D)]

defined by the Higgs fieldϕ : E→E⊗ Ω1(D); contrary to our case,adϕ isOX -linear.
Let X be a complete scheme of finite type overk or a compact complex space

(then k = C). The existence of a versal deformation and the theoreticalapproach
to its construction are known for coherent sheaves onX. The construction of the
Kuranishi space (= versal deformation) for coherent sheaves is done in using the injective
resolutions. We are studying vector bundlesE with an additional structure (a connection
∇), and in this case the deformation theory of bothE and(E,∇) can be stated in terms of
theČech cohomology of a sufficiently fine open covering ofX. This approach is easier
than the one via injective resolutions. We start by the construction of the Kuranishi space
of vector bundles serving as a model for that of the pairs(E,∇). This is done in Sect. 1,
where it is also explained how the versal deformations can beused to construct analytic
moduli spaces of simple vector bundles. In Sect. 2, we introduce connections with fixed
divisor of poles and show that their isomorphism classes of first order deformations are
classified by the hypercohomologyH1(C•) of some two-term complex of sheaves. In
Sect. 3, we show that the first obstruction to lifting the firstorder deformation is given
by the Yoneda square and construct the Kuranishi space. We also define several versions
of the Atiyah class. In Sect. 4, we describe the constructionof the Kuranishi space for
integrable and integrable logarithmic connections. The last Sect. 5 treats the Kuranishi
space of parabolic connections.

0.1. Deformation theory. In this section, we follow [Ma], and [H-L] to remind the
framework of the deformation theory.
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LetArt be the category of local artinianC-algebraA such thatA/mA ≃ C, wheremA

is the maximal ideal ofA. We mean by a functor of artinian rings [Schl-1] a covariant
functor

D : Art→Set such thatD(C) is the one-point set. The tangent spaceTD to a functor
of artinian ringsD is defined byTD = D(C[ǫ]), whereC[ǫ] is the ring of dual numbers
C[x]/(x2).

Let A, B, C be local artinianC-algebras andη : D(B ×A C)→D(B)×D(A) D(C) be
the natural map. We call a functor of artinian ringsD a deformation functor if it satisfies
(i) if B→A is onto, so isη, and(ii) if A = C, η is bijective [Ma](Definition 2.5). Note
that these conditions are closely related to Schlessinger’s criterion of existence of a hull
(see Remark to Definition 2.7 in [F-M]).

An obstruction theory of a functor of artinian ringsD is a pair(U, ob(−)), consisting
of a finite dimensionalC-vector spaceU , the obstruction space, and a mapob(α) :
D(A′)→U ⊗ a, the obstruction map such that for any small extension

α : 0→a→A→A′→0,

with kernela such thatmAa = 0, the following conditions are satisfied:
1. If x′ ∈ D(A′) lifts to D(A), thenob(α)(x′) = 0.
2. For any morphismϕ of small extensions

α1 : 0 −→ a1 −→ A1 −→ A′
1 −→ 0



yϕa



yϕ



yϕ′

α2 : 0 −→ a2 −→ A2 −→ A′
2 −→ 0,

we have the compatibilityob(α2)(ϕ
′
∗(x

′)) = (idU ⊗ϕa)(ob(α1)(x
′)), for every x′ ∈

D(A′
1). Moreover, ifob(α)(x′) = 0 implies the existence of a lifting ofx′ to D(A),

the obstruction is called complete.
In the sequel, we always assume thatk is an algebraically closed field ork = C.

For instance, ifX is a smooth projective variety overk, and letF be a coherentOX -
module which is simple. IfA ∈ Art /k, let DF (A) be the set of isomorphim classes
of pairs (FA, ϕ) whereFA is a flat family of coherent sheaves onX parameterized
by Spec(A) and ϕ : FA ⊗A k→F is an isomorphism ofOX -modules. Following
[H-L], the mapDF (α) : DF (A)→DF (A

′) has for fibers affine spaces with affine group
Ext1(F, F ) ⊗k a, and the image ofDF (α) lies in the kernel of the obstruction map
ob(α) : DF (A

′)→Ext2(F, F )⊗k a.

Proposition 0.1. (See[[Ma], Proposition 2.17].) LetD1 andD2 be deformation functors
andϕ : D1→D2 a morphism of functors,(V1, obD1) and(V2, obD2) obstruction theories
for D1 andD2, respectively. Assume that
(i) ϕ induces a surjection (resp. bijection) on the tangent spacesTD1→TD2 .
(ii) There is an injective linear map between obstruction spacesΦ : V1→V2 such that
obD2 ◦ϕ = Φ ◦ obD1.
(iii) The obstruction theory(V1, obD1) is complete.
Then, the morphismϕ is smooth (resṕetale).

1. CONSTRUCTION OF THEKURANISHI SPACE IN THE CASE OF VECTOR BUNDLES

OVER ANY BASE.

Let X be a complete scheme of finite type overk or a complex space (thenk = C),
U = (Uα) be an open covering ofX, eα a trivialization ofE|Uα. The transition functions
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gαβ relate the trivializations by the formulaeβ = eαgαβ overUαβ = Uα ∩ Uβ and satisfy
the following relations

gαβ = g−1
βα , gαβgβγgγα = 1. (1)

In other words,(gαβ) ∈ Č1(U,GL(r,OX)) is a skew-symmetric multiplicative1-cocycle.

1.1. Construction of the Kuranishi space in the case of simple vector bundles over
any base.

Definition 1.1. A vector bundleE onX is simple if and only ifH0(X,End(E)) = k id.

In the case of a simple vector bundle, the versal deformationis in fact universal and
this is a local version of the moduli space:

Proposition 1.2. Let E be a simple vector bundle on a schemeX of finite type onk or
a complex space (in which casek = C). Then there exists an analytic spaceM(E) with
a reference point∗ and a vector bundleE on X × M(E) which satisfy the following
properties:
(1) E|X×∗ ≃ E.
(2) If T is an analytic space with a reference point∗ andE ′ a vector bundle onX×T such
thatE ′|X×∗≃ E, then there is a holomorphic mappingΦ : T→M(E) such thatΦ(∗) = ∗
andE ′ ≃ (1× Φ)∗(E).
(3) The above mappingΦ is unique as a germ of a holomorphic mapping from(T, ∗) to
(M(E), ∗). (M(E), ∗) andE are called the Kuranishi space and the Kuranishi family of
E, respectively.

Proof. See [Mu-1]. �

We defineSVX as the set of isomorphism classes of simple vector bundles on
X. Using Proposition 1.2, we can endow it with an analytic structure so thatSVX

has a universal family only locally in the étale or classical topology. Then there
exists a sufficiently small open setU of SVX in the classical or étale topology and
a vector bundleE on X × U satisfiying the following property: For any analytic
spaceS, there exists a functorial bijection between the sets{morphismsS→U} →
{vector bundlesE onX × S such that∀s ∈ S, Es is simple and its class belongs toU}/ ∼
given byϕ 7→ (1× ϕ)∗(E).

Proposition 1.3. LetX,E be as in Proposition1.2. Every obstruction to the smoothness
of SVX at [E] lies inker(H2(Tr) : H2(X,End(E))→H2(X,OX)). In particular,SVX is
smooth at[E] if H2(Tr) is injective.

Proof. See [Mu-1]. �

Note, however, thatSVX , even if it is smooth, is not a nice concept of moduli space: it
is non-separated in many examples.

We now treat the case of vector bundles over any base.

1.2. First order deformations. Deform the transition functions:̃gαβ = gαβ + ǫgαβ,1,
wheregαβ,1 ∈ Γ(Uαβ ,Mr(OX)) andǫ2 = 0. We havegαβ,1 =

dg̃αβ

dǫ
. Differentiating (1),

we obtain:

gβα,1 =
dg̃−1

αβ

dǫ
= −g−1

αβgαβ,1g
−1
αβ , (2)

gαβ,1gβγgγα + gαβgβγ,1gγα + gαβgβγgγα,1 = 0,
4



and by (2),gγα,1 = −g−1
αγ gαγ,1g

−1
αγ . Plugging this into the previous formula, we get

gαβ,1gβγgγα + gαβgβγ,1gγα = gαβgβγg
−1
αγ gαγ,1g

−1
αγ .

Multiply by gαγ on the right:

gαβ,1gβγ + gαβgβγ,1 = gαγ,1. (3)

We want to represent this in the formaαβ + aβγ = aαγ for an appropriate additive1-
cocyclea = (aαβ) ∈ Č1(U,End(E)), associated with(gαβ,1) and skew-symmetric:aαβ =
−aβα. Defineaαβ ∈ Γ(Uαβ ,End(E)) by its matrix:g−1

αβgαβ,1 in the basiseβ andgαβ,1g
−1
αβ

in the basiseα. Then (2) givesgαβgβα,1 + gαβ,1g
−1
αβ = 0, written in terms of matrices

with respect to the basiseα, and (3) amounts toaαβ + aβγ = aαγ . Thus the first order
deformations ofE are classified by the1-cocyclesa = (aαβ) ∈ Č1(U,End(E)). Such a
deformation is trivial if the vector bundlẽE defined overX × SpecC[ǫ]/(ǫ2) by the1-
cocycleg̃αβ = gαβ + ǫgαβ,1 is isomorphic topr∗1(E), wherepr1 : X × SpecC[ǫ]/(ǫ2)→X
is the natural projection. This means that there exists a change of basiseα 7→ ẽα =
eα(1 + ǫhα) which transforms̃gαβ into gαβ . We computẽeβ = eβ(1 + ǫhβ) = eαgαβ(1 +
ǫhβ) = ẽα(1 − ǫhα)gαβ(1 + ǫhβ) and we want that this coincides with̃eβ = ẽαg̃αβ. That
is: gαβ + ǫgαβ,1 = (1 − ǫhα)gαβ(1 + ǫhβ), or gαβ,1 = −hαgαβ + gαβhβ . Interpreting
hα as the matrix ofbα ∈ Γ(Uα,End(E)) with respect to the basiseα, we obtainaα,β =
−bα + bβ which is written in the basiseα in the form gαβ,1g

−1
αβ = −hα + gαβhβg

−1
αβ .

Thus the equivalence classes of first order deformations ofE overV = SpecC[ǫ]/(ǫ2) are
classified by

Ȟ1(U,End(E)) =
{1-cocycles(aαβ) ∈ Č1(U,End(E))}

{coboundariesaαβ = bβ − bα, where(bα) ∈ Č0(U,End(E))}
.

1.3. First obstruction. We denoteVk = SpecC[ǫ]/(ǫ)k+1. We will investigate the
following question: which of the deformations ofE overV1 lift to V2?
Let Gαβ = gαβ,0 + ǫgαβ,1 + ǫ2gαβ,2 be a deformation of the cocyclegαβ = gαβ,0 overV2.
We want to prove, in other words thatGαβ gives a valid2nd-order deformation if and only
if it satisfies the cocycle condition.

Assume thatGαβ mod ǫ2 is a1-cocycle, then (2) and (3) are verified, and compute the
coefficientKαβγ,2 of ǫ2 in GαβGβγGγα, which will be denotedKαβγ,2:

Kαβγ,2 = gαβ,0gβγ,1gγα,1 + gαβ,1gβγ,0gγα,1 + gαβ,1gβγ,1gγα,0 (4)

+gαβ,2gβγ,0gγα,0 + gαβ,0gβγ,2gγα,0 + gαβ,0gβγ,0gγα,2

Similar to the above, introduce the sectionsaαβ,i, (i = 1, 2) of the endomorphism
sheafEnd(E|(Uαβ)) havinggαβ,ig

−1
αβ for their matrices in the baseseα. Then, as above,

gαβ,2gβγ,0gγα,0 + gαβ,0gβγ,2gγα,0 + gαβ,0gβγ,0gγα,2 is the matrix ofaαβ,2 + aβγ,2 + aγα,2 in
the basiseα, andgαβ,0gβγ,1gγα,1 + gαβ,1gβγ,0gγα,1 + gαβ,1gβγ,1gγα,0 is the matrix of

aβγ,1aγα,1 + aαβ,1aγα,1 + aαβ,1aβγ,1 (5)

in the basiseα. Let a1 denote the cocycle(aαβ,1) and [a1] its class inȞ1(U,End(E)).
Thenaβγ,1aγα,1 = cβγα represents the Yoneda product[a1] ◦ [a1] = [c] ∈ Ȟ2(U,End(E));
see for instance10.1.1. of [H-L] for the definition of the Yoneda product

Ȟ i(U,End(E))× Ȟj(U,End(E))→Ȟ i+j(U,End(E)).
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The whole expression (5) is the skew-symmetrizationĉαβγ of cβγα, hence it represents the
same cohomology class[c]. Let alsoa2 denote thěCech cochain(aαβ,2). We can rewrite
K2 = (Kαβγ,2) in the form

K2 = ĉ+ ďa2. (6)
We now see that we can finda2 in such a way that(Gαβ) is a cocycle overV2 if and only
if ĉ is ď-exact. We have proved:

Proposition 1.4. Let X be a complete scheme of finite type overk or a complex space
(and thenk = C), E a vector bundle onX, [a] ∈ H1(X,End(E)). Then the first order
deformation ofE overV1 defined by[a] lifts to a deformation overV2 if and only if the
Yoneda square[a] ◦ [a] is zero inH2(X,End(E)).

Definition 1.5. The map

H1(X,End(E)) → H2(X,End(E)) (7)

([a]) 7→ [a] ◦ [a]

will be called first obstruction, and denotedob(2).

Thus ob(2) is the map of taking the Yoneda square. We will now construct a
universal first order deformation ofE on X. Let W = H1(X,End(E)), t1, . . . , tN a
coordinate system onW , Wk = Spec k[t1, . . . , tN ]/(t1, . . . , tN)

k+1 thek-th infinitesimal
neighborhood of the origin inW . The universal first order deformationE1 of E overW1

can be described as follows.
Choose an open covering ofX as above, so thatE is defined by a1-cocyle(gαβ). We

deformE by specifying a familyGαβ(t1, . . . , tN ) of 1-cocyles overX ×W1. Pick upN
cocyclesai = (a

(i)
αβ) ∈ Č1(U,End(E)) whose cohomology classes[a1], . . . , [aN ] form a

basis ofW dual to the coordinatest1, . . . , tN . Then we setg(i)αβ = a
(i)
αβgαβ, wherea(i)αβ is

represented by its matrix in the basiseα and writeGαβ(t1, . . . , tN) = gαβ +
∑N

i=1 g
(i)
αβti.

ThenGαβ is a1-cocycle and defines a vector bundleE1 overX ×W1 called a universal
first order deformation ofE. The whole universal deformation overW1 cannot be lifted
to a deformation onW2. Proposition 1.4 implies:

Proposition 1.6. There is a maximal subschemeK2 ⊂ W2 with the property thatE1

extends as a vector bundle fromX × W1 to X × K2. This maximal subschemeK2 is
the (second infinitesimal neighborhood of the origin in the cone) defined by the equation
ob(2)(z) = 0 in W2.

We will now prove the following theorem, providing a construction of the formal
Kuranishi space:

Theorem 1.7. Let X,E be as above,W = H1(X,End(E)), (δ1, . . . , δN) a basis ofW
and(t1 . . . , tN ) the dual coordinates onW . LetWk = Spec k[t1, . . . , tN ]/(t1, . . . , tN )

k+1

be thek-th infinitesimal neighborhood of the origin inW , E1 a universal first order
deformation ofE overX ×W1 as above. Then there exists a formal power series

f(t1, . . . , tN ) =
∞∑

k=2

fk(t1 . . . , tN) ∈ H2(X,End(E))[[t1, . . . , tN ]],

wherefk is homogeneous of degreek, with the following property. LetI be the ideal of
k[[t1, . . . , tN ]] generated by the image of the mapf ∗ : H2(X,End(E))∗→k[[t1, . . . , tN ]],
adjoint tof . Then for anyk ≥ 2, the universal first deformationE1 of E overX ×W1

6



extends to a vector bundleEk onX ×Kk, whereKk is a closed subscheme ofWk defined
by the idealI ⊗ k[[t1, . . . , tN ]]/(t1, . . . , tN)

k+1.

Definition 1.8. The inverse limitK = lim←−Kk is called the formal Kuranishi space ofE,
andE = lim←−Ek the formal universal bundle overK.

Proof. Let U = (Uk) be an open covering, sufficiently fine so thatE|Uα
is trivialized

by a basiseα, and the groupsH i(X,End(E)) are computed by thěCech complex
(Č•(U,End(E)), ď). Let Ž i(U,End(E)), B̌i(U,End(E)) denote the subspaces of cocycles
and coboundaries iňC i(U,End(E)) respectively. Let us fix some cross-sectionsσi :
H i(X,End(E))→Ž i(U,End(E)) andτ : B̌2(U,End(E))→Č1(U,End(E)) of the natural
maps in the opposite direction. Letai = (a

(i)
αβ) = σ1(δi), and denote, as above, by(gαβ)

the1-cocycle definingE, so thateβ = eαgαβ. We will construct by induction onk ≥ 0
the homogeneous forms of degreek in t1, . . . , tN

Gαβ,k(t1, . . . , tN ) ∈ Γ(Uαβ ,Mr(OX))⊗ k[t1, . . . , tN ], (8)

Fαβγ,k(t1, . . . , tN) ∈ Γ(Uαβγ ,End(E))⊗ k[t1, . . . , tN ],

fk(t1, . . . , tN) ∈ H2(X,End(E))⊗ k[t1, . . . , tN ]

with the following properties:
(i) Gαβ,0 = gαβ, Gαβ,1 =

∑N
i=1 a

(i)
αβgαβti, wherea(i)αβ are represented by their matrices in

the basiseα.
(ii) fk = 0, Fαβγ,k = 0 for k = 0, 1.
(iii) For each k≥ 1, let f (k) =

∑

i≤k fi, and letI(k+1) be the ideal generated by
(t1, . . . , tN )

k+2 and the image of the adjoint mapf (k)∗ : H2(X,End(E))∗→k[t1, . . . , tN ].
Then (Fαβγ,k+1) is a cocycle moduloI(k+1) and fk+1 is a lift to H2(X,End(E)) ⊗
k[t1, . . . , tN ] of the cohomology class[(Fαβγ,k+1 mod I(k+1))] ∈ H2(X,End(E)) ⊗
k[t1, . . . , tN ]/I

(k+1).
(iv) For anyk ≥ 1, setG(k)

αβ =
∑

i≤k Gαβ,i. ThenG
(k)
αβG

(k)
βγG

(k)
γα ≡ (1 + Fαβγ,k+1)

mod I(k+1). Properties(i), (ii) determineGαβ,k, Fαβγ,k for k ≤ 1.
The proof of Proposition 1.4 allows us to see that(iii), (iv) are verified fork = 1 with

Fαβγ,2 =

N∑

i,j=1

(a
(i)
βγa

(j)
γα + a

(i)
αβa

(j)
γα + a

(i)
αβa

(j)
βγ )titj .

and to determineGαβ,2 we proceed as follows. Letf2 = [(Fαβγ,2)], and I(2) be the
ideal of K2, that is the ideal generated by(t1, . . . , tN)3 and the image of the adjoint
mapf (2)∗ : H2(X,End(E))∗→k2[t1, . . . , tN ] = Sym2(W ∗) (the degree-2 homogeneous
part of k[t1, . . . , tN ]). Then the reduction mod I(2) of F2 = (Fαβγ,2) is an element
F̄2 = (Fαβγ,2) mod I(2) ∈ B̌2(U,End(E))⊗ (Sym2(W ∗)/I(2) ∩Sym2(W ∗)). We define
a skew-symmetric1-cochaina2 = aαβ,2 ∈ Č1(U,End(E)) ⊗ Sym2(W ∗) as an arbitrary
lift of (τ⊗ id)(F̄2) ∈ Č1(U,End(E))⊗(Sym2(W ∗)/I(2)∩Sym2(W ∗)) under the quotient
map. Next we defineGαβ,2 byGαβ,2 = aαβ,2gαβ , where the matrix ofaαβ,2 is taken in the
basiseα.

Likewise, assuming thatG(k−1)
αβ , F

(k)
αβ are already fixed, we can chooseFαβγ,k+1

and Gαβ,k as follows. By the induction hypothesis, we haveG(k−1)
αβ G

(k−1)
βγ G

(k−1)
γα ≡

(1 + Fαβγ,k) mod I(k). Then (Fαβγ,k) is a cocycle moduloI(k), and is a coboundary
moduloI(k+1): F̄k = (Fαβγ,k mod I(k+1)) ∈ B̌2(U,End(E)) ⊗ (Symk(W ∗)/I(k+1) ∩

7



Symk(W ∗)). We defineGαβ,k = aαβ,kgαβ with (aαβ,k) ∈ Č1(U,End(E)) ⊗ Symk(W ∗)

an arbitrary skew-symmetric lift toSymk(W ∗) of (τ ⊗ id)(F̄k). ThenG(k)
αβG

(k)
βγG

(k)
γα ≡ 1

mod (I(k+1) + (t1, . . . , tN )
(k+1)), and we can defineFαβγ,k+1 as the degree-(k + 1)

homogeneous component ofG(k)
αβG

(k)
βγG

(k)
γα . To end this inductive construction of the

sequencesGαβ,k, Fαβγ,k+1, we need only to prove thatFk+1 = (Fαβγ,k+1) is a2-cocycle
moduloI(k+1) with values inEnd(E). �

The latter is proved in Lemma 1.9 below.

Lemma 1.9. The2-cochain(Fαβγ,k+1), constructed in the proof of Theorem1.7 as the

degree-(k + 1) homogeneous component ofG
(k)
αβG

(k)
βγG

(k)
γα , is a 2-cocycle moduloI(k+1)

with values inEnd(E).

Proof. The hypotheses, under which we have to prove the assertion oflemma 1.9, are
the following: G(k)

αβ =
∑k

i=0Gαβ,i ∈ Γ(Uαβ ,Mr(OX)) ⊗ k[t1, . . . , tN ] are the matrix
polynomials of degree≤ k in t1, . . . , tN and there is an idealJ ⊂ (t1, . . . , tN)

2 such
thatG(k)

αβG
(k)
βα ≡ 1 mod J andG(k)

αβG
(k)
βγG

(k)
γα ≡ 1 mod (J + (t1, . . . , tN)

k+1). The ideal
J in Theorem 1.7 isI(k+1). The collection(Fαβγ,k) is considered not as a2-cochain in
Mr(OX), but as a2-cochain inEnd(E), E being defined by the multiplicative cocycle
(gαβ) = Gαβ,0 ∈ Ž1(U,GLr(OX)). ThusFαβγ = Fαβγ,k+1 is a certain section ofEnd(E)
overUαβγ given by its matrix in the basiseα of E|Uαβγ

. We want to show that

Fαβγ − Fαβδ + Fαγδ − Fβγδ ≡ 0 mod J (9)

We will replace it by a slightly different identity

Fαβγ + Fαγδ + Fαδβ + Fβδγ ≡ 0 mod J, (10)

which is the same as (9) as soon as we know that(Fαβγ) is skew symmetric. We have:

Fαβγ = [GαβGβγGγα]k+1, Fαγδ = [GαγGγδGδα]k+1, Fαδβ = [GαδGδβGβα]k+1,

Fβδγ = Gαβ,0([GβδGδγGγβ ]k+1)G
−1
αβ,0 = [GαβGβδGδγGγβGβα]k+1,

where we omitted the superscriptk in G
(k)
αβ , [. . . ]k+1 stands for the homogeneous

component of degreek+1 in t1, . . . , tN , and all the four terms are given by their matrices
in the basiseα. Now

Fαβγ + Fαγδ + Fαδβ + Fβδγ = [GαβGβγGγα +GαγGγδGδα +GαδGδβGβα+

GαβGβδGδγGγβGβα]k+1 ≡ [GαβGβγGγα ×GαγGγδGδα ×GαδGδβGβα

×GαβGβδGδγGγβGβα]k+1 ≡ 0 mod J.

The skew symmetry of(Fαβγ) is a particular case of (10) whenδ = γ. �

2. CONNECTIONS

Let X,E be as above. A rational (or meromorphic in the case whenX is a complex
space) connection onE is ak-linear morphism of sheaves∇ : E→E⊗ Ω1

X(D) satisfying
the Leibniz rule:

∀p ∈ X, ∀f ∈ Op, ∀s ∈ Ep,∇(fs) = f∇s+ s⊗ df.
8



We assume thatD is an effective Cartier divisor and callD the divisor of poles of∇. We
can extend∇ in a natural way to

E⊗ Ω•(∗D) = lim−→
n

⊕i≥0 E⊗ Ωi(nD)

as ak-linear map∇ : E⊗Ωi(∗D)→E⊗Ωi+1(∗D) satisfying the Leibniz rule∇(s⊗ω) =
∇s ∧ ω + s ⊗ dω. The connection is integrable if∇2 = 0. In this case,∇ defines the
generalized de Rham complex

0→E(∗D)
∇

//E⊗ Ω1(∗D)
∇

//E⊗ Ω2(∗D)
∇

// . . . , (11)

If X is smooth at all the points ofX \ D, then this complex is exact overX \ D in all
degrees different from0 by the Poincaré lemma. Under the same assumption, the subsheaf
Eh of sectionss of E|X\D satisfying∇(s) = 0 is a local system of rankr, that is a vector
bundle with constant transition functions, andE|X\D = Eh ⊗ OX\D; the sections ofEh

are called horizontal sections of(E,∇). The complex defined above, when restricted to
X \D, is a resolution ofEh.

A connection∇ onE induces natural connections onE∗,End(E), (E∗)⊗m ⊗ E⊗n, and
more generally, on any Schur functor ofE or E∗. We will use in the sequel the induced
connection∇End(E) onEnd(E). Taking a local sectionϕ of End(E), we can think ofϕ as
a sheaf homomorphismE→E over an open setU ⊂ X , and∇End(E) is defined by

∇End(E)(ϕ) = ∇ ◦ ϕ− ϕ ◦ ∇

∇End(E) : End(E)→End(E)⊗ Ω1(D)

If ∇ is integrable, then∇End(E) is also integrable, andEnd(E)h = End(Eh).
Let nowU = (Uα) be a sufficiently fine open covering ofX, eα a trivialization ofE

overUα, (gαβ) the transition functions ofE with respect to the trivilizations(eα). The
connection matricesAα ∈ Γ(Uα,Mr(OX)⊗Ω1(D)) of∇ are defined by∇(eα) = eαAα.
The transition rule for the matricesAα is

Aβ = g−1
αβdgαβ + g−1

αβAαgαβ (12)

over Uαβ . This equation can be given a cohomological interpretation. To this end,
introduce the cochainsA = (Aα) ∈ Č0(U,End(E) ⊗ Ω1(D)), G = (Gαβ) ∈
Č1(U,End(E) ⊗ Ω1) by saying that the matrix ofAα (resp. Gαβ) in the basiseα is Aα

(resp.dgαβg
−1
αβ ). ThenG is a cocycle.

Definition 2.1. The cohomology class[G] of G in H1(X,End(E)⊗ Ω1) does not depend
on the choice of trivializations(eα) and is called the Atiyah class ofE. We will denote this
class byAt(E) and its image inH1(X,End(E)⊗ Ω1(D)), in H1(X,End(E)⊗ Ω1(∗D))
by AtD(E),(resp.At∗D(E)).

Now we can write (12) in the form

G = ďA,

and we get the following assertion:

Proposition 2.2.LetX,E be as above,D an effective Cartier divisor inX. ThenE admits
a connection with divisor of polesD if and only ifAtD(E) vanishes inH1(X,End(E)⊗
Ω1(D)).

9



Informally speaking, this property is expressed by saying that the Atiyah class is the
obstruction to the existence of a connection on a vector bundle. For future use, we also
provide the integrability condition of∇ in terms of the local dataAα:

dAα + Aα ∧Aα = 0 (13)

2.1. First order deformations of connections with fixed divisor of polesD. Let (E,∇)
be defined as above andV1 = Spec k[ǫ]/(ǫ2). We represent the deformed pair(Ẽ, ∇̃) over
V1 by the local data

g̃αβ = gαβ + ǫgαβ,1, Ãα = Aα + ǫAα,1

We have already studied the compatibility conditions whichguarantee that̃gαβ ia a
cocycle; they can be stated by saying that the cochaina = (aαβ) ∈ Č1(U,End(E)),
defined overUαβ by the matrixgαβ,1g

−1
αβ in the basiseα, is a cocycle. Now, we fix this

cocycle and search for a cochain(Aα,1) compatible witha. Expanding (12) to order1, we
obtain:

Aβ,1 = gβα,1dgαβ + gβαdgαβ,1 + gβα,1Aαgαβ + gβαAα,1gαβ + gβαAαgαβ,1 (14)

Lemma 2.3. Define the0-cochainA1 = (Aα,1) in End(E)⊗ Ω1
X(D) whose matrix over

Uα isAα,1 in the basiseα. Then (14) implies:

(ďA1)αβ = Aβ,1 −Aα,1 = daαβ + [Aα, aαβ] (15)

Proof. Conjugate (14) bygαβ:

gαβAβ,1g
−1
αβ = g−1

βαgβα,1dgαβg
−1
αβ + dgαβ,1g

−1
αβ + gαβgβα,1Aα + Aα,1 + Aαgαβ,1g

−1
αβ (16)

Then gαβAβ,1g
−1
αβ , Aα,1 are the matrices ofAβ,1,Aα,1 respectively in the basiseα;

we will also interprete all the remaining terms of (16) as matrices of some sections of
End(E)⊗ Ω1(D). We have

g−1
βαgβα,1 = aβα = −aαβ ; gαβ,1g

−1
βα = aαβ , (17)

so that

gαβgβα,1Aα + Aαgαβ,1g
−1
αβ = [Aα, aαβ]. (18)

Next,gαβ,1 = aαβgαβ , so that

dgαβ,1 = daαβgαβ + aαβdgαβ. (19)

Further, by (17),

g−1
βαgβα,1dgαβg

−1
αβ = −aαβdgαβg

−1
αβ (20)

Combining (19), (20), we obtain

g−1
βαgβα,1dgαβg

−1
αβ + dgαβ,1g

−1
αβ = −aαβdgαβg

−1
αβ + daαβ + aαβdgαβg

−1
αβ = daαβ (21)

Substituing (18), (21) into (16), we obtain (15). �

Corollary 2.4. The pair (g̃αβ), (Ãα) defines a first order deformation of(E,∇) if and
only if the cochainsa = (aαβ) = (gαβ,1g

−1
αβ ),Aα,1 = Aα,1 (both given in the basiseα)

satisfy the relationšd(aαβ) = 0, ď(Aα,1) = (daαβ + [Aα, aαβ ]).
10



We will interprete the latter result in terms of the induced connection onEnd(E). As we
saw, given a connection∇ : E→E ⊗ Ω1(D) onE, we can define a connection∇End(E) :
End(E)→End(E) ⊗ Ω1(D) by ∇End(E)(ϕ) = ∇ ◦ ϕ − ϕ ◦ ∇. If we representϕ by its
matrixMα in the basiseα, then∇End(E)(ϕ) = dMα+[Aα,Mα]. Now, we can reformulate
Corollary 2.4 as follows.

Proposition 2.5. The first order deformations of(E,∇) with fixed divisor of polesD are
classified by the pairs(a,A1) ∈ Č1(U,End(E))× Č0(U,End(E)⊗ Ω1(D)) such that

ď(a) = 0, ď(A1) = ∇End(E)(a). (22)

Now, let us assume in addition that the initial connection isintegrable. Then the
condition that the deformed connection(Ẽ, ∇̃), given by the data(a,A1) as in Proposition
2.5 , remains integrable, can be written in the form:

dAα,1 = −Aα,1 ∧ Aα −Aα ∧Aα,1, (23)

or in an invariant form,∇End(E)(A1) = 0. We remark that here we consider∇End(E)

extended toEnd(E)⊗ Ω•(∗D) in the same way as was explained for∇ = ∇E.

Proposition 2.6. The first order deformations of integrable connections(E,∇) with fixed
divisor of polesD are classified by the pairs(a,A1) as above satisfying three relations

ď(a) = 0, ď(A1) = ∇End(E)(a),∇End(E)(A1) = 0. (24)

2.2. Hypercohomology. Let K• = (Kp, dK) be a complex of sheaves overX, andU =
(Uα) a sufficiently fine open covering ofX. The Čech complex ofK• is the double
complex

(Čp(U, Kq), ď, (−1)pdK). (25)
The hypercohomology groupHi(X,K•) is by definition thei-th cohomology of the
simple complex(L•, D) associated to (25):

Ln = ⊕p+q=nČ
p(U, Kq), D|Čp(U,Kq)

= ď+ (−1)pdK ,

H
i(X,K•) := H i(L•, D).

A hypercohomology classc ∈ Hi(X,K•) is represented by a cocyclec ∈ Li,
c = (. . . , cp−1,q+1, cp,q, cp+1,q−1, . . . ), wherep + q = i, and the cocycle condition is
(. . . , ďcp−1,q+1 + (−1)pdKc

p,q = 0, ďcp,q + (−1)p+1dKc
p+1,q−1 = 0, . . . ). A cocycle

(cp,q)p+q=n is a coboundary if there exists a cochain(bp,q)p+q=n−1 such that

cp,q = ďbp−1,q + (−1)pdKb
p,q−1.

We denote thei-cocyclesŽ i(U, K•) and thei-coboundariešBi(U, K•), so that

H
i(X,K•) = Ž i(U, K•)/B̌i(U, K•).

Let now come back to the setting of Proposition 2.5. Define thetwo-term complex of
sheaves

C• = [C0→C1], (26)
whereC0 = End(E), C1 = End(E) ⊗ Ω1(D), and differentialdC = ∇End(E). Then the
equations (22) express the fact that(a,A1) ∈ Ž1(U,C•). Changing the baseseα over
V1 = Spec k[ǫ]/(ǫ2) by the ruleẽα = eα(1 + ǫhα), whereh = (hα) ∈ Č0(U,End(E)) =
Č0(U,C0), we obtain the transformation rule of the cocycle(a,A1) in the following form:
(a,A1)→(a + ďh,A1 + dCh), so that isomorphic first order deformations differ by a1-
coboundary. We deduce:
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Theorem 2.7.LetX be a complete scheme of finite type overk or a complex space (then
k = C). LetE be a vector bundle onX and∇ a rational (or meromorphic) connection
onE with divisor of polesD. Then the isomorphism classes of first order deformations of
(E,∇) with fixed divisor of poles are classified byH1(X,C•).

In order to characterize the first order deformations of integrable connections, we
introduce two other complexes:

R
• = [End(E)→End(E)⊗ Ω1(D)→End(E)⊗ Ω2(∗D)→ . . . ]

with differentialdR = ∇End(E), and

F• = [F0 dF
//F1] , (27)

whereF0 = End(E), dF = ∇End(E), andF1 = ker(End(E) ⊗ Ω1(D))→End(E) ⊗
Ω2(∗D)). It is easy to see that these complexes have the same1-cocycles and1-
coboundaries, so that

H
1(X,F•) = H

1(X,R•).

The formulas (20) express the fact that the pair(a,A1) is a1-cocycle in either one of the
complexesF•,R•.

Theorem 2.8. LetX be a scheme of finite type overk or a complex space (thenk = C).
LetE a vector bundle onX and∇ a rational (or meromorphic) integrable connection on
E with fixed divisor of polesD. Then the isomorphism classes of first order deformations
of (E,∇) in the class of integrable connections with fixed divisor of polesD are classified
by

H
1(X,F•) = H

1(X,R•).

3. OBSTRUCTIONS

3.1. First obstruction. Let X,E,∇, (a,A1) be as in Theorem 2.7, and let(E1,∇1) be
the first order deformation of(E,∇) overV1 associated to(a,A1). We want to determine
the obstruction to extend(E1,∇1) to (E2,∇2) overV2 = Spec k[ǫ]/(ǫ3). As before, we
only consider deformations with fixed divisor of polesD. We search for the extended data

Gαβ = (1 + ǫaαβ + ǫ2aαβ,2)gαβ = gαβ + ǫgαβ,1 + ǫ2gαβ,2

Ãα = Aα + ǫAα,1 + ǫ2Aα,2, Aα,1 = Aα,1,

with respect to the basiseα. We assume that they satisfy the cocycle condition modulo
ǫ2. Then the cocycle condition moduloǫ3 has two counterparts: the one expressing the
extendability ofE1, which we have already treated in Section2, and the other expressing
the extendability of the connection. The latter has the following form:

Aβ,2 = gβα,2dgαβ + gβα,1dgαβ,1 + gβαdgαβ,2 (28)

+gβα,2Aαgαβ + gβαAα,2gαβ + gβαAαgαβ,2

+gβα,1Aα,1gαβ + gβα,1Aαgαβ,1 + gβαAα,1gαβ,1

Introduce the cochainA2 ∈ Č0(U,End(E)⊗Ω1(D)) given overUα by the matrixAα,2 in
the basiseα. By transformations similar to those used in the proof of(10), and in using
formulas(22) andaβα,2− (aαβ,1)

2+ aαβ,2 = 0, we reduce (28) to the following equation:

∇End(E)(aαβ,2)−∇End(E)(aαβ,1)aαβ,1 − [aαβ,1,Aβ,1] (29)

= ∇End(E)(aαβ,2) +Aα,1aαβ,1 − aαβ,1Aβ,1 = Aβ,2 −Aα,2

12



Let us denote
kαβ = ∇End(E)(aαβ,2) +Aα,1aαβ,1 − aαβ,1Aβ,1. (30)

We considerk = (kαβ) as a cochain iňC1(U,End(E)⊗ Ω1(D)).

Lemma 3.1. k is a skew-symmetric cocycle.

Proof. A straightforward calculation using the relations

aαβ,2 + aβγ,2 + aγα,2 = −aαβ,1aβγ,1 − aβγ,1aγα,1 − aαβ,1aγα,1 (31)

and∇End(E)(XY ) = ∇End(E)(X)Y +Y∇End(E)(X), for any local sectionsX, Y of End(E)
�

Proposition 3.2. Let (a,A1) ∈ Ž1(U,C•), and let(E1,∇1) be the deformation of(E,∇)
overV1 defined by(a,A1). Then(E1,∇1) extends to a deformation(E2,∇2) overV2 if
and only if the following two conditions are verified:
(i) The Yoneda square[a1] ◦ [a1] ∈ H2(X,End(E)) vanishes.
(ii) Provided (i) holds, let a2 = (aαβ,2) ∈ Č1(U,End(E)) be a solution of (31),
and let k = (kαβ) be the cocycle (30) determined by this choice ofa2. Then [k] ∈
H1(X,End(E)⊗ Ω1(D)) vanishes.

The expressionAα,1aαβ,1 − aαβ,1Aβ,1 entering (30) is a componentc1,1 of the Čech
cocycle(c1,1, c2,0) ∈ Ž2(U,C•) representing the Yoneda square[a1,A1] ◦ [a1,A1]. The
other component isc2,0αβγ = aαβ,1aβγ,1 + aβγ,1aγα,1 + aαβ,1aγα,1. Hence we have:

Proposition 3.3.Under the assumptions of Prop. (3.2), (E1,∇1) extends to(E2,∇2) over
V2 with fixed divisor of polesD if and only if the Yoneda square[a1,A1]◦[a1,A1] vanishes
in H2(X,C•).

3.2. Infinitesimal deformations of the Atiyah class. We fix a vector bundleE on X
given by a cocyclegαβ. Recall that we defined the Atiyah class ofE as the cohomology
class of the cocycleGαβ = dgαβg

−1
αβ (hereGαβ is considered as a section ofEnd(E) ⊗

Ω1(D) given by the matrixdgαβg
−1
αβ in the basiseα).

If Ei is an extension ofE (as a vector bundle) toX × Vi, whereVi = Spec k[ǫ]/(ǫi+1),
then we can define the Atiyah classAt(Ei) ∈ H1(X,End(Ei)⊗Ω

1) by the cocycleGi,αβ =
dgi,αβg

−1
i,αβ, where(gi,αβ) is a cocycle definingEi, gi,αβ ∈ Γ(Uαβ,Mr(OX)⊗ k[ǫ]/(ǫi+1)).

The following assertion is obvious.

Lemma 3.4. Assume thatE admits a connection∇ with fixed divisor of polesD. Then
∇ extends to a connection∇i onEi with fixed divisor of polesD if and only if the image
AtD(Ei) ofAt(Ei) in H1(X,End(Ei)⊗ Ω1(D)) is zero.

Corollary 3.5. Let j > 0, and assumeE extends to a vector bundleEj overX × Vj . For
any i ≥ 0, i ≤ j, denote byEi the restriction ofEj to X × Vi. The following assertions
hold:
(i) if ∇j is a connection with fixed divisorD of poles onEj, then∇i = ∇j|Ei

is such a
connection onEi. ThusAtD(Ej) = 0⇒ AtD(Ei) = 0(i ≤ j).
(ii) LetAtD(Ej) = 0. Introduce the natural restriction map

resji : H
0(End(Ej)⊗ Ω1(D))→H0(End(Ei)⊗ Ω1(D))

ϕ 7→ ϕ⊗ k[ǫ]/(ǫi+1)
13



Then any connection with fixed divisor of polesD onEi extends to such a connection on
Ej if and only ifresji is surjective.

Proof. (i) is obvious. To prove(ii), we use the following observation: for two
connections∇j,∇

′
j on Ej with fixed divisorD of poles, the difference∇j − ∇

′
j is an

element ofH0(End(Ej)⊗Ω1(D)) and(∇j −∇
′
j)|Ei

= resji(∇j −∇
′
j) ∈ H0(End(Ei)⊗

Ω1(D)). �

In this Corollary, it is possible that bothEi,Ej admit connections with fixed divisor of
polesD, but not every connection with the sameD on Ei extends to such a connection
onEj. To produce an example, setD = 0, i = 0, j = 1, X an elliptic curve,E = O⊕2

X .
DefineE1 as a nontrivial extension of vector bundles

0→OX×V1

µ
//E1

ν
//OX×V1→0 (32)

Such extensions are classified byExt1(OX×V1 ,OX×V1) = H1(OX×V1) ≃ k[ǫ]/(ǫ2), and
we choose an extension class in the formǫ[f ], so that the extension is trivial moduloǫ2.
We can describe[f ] and the associated extension explicitly as follows. LetU = {U+−}
be an open covering of X, andf ∈ Γ(U±,OX) a function whose cohomology class[f ]
generatesH1(X,OX). Let e± = (e±1, e±2) be a basis ofE|U+−

, and define the transition
matrix overU+− by

(
1 ǫf
0 1

)

. (33)

Define the mapsµ, ν in (32) byµ : 1 7→ e±1, ν : (e±1, e±2) 7→ (0, 1). To be more explicit,
we will giveX by the Legendre equation

y2 = x(x− 1)(x− t) (t ∈ k \ {0, 1}),

and define an open coveringU of X by U+ = X \ {∞}, U− = X \ {0}. Then we can
choosef = y

x
as a function having two simple poles at0 and∞ and no other singularities.

The Residue Theorem implies that it is impossible to represent f as the difference of
two functions, one regular onU+ and the other onU−, so the cohomology class off
considered as ǎCech cocycle of the coveringU with coefficients inOX is nonzero. We
now verify thatAt(E1) = 0. It is represented by the cocycle

dg+−g
−1
+− =

(
0 ǫdf
0 0

)

, (34)

and

df = d(
y

x
) =

dy

x
− y

dx

x2
= ω+ − ω−,

where

ω+ = 2
dy

x
− y

dx

x2
, ω− =

dy

x
,

ω+ (resp.w−) being regular onU+ (resp.U−). Hence,

dg+−g
−1
+− =

(
0 ǫω+

0 0

)

−

(
0 ǫω−

0 0

)

(35)

is aČech coboundary, andAt(E1) = 0. ThusE1 has a regular connection.
Now, we will show that the mapres10 defined in the last corollary is not surjective,
so not every regular connection onE extends to a regular connection onE1. We
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remark that in our caseΩ1
X is trivial, D = 0, so res10 is just the restriction map

res10 : H
0(End(E1))→H0(End(E0)). ConsiderE1 as an extension of another kind:

0→ǫE→E1→E→0,

whereǫE ≃ O⊕2
X andE ≃ E1/ǫE ≃ O⊕2

X . Apply to it Hom(E1, .)(the Hom-sheaf as
OX×V1-modules):

0→Hom(E1,E)→End(E1)→Hom(E1,E)→0.

As E ≃ O⊕2
X , the first and the third terms of the last triple are describedas follows:

Hom(E1,E) ≃ End(E) = M2(OX).

Take an element inH0(Hom(E1,E)) ≃M2(k) given by the matrix
(

0 0
0 1

)

, (36)

(as above,E1,E are trivialized by the basese± = (e±1, e±2)). We will see that it is not in
the image of the restriction mapres1,0.
Indeed, assume there is a lift of

(
0 0
0 1

)

(37)

toH0(End(E1)). Then it is given in the basise+ by a matrix of the form

A+ =

(
0 0
0 1

)

+ ǫB, (38)

B ∈M2(k[U+]). Transforming it to the basise−, we obtain the matrix

A− =

(
0 −ǫf
0 1

)

+ ǫB, (39)

which has to be regular inU−. Thusǫf = ǫb12−a−12, whereb12 is regular inU+ anda−12

is regular inU−. This contradicts the fact thatf is not aČech coboundary iňC(U,OX),
and this ends the proof.

3.3. Kuranishi space for deformations of connections.

Theorem 3.6. Let X be a complete scheme of finite type overk or a complex space
(in which casek = C), C• the 2-term complex of sheaves onX defined by (26), W =
H1(X,C•),(δ1 . . . , δN) a basis ofW and(t1, . . . , tN) the dual coordinates onW . LetWk

denote thek-th infinitesimal neighborhood of0 in W , and (E1,∇1) the universal first
order deformation overX ×W1 of a connection(E,∇) onX with fixed divisor of poles
D. Then there exists a formal power series

f(t1, . . . , tN) =

∞∑

k=2

fk(t1 . . . , tN) ∈ H
2(X,C•)[[t1, . . . , tN ]],

where fk is homogeneous of degreek (k ≥ 2), with the following property.
Let I be the ideal ofk[[t1, . . . , tN ]] generated by the image of the mapf ∗ :
H2(X,C•)∗→k[[t1, . . . , tN ]], adjoint tof . Then for anyk ≥ 2, the pair(E1,∇1) extends
to a connection(Ek,∇k) onX × Vk, whereVk is the closed subscheme ofWk defined by
the idealI ⊗ k[[t1, . . . , tN ]]/(t1, . . . , tN)

k+1.
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Proof. We will start by fixing a particular choice of coordinates(t1, . . . , tN ), coming from
the spectral sequenceEp,q

1 = Hq(Cp)⇒ H
p+q(C•). The latter is supported on two vertical

stringsp = 0 andp = 1 (see Fig. 1).

FIGURE 1. The spectral sequence is supported on2 vertical stringsp =
0, p = 1.

Thus the spectral sequence degenerates in the second termE2, and we have the long
exact sequence

0−→H
0(X,C•)−→H0(X,End(E))

d1
//H0(X,End(E)⊗ Ω1

X(D))

−→H
1(X,C•)−→H1(X,End(E))

d1
//H1(X,End(E)⊗ Ω1

X(D))

−→H
2(X,C•)−→H2(X,End(E))

d1
//H2(X,End(E)⊗ Ω1

X(D))→ . . . ,

We deduce the exact triple

0→W ′→W→W ′′→0,

with

W ′ =
H0(X,End(E)⊗ Ω1

X(D))

im d1
,W = H

1(X,C•),

W ′′ = ker(H1(X,End(E))→H1(X,End(E)⊗ Ω1
X(D)).

Let N ′ = dimW ′, N ′′ = dimW ′′; chooset1, . . . , tN in such a way thats1 =
tN ′+1, . . . , sN ′′ = tN ′+N ′′(N = N ′ +N ′′), are coordinates onW ′′ andt1, . . . , tN ′ restrict
to W ′ as coordinates onW ′. We will construct by induction onk ≥ 0 the homogeneous
forms

Gαβ,k(s1, . . . , sN ′′) ∈ Γ(Uαβ,End(E))⊗ k[s1, . . . , sN ′′], (40)

Fαβγ,k(s1, . . . , sN ′′) ∈ Γ(Uαβγ ,End(E))⊗ k[s1, . . . , sN ′′],

f̄k(s1, . . . , sN ′′) ∈ H2(X,End(E))⊗ k[s1, . . . , sN ′′],
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Aα,k(t1 . . . , tN) ∈ Γ(Uα,End(E)⊗ Ω1
X(D))⊗ k[t1, . . . , tN ],

κk(t1 . . . , tN) ∈ H1(X,End(E)⊗ Ω1
X(D))⊗ k[t1, . . . , tN ],

Kαβ,k(t1 . . . , tN) ∈ Γ(Uαβ ,End(E)⊗ Ω1
X(D))⊗ k[t1, . . . , tN ]

with the following properties:
(i) Gαβ,0 = gαβ, andAα,0 defineE and resp.∇ with respect to the local trivializationseα
of E onUα.
(ii) f̄k = 0, Fαβγ,k = 0 for k = 0, 1, andKαβ,0 = 0.
(iii) For each k ≥ 1, let f̄ (k) =

∑

i≤k f̄i, and let Ī(k+1) be the
ideal generated by(s1, . . . , sN ′′)k+2 and the image of the adjoint map̄f (k)∗ :
H2(X,End(E))∗→k[s1, . . . , sN ′′ ]. Then(Fαβγ,k+1) is a cocycle modulōI(k+1) andf̄k+1

is a lift toW ′′ ⊗ k[s1, . . . , sN ′′ ] of the cohomology class

[(Fαβγ,k+1 mod Ī(k+1))] ∈ W ′′ ⊗ k[s1, . . . , s
′′
N ]/Ī

(k+1).

(iv) For anyk ≥ 1, setG(k)
αβ =

∑

i≤k Gαβ,i. Then

G
(k)
αβG

(k)
βγG

(k)
γα ≡ (1 + Fαβγ,k+1) mod Ī(k+1). (41)

(v) For eachk ≥ 1, set κ(k) =
∑

i≤k κi, and let J (k+1) be the ideal generated
by (t1, . . . , tN)

k+2 and by the image of the adjoint mapκ(k)∗ : H1(X,End(E) ⊗
Ω1(D))∗→k[t1, . . . , tN ]. Then(Kαβ,k+1) is a cocycle moduloJ (k+1) + Ī(k+2) andκk+1 is
a lift of the cohomology class

[(Kαβ,k+1 mod (Jk+1+Ī(k+2))] ∈ H1(X,End(E)⊗Ω1(D))⊗k[[t1, . . . , tN ]]/(J
k+1+Ī(k+1))

in H1(X,End(E)⊗ Ω1(D))⊗ k[t1, . . . , tN ].
(vi) For anyk ≥ 0, setA(k)

α =
∑

i≤k Aα,i. Then

Kαβ,k+1 ≡ dG
(k+1)
αβ −G

(k+1)
αβ A

(k)
β + A(k)

α G
(k+1)
αβ mod (Jk+1 + Ī(k+2)). (42)

In these properties,G(k)
αβ is considered as an endomorphism ofEk overUαβ × Vk given by

its matrix with respect to two bases:eα for the source,eβ for the target, whereEk is the
vector bundle overX×Vk defined by the1-cocycle(G(k)

αβ ). Similarly (A(k)
α ) is understood

as a1-cochain with values inEnd(Ek) ⊗ Ω1(D), and in formula (42),A(k)
α (respA(k)

β ) is
represented by its matrix in the basiseα (respeβ). The base changesGαβ,k+1 acting on
both sides of (42), reduce toGαβ,0, since the only nonzero terms in (42) are of degree
k + 1, and everything is reduced modulo(t1, . . . , tN)k+2. Thus (42) defines(Kαβ,k+1) as
a 1-cochain with values inEnd(E) ⊗ Ω1(D). Going over to the proof, we first remark
that Gαβ,0, Aα,0 are already known, and we have to indicate the choice ofGαβ,k, Aα,k

inductively onk ≥ 0, the other dataFαβγ,k, f̄k, Kαβ,k, κk being recovered via formulas
(41),(42). To initialize the induction, first look at (41) with k = 0. ThenFαβγ,1 = 0 by
(ii), which implies

Gαβ,1Gβγ,0Gγα,0 +Gαβ,0Gβγ,1Gγα,0 +Gαβ,0Gβγ,0Gγα,1 = 0 (43)

The latter equation expresses the fact that(Gαβ,1) is a1-cocycle with values inEnd(E)⊗
(W ′′)∗. As in Section 2, we can writeGαβ,1 =

∑
a
(i)
αβgαβsi, where [(a(i)αβ)] for i =

1, . . . , N ′′ form the basis ofW ′′ dual tos1, . . . , sN ′′. Here and further on, we adopt the
following convention: all theGαβ,k (resp.G(k)

αβ ) are regarded as1-cochains with values in
17



End(E) (resp.End(Ek)) given by matrices with respect to two bases:eα for the source,
eβ for the target. We denote byEk the vector bundle overX × Vk defined by the cocycle
G

(k)
αβ .
Hence, looking at the first termGαβ,1Gβγ,0Gγα,0 of the sum in (43), we see that it

represents the matrix ofGαβ,1 with respect to one and the same basiseα for the source
and the target. The same applies to the other two summands in (43), thus (43) is the
cocycle condition

aαβ + aβγ + aγα = 0

put down via matrices of the three summands in the basiseα.
We will adopt the same convention for cochains with values inEnd(E) ⊗ Ω1(D) or

in End(Ek) ⊗ Ω1(D). TheAα,k (respA(k)
α ) will be considered as matrices representing

cochains inEnd(E) ⊗ Ω1(D) (resp. End(Ek) ⊗ Ω1(D)) in the basiseα overUα. Now
write (42) fork = 0 :

Kαβ,1 = dGαβ,1 −Gαβ,1Aβ,0 + Aα,0Gαβ,1; (44)

we take into account thatI(1) = J (1) = 0 and thatdGαβ,0 −Gαβ,0Aβ,0 + Aα,0Gαβ,0 = 0,
the latter equation being a form of (12) in whichGαβ,0 are considered as matrices of
endomorphisms ofE written with respect to two bases:eα for the source,eβ for the
target, and(dGαβ,0) is a cocycle representingAtD(E).

The r.h.s of (44), with the same convention thatGαβ,1 are matrices of endormorphisms
of Ewith respect to the two bases, is just the cochain(daαβ+[Aα, aαβ ]) ∈ Č1(U,End(E)⊗
Ω1(D)). As in (22), we can rewrite it as∇End(E)(a), wherea = (Gαβ,1), and this
representation makes obvious that(Kαβ,1) is a 1-cocycle. The differentiald1 of the
spectral sequence being induced by∇End(E), we see that the cocycle(Kαβ,1) is a
coboundary if and only if

[a] = [Gαβ,1] ∈ ker(H1(X,End(E))⊗ (W ′′)∗→H1(X,End(E)⊗ Ω1(D))⊗ (W ′′)∗).

Assuming that(Kαβ,1) is a coboundary, we choose(Aα,1) as a solution to

K̃αβ,1 = Gαβ,0Aβ,1 −Aα,1Gαβ,0 (45)

Such a solution can be chosen as a linear form ins1, . . . , sN ′′ . Single out one such solution
and denote it(A

′′

α,1) = (A
′′

α,1(s1, . . . , sN ′′)). Let (A′(i)
α,1), i = 1, . . . , N ′ be a basis of

H0(U,End(E)⊗ Ω1(D)) dual to the coordinatest1, . . . , tN ′ onW ′. Then set

Aα,1 = A
′′

α,1(s1, . . . , sN ′′) +

N ′

∑

i=1

A
′(i)
α,1ti.

Now assume that the forms (40) have been constructed up to degreek ≥ 0 and define
them for degreek+1. Start byFαβγ,k+1, which we define, as in the proof of Theorem 1.7,
to be a lift toŽ2(U,End(E))⊗ k[s1, . . . , sN ′′], of the homogeneous component of degree
k + 1 in G

(k)
αβG

(k)
βγG

(k)
γα , which is a cocycle modulōI(k+1) + (s1, . . . , sN ′′)k+1 by the proof

of Lemma 1.9.
Then we set f̄k+1 equal to any lift of the cohomology class(Fαβγ,k+1) ∈

H2(X,End(E)) ⊗ k[[s1, . . . , sN ′′ ]]/Ī(k+1) to H2(X,End(E)) ⊗ k[s1, . . . , sN ′′ ]. By
construction,(Fαβγ,k+1) is a coboundary modulōI(k+2)+(s1, . . . , sN ′′)k+2, so there exists
a cochain in

Č1(U,End(E))⊗ k[s1, . . . , sN ′′ ]/(Ī(k+2) + (s1, . . . , sN ′′)k+2)
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whose coboundary is(Fαβγ,k+1) mod (Ī(k+2) + (s1, . . . , sN ′′)k+2), and (Gαβ,k+1)
is defined as any lift of this cochain tǒC1(U,End(E)) ⊗ k[s1, . . . , sN ′′] which is
homogeneous of degreek + 1 in s1, . . . , sN ′′. Consider now the expression

K̃αβ,k+1 = dG
(k+1)
αβ −G

(k+1)
αβ A

(k)
β + A(k)

α G
(k+1)
αβ = dG

(k)
αβ −G

(k)
αβA

(k−1)
β + A(k−1)

α G
(k)
αβ

+dGαβ,k+1 −Gαβ,k+1A
(k−1)
β + A(k−1)

α Gαβ,k+1 −G
(k+1)
αβ Aβ,k + Aα,kG

(k+1)
αβ ,

By the induction hypothesis,̃Kαβ,k = dG
(k)
αβ − G

(k)
αβA

(k−1)
β + A

(k−1)
α G

(k+1)
αβ is a cocycle

moduloJk + Ī(k+1) and is a coboundary moduloJk+1 + Ī(k+1) + (t1, . . . , tN)
k+1. From

(42), in order thatK̃αβ,k+1 has no homogeneous components of order< k + 1 modulo
Jk+1 + Ī(k+1) + (t1, . . . , tN)

k+1, we have to set(Aα,k) to be a solution of

G
(k+1)
αβ Aβ,k − Aα,kG

(k+1)
αβ ≡ K̃αβ,k mod (Jk+1 + Īk+1 + (t1, . . . , tN)

k+1), (46)

whereG
(k+1)
αβ can be replaced byGαβ,0, so that (46) is an equation for the cochain

(Gαβ,0Aβ,k) with values in End(E) ⊗ Ω1(D). Thus we come to the following
inductive procedure: defineKαβ,k+1 as the homogeneous form of degreek + 1 in
K̃αβ,k+1. Assuming it is a cocycle modulo(Jk+1 + Ī(k+2)), we defineκk+1 as a
lift to H1(X,End(E) ⊗ Ω1(D)) ⊗ k[t1, . . . , tN ] of the cohomology class[(Kαβ,k+1)
mod Jk+1 + Ī(k+2)]. ThenJ (k+2) is well-defined and(Kαβ,k+1) becomes a coboundary
moduloJ (k+2) + Ī(k+2) + (t1, . . . , tN )

k+2. Hence we can construct(Aα,k+1) as a lift to
Č0(U,End(E)⊗ Ω1(D))⊗ k[t1, . . . , tN ] of a solution(Aα,k+1) of the equation

Gαβ,0Aβ,k+1 − Aα,k+1Gαβ,0 ≡ K̃αβ,k+1 mod (Jk+2 + Ī(k+2) + (t1, . . . , tN)
k+2).

Thus we have to verify that(Kαβ,k+1) is a cocycle. �

Lemma 3.7. (Kαβ,k+1) defined as the homogeneous component of degreek + 1 of
K̃αβ,k+1, is a1-cocycle moduloJk+1 + Ī(k+2).

Proof. By the induction hypothesis, we have

dG
(k)
αβ ≡ G

(k)
αβA

(k−1)
β − A(k−1)

α G
(k)
αβ mod (Jk + Ī(k+1)),

G
(k)
αβG

(k)
βγG

(k)
γα ≡ 1 + Fαβγ,k+1 mod Ī(k+1),

and by construction,

Gαβ,k+1G
(k)
βγG

(k)
γα +G

(k)
αβGβγ,k+1G

(k)
γα +G

(k)
αβG

(k)
βγGγα,k+1

≡ −Fαβγ,k+1 mod (Ī(k+2) + (s1, . . . , sN ′′)k+2),

Kαβ,k+1 ≡ dG
(k+1)
αβ −G

(k+1)
αβ A

(k)
β + A(k)

α G
(k+1)
αβ mod (Jk+1 + Ī(k+1)).

DenoteG(k+1)
αβ , G

(k)
αβ , Gαβ,k+1, A

(k)
α , Kαβ,k+1 byGαβ , G

′
αβ, G

′′
αβ, Aα, Kαβ respectively.

We have

KαβGβγGγα +GαβKβγGγα +GαβGβγKγα ≡ dGαβGβγGγα +GαβdGβγGγα (47)

+GαβGβγdGγα −GαβAβGβγGγα + AαGαβGβγGγα −GαβGβγAγGγα +GαβAβGβγGγα

−GαβdGβγGγαAα +GαβdGβγAγGγα ≡ dG′
αβG

′
βγG

′
γα +G′

αβdG
′
βγG

′
γα +G′

αβG
′
βγdG

′
γα

+dG′′
αβG

′
βγG

′
γα +G′

αβdG
′′
βγG

′
γα +G′

αβG
′
βγdG

′′
γα + dG′

αβG
′′
βγG

′
γα + dG′

αβG
′
βγG

′′
γα

+G′′
αβdG

′
βγG

′
γα +G′

αβdG
′
βγG

′′
γα +G′′

αβG
′
βγdG

′
γα ≡ d(G′

αβG
′
βγG

′
γα)−G′

αβG
′′
βγdG

′
γα
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+d(G′′
αβG

′
βγG

′
γα +G′

αβG
′′
βγG

′
γα +G′

αβG
′
βγG

′′
γα) ≡ d(Fαβγ,k+1)− d(Fαβγ,k+1) ≡ 0

mod (Jk+1 + Ī(k+2))

This ends the proof. �

Coming back to the proof of the Theorem, we definefk as any lift toH2(C•) ⊗
k[t1, . . . , tN ], homogeneous of degreek in t1, . . . , tN , of the cohomology class of the
cochain

((Kαβ,k), (Fαβγ,k)) mod (Jk+Īk+1) ∈ Č2(U,C•)⊗k[[t1, . . . , tN ]]/(J
k+Ī(k+1)), (48)

which we are assuming to be a cocycle. Then quotienting byI makes (48) a coboundary
of ((Aα,k), (Gαβ,k)), and the pair(G(k)

αβ , (A
(k)
α )) defines(Ek,∇k) overX × Vk. It remains

to prove that (48) is a cocycle with values inC• ⊗ k[t1, . . . , tN ]/(J
k + Īk+1). One part of

this, namely, the equation

ď(Kαβ,k) = ∇End(E)(Fαβγ,k)

is verified by the computation (47). The second partď(Fαβγ,k) = 0 is guaranteed by
Lemma 1.9.

4. INTEGRABLE CONNECTIONS

4.1. Higher order deformations of integrable connections.From now on, we take
into account the fact that(E,∇) is an integrable connection with fixed divisor of poles
D and consider deformations of(E,∇) preserving the integrability and the divisor of
poles. In Theorem 2.8, we characterized the first order deformations of(E,∇) in terms of
the hypercohomology groupH1(X,F•) = H1(X,R•). Now we will consider the second
order deformation and respectively the first obstruction. So, we search for the extension

g̃αβ = (1 + ǫaαβ,1 + ǫ2aαβ,2)gαβ (49)

Ãα = Aα + ǫAα,1 + ǫ2Aα,2

of (gαβ, Aα) to V = Spec k[ǫ]/(ǫ3). To order1, we have the conditions (24):

ď(aαβ,1) = 0, ď(Aα,1) = ∇(aαβ,1),∇(Aα,1) = 0. (50)

Expanding (13) to order2, we obtain in addition to (6) and(23), the equation

∇Aα,2 = −Aα,1 ∧Aα,1, (51)

Note that∇(Aα,1) = 0 implies that∇(Aα,1∧Aα,1) = 0. One easily verifies the following
relations

∇(Aα,1 ∧ Aα,1) = 0

ď(Aα,1 ∧ Aα,1) = −∇(Aα,1aαβ,1 − aαβ,1Aβ,1)

ď(Aα,1aαβ,1 − aαβ,1Aβ,1) = ∇(aαβ,1aβγ,1 	),

where 	 denotes the skew-symmetrization on the subscriptsα, β, γ. These three
equations express the fact that the triple

((aαβ,1aβγ,1 	), (Aα,1aαβ,1 − aαβ,1Aβ,1), (Aα,1 ∧ Aα,1)) ∈ Č2(U,R•)
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is a cocycle with respect to the differentialD = ∇± ď. Then the conditions saying that
(49) is an integrable connection with fixed divisor of polesD moduloǫ3, that is, formulas
(29), (31) and (51), mean that the cocycle defined above is thecoboundary of the cochain
((aαβ,2), (Aα,2)):

D(a2,A2) = ((aαβ,1aβγ,1 	), (Aα,1aαβ,1 − aαβ,1Aβ,1), (Aα,1 ∧Aα,1)).

As the cocycle (52) represents the Yoneda square of[a1,A1], we deduce:

Proposition 4.1. The first order deformation(E1,∇1) of (E,∇) defined by the cocycle
((aαβ,1), (Aα,1)) extend to an integrable connection(E2,∇2) over X × V2 with fixed
divisor of polesD if and only if the Yoneda square[a1,A1] ◦ [a1,A1] is zero inH2(R•).

Thus the integrable case looks similar to the non-integrable one (compare to Prop 1.6),
provided we replace the2-term complexC• by R•. As far as only the hypercohomology
H1 andH2 are concerned, we can also truncateR• at the level2: Hi(R•) = Hi(R̃•), for
i = 0, 1, 2, whereR̃• = [R0→R1→ ker(R2→R3)].

4.2. Kuranishi space of integrable connections.Now, we turn to the construction of the
Kuranishi space of integrable connections with fixed divisor of polesD. Its construction
is completely similar to the one in the non-integrable case,so instead of giving a proof of
the next theorem, we will only supply some remarks indicating modifications that should
be brought to the proof of Theorem 3.6 in order to get the proofin the integrable case.

The spectral sequenceEp,q
1 = Hq(X,Rp) converging toH•(R•) is not concentrated

on two vertical strings, so hereH2(R•) has a filtration consisting of three nonzero
summands which are subquotients ofH0(X,End(E) ⊗ Ω2

X(∗D)), H1(X,End(E) ⊗
Ω1

X(D), H2(X,End(E)).Hence, we have to add to the forms (40) two more homogeneous
forms of degreek, say

Lα,k(t1, . . . , tN ) ∈ Γ(Uα,End(E)⊗ Ω2
X(∗D))⊗ k[t1, . . . , tN ], (52)

lk(t1, . . . , tN) ∈ H0(X,End(E)⊗ Ω2
X(∗D))⊗ k[t1, . . . , tN ],

and modify according the conditions(i), . . . , (vi) to which the forms (40),(52) should
satisfy. Remark also that the long exact cohomology sequence for C• introduced in the
proof of Theorem 3.6 remains exact only in its4 terms whenC• is replaced byR•.

Theorem 4.2. LetX be a complete scheme of finite type overk or a complex space (in
which casek = C), ∇ an integrable connection onE with fixed divisor of polesD, R•

the complex of sheaves onX defined above,W = H1(X,R•), (δ1 . . . , δN) a basis of
W and (t1, . . . , tN) the dual coordinates onW . Let Wk denote thek-th infinitesimal
neighborhood of0 in W , and (E1,∇1) the universal first deformation of(E,∇) over
X ×W1 in the class of integrable connections with fixed divisor of polesD. Then there
exists a formal power series

f(t1, . . . , tN) =

∞∑

k=2

fk(t1 . . . , tN) ∈ H
2(X,R•)[[t1, . . . , tN ]],

where fk is homogeneous of degreek (k ≥ 2), with the following property.
Let I be the ideal ofk[[t1, . . . , tN ]] generated by the image of the mapf ∗ :
H2(X,R•)∗→k[[t1, . . . , tN ]], adjoint tof . Then for anyk ≥ 2, the pair(E1,∇1) extends
to an integrable connection(Ek,∇k) onX ×Vk, whereVk is the closed subscheme ofWk

defined by the idealI ⊗ k[[t1, . . . , tN ]]/(t1, . . . , tN)
k+1.
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Remark4.3. The complexR• may be replaced by its subcomplex0→End(E)→End(E)⊗
Ω1

X(D)→End(E)⊗Ω2
X(2D)→ . . . . Theorem 3.6 will remain valid if we replaceR• in its

statement by this smaller complex.

In the case where∇ is an integrable logarithmic connection, we can reduceR• further
to L• = [0→End(E)→End(E)⊗ Ω1

X(logD)→End(E)⊗ Ω2
X(logD)→ . . . ]. We now go

over to integrable logarithmic connections.

4.3. Integrable logarithmic connections.

Definition 4.4. Let X be a nonsingular complex projective variety,S a normal crossing
divisor with smooth components. An integrable logarithmicconnectionE onX is a pair
(E,∇) whereE is a torsion free coherent sheaf ofOX -modules onX and∇ : E→E ⊗
Ω1

X(logS) isC-linear and satisfies the Leibniz rule and the integrabilitycondition∇2 = 0
(see in the beginning of Sect. 2).

Let DX be the sheaf of algebraic differential operators onX and letDX [log S] be
theOX -subalgebra generated by the germs of tangent vector fields which preserve the
ideal sheaf of the reduced schemeS. According to [Ni], a logarithmic connection onX
with singularities overS can be interpreted as aDX [logS]-module which is coherent and
torsion free as anOX -module.

Remark4.5. A nonsingular integrable connection onX is simply aDX-module which is
coherent as anOX -module.

Definition 4.6. An infinitesimal deformation of an integrable logarithmic connectionE is
a pair(EV , α), whereEV is a family of logarithmic connections parameterized byV =
Spec(C[ǫ])/ǫ2, with an isomorphismα : EV /ǫEV→E.

We defineTE as the set of all equivalence classes of infinitesimal deformations ofE.
Let the sheafKE be the kernel of∇ : End(E) ⊗ Ω1(logS)→End(E) ⊗ Ω2(logS). As
the curvature of∇ is 0, the image of∇ : E→E ⊗ Ω1(logS), is contained inKE. If
A ∈ H0(X,KE), then∇ + ǫA is a family of logarithmic connections on the underlying
sheafE parameterized byV . This gives a linear mapp : H0(X,KE)→TE.

Theorem 4.7. If an integrable logarithmic connectionE is locally free, the vector space
TE of infinitesimal deformations ofE (which equals the tangent space at[E] to the moduli
schemeM of stable integrable logarithmic connections whenE is stable) is canonically
isomorphic to the first hypercohomologyH1(CE) of the complexCE = (∇ : End(E)→KE),
which is in turn equal to the first hypercohomology of the logarithmic de Rham complex
L• = (End(E)⊗ Ω•

X(log S),∇) associated toEnd(E).

Proof. See [Ni]. �

We deduce the construction of the Kuranishi space of integrable logarithmic
connections overX.

4.4. Kuranishi space of integrable logarithmic connections.

Theorem 4.8. LetX be a smooth projective variety over an algebraically closedfield k
(or onC), E a vector bundle onX,∇ an integrable logarithmic connection onE, L• the
complex of sheaves onX defined in Theorem4.7, W = H1(X,L•), (δ1 . . . , δN) a basis
of W and (t1, . . . , tN) the dual coordinates onW . LetWk denote thek-th infinitesimal
neighborhood of0 in W , and(E1,∇1) the universal first order deformation of(E,∇) over

22



X ×W1 in the class of integrable logarithmic connections with fixed divisor of polesD.
Then there exists a formal power series

f(t1, . . . , tN) =
∞∑

k=2

fk(t1 . . . , tN) ∈ H
2(X,L•)[[t1, . . . , tN ]],

where fk is homogeneous of degreek (k ≥ 2), with the following property.
Let I be the ideal ofk[[t1, . . . , tN ]] generated by the image of the mapf ∗ :
H2(X,L•)∗→k[[t1, . . . , tN ]], adjoint tof . Then for anyk ≥ 2, the pair(E1,∇1) extends
to an integrable logarithmic connection(Ek,∇k) on X × Vk, whereVk is the closed
subscheme ofWk defined by the idealI ⊗ k[[t1, . . . , tN ]]/(t1, . . . , tN )

k+1.

5. PARABOLIC CONNECTIONS

LetX be a smooth projective curve of genusg. We set

Tn :=

{

(t1, . . . , tn) ∈

n
︷ ︸︸ ︷

X × · · · ×X

∣
∣
∣
∣
∣
ti 6= tj for i 6= j

}

for a positive integern. For integersd, r with r > 0, we set

Λ(n)
r (d) :=

{

(λ
(i)
j )1≤i≤n

0≤j≤r−1 ∈ C
nr

∣
∣
∣
∣
∣
d+

∑

i,j

λ
(i)
j = 0

}

.

Take an elementt = (t1, . . . , tn) ∈ Tn andλ = (λ
(i)
j )1≤i≤n,0≤j≤r−1 ∈ Λ

(n)
r (d).

Definition 5.1. (E,∇, {l
(i)
∗ }1≤i≤n) is said to be a(t, λ)-parabolic connection of rankr if

(1) E is a rankr algebraic vector bundle onX, and
(2) ∇ : E→E ⊗ Ω1

C(log(t1 + · · ·+ tn) is a connection, and
(3) for eachti, l

(i)
∗ is a filtration ofE|ti = l

(i)
0 ⊃ l

(i)
1 ⊃ · · · ⊃ l

(i)
r−1 ⊃ l

(i)
r = 0 such that

dim(l
(i)
j /l

(i)
j+1) = 1 and(Resti(∇)− λ

(i)
j idE|ti

)(l
(i)
j ) ⊂ l

(i)
j+1 for j = 0, . . . , r − 1.

Remark5.2. By condition (3) above and [EV-1], we have

degE = deg(det(E)) = −
n∑

i=1

TrResti(∇) = −
n∑

i=1

r−1∑

j=0

λ
(i)
j = d.

Let T be a smooth algebraic scheme which is a covering of the modulistack of
n-pointed smooth projective curves of genusg over C and take a universal family
(C, t̃1, . . . , t̃n) overT .

Definition 5.3. We denote the pull-back ofC and t̃ with respect to the morphismT ×
Λ

(n)
r (d) → T by the same charactersC andt̃ = (t̃1, . . . , t̃n). ThenD(t̃) := t̃1 + · · ·+ t̃n

becomes a family of Cartier divisors onC flat overT × Λ
(n)
r (d). We also denote bỹλ the

pull-back of the universal family onΛ(n)
r (d) by the morphismT × Λ

(n)
r (d) → Λ

(n)
r (d).

We define a functorMα

C/T (t̃, r, d) from the category of locally noetherian schemes over

T × Λ
(n)
r (d) to the category of sets by

Mα

C/T (t̃, r, d)(S) :=
{

(E,∇, {l
(i)
j })

}

/ ∼,

where
(1) E is a vector bundle onCS = C×

T×Λ
(n)
r (d)

S of rankr,
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(2) ∇ : E → E ⊗ Ω1
CS/S

(D(t̃)S) is a relative connection,

(3) E|(t̃i)S = l
(i)
0 ⊃ l

(i)
1 ⊃ · · · ⊃ l

(i)
r−1 ⊃ l

(i)
r = 0 is a filtration by subbundles such that

(Res(t̃i)S(∇)− (λ̃
(i)
j )S)(l

(i)
j ) ⊂ l

(i)
j+1 for 0 ≤ j ≤ r − 1, i = 1, . . . , n,

(4) for any geometric points ∈ S, dim(l
(i)
j /l

(i)
j+1) ⊗ k(s) = 1 for any i, j and

(E,∇, {l
(i)
j })⊗ k(s) is α-stable.

Here (E,∇, {l
(i)
j }) ∼ (E ′,∇′, {l

′(i)
j }) if there exist a line bundleL on S and an

isomorphismσ : E
∼
→ E ′ ⊗ L such thatσ|ti(l

(i)
j ) = l

′(i)
j for anyi, j and the diagram

E
∇
−−−→ E ⊗ Ω1

C/T (D(t̃))

σ



y σ⊗id



y

E ′ ⊗ L
∇′

−−−→ E ′ ⊗ Ω1
C/T (D(t̃))⊗ L

commutes.

We now can construct the moduli space of this functor.

Theorem 5.4.There exists a relative fine moduli scheme

Mα

C/T (t̃, r, d)→ T × Λ(n)
r (d)

of α-stable parabolic connections of rankr and degreed, which is smooth, irreducible
and quasi-projective and has an algebraic symplectic structure. The fiberMα

Cx
(t̃x, λ)

over (x, λ) ∈ T × Λ
(n)
r (d) is the irreducible moduli space ofα-stable(t̃x, λ) parabolic

connections whose dimension is2r2(g − 1) + nr(r − 1) + 2 if it is non-empty.

Proof. See [I]. �

Let (Ẽ, ∇̃, {l̃
(i)
j }) be a universal family onC×T Mα

C/T (t̃, r, d). We define a complexG•

by

G0 :=
{

s ∈ End(Ẽ)
∣
∣
∣s|t̃i×Mα

C/T
(t̃,r,d)(l̃

(i)
j ) ⊂ l̃

(i)
j for anyi, j

}

G1 :=
{

s ∈ End(Ẽ)⊗ Ω1
C/T (D(t̃))

∣
∣
∣Rest̃i×Mα

C/T
(t̃,r,d)(s)(l̃

(i)
j ) ⊂ l̃

(i)
j+1 for anyi, j

}

∇G• : G0−→G1; ∇G•(s) = ∇̃ ◦ s− s ◦ ∇̃.

As in the previous section, we can construct the Kuranishi space of(t, λ)-parabolic
connections on a smooth projective curve in using the hypercohomology ofG•.

Theorem 5.5.LetX be a smooth projective curve overk, (E,∇, {l(i)∗ }) a (t, λ)-parabolic
connection onX, G• the complex of sheaves onX defined above,W = H

1(X,G•),
(δ1 . . . , δN) a basis ofW and(t1, . . . , tN) the dual coordinates onW . LetWk denote the
k-th infinitesimal neighborhood of0 in W , and(E1,∇1, {l

(i)
∗ }1) the universal first order

deformation of(E,∇, {l(i)∗ }) overX ×W1 in the class of(t, λ)-parabolic connections.
Then there exists a formal power series

f(t1, . . . , tN) =
∞∑

k=2

fk(t1 . . . , tN) ∈ H
2(X,G•)[[t1, . . . , tN ]],

wherefk is homogeneous of degreek (k ≥ 2), with the following property. LetI be the
ideal ofk[[t1, . . . , tN ]] generated by the image of the mapf ∗ : H2(X,G•)→k[[t1, . . . , tN ]],
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adjoint tof . Then for anyk ≥ 2, the triple(E1,∇1, {l
(i)
∗ }1) extends to a(t, λ)-parabolic

connection(Ek,∇k, {l
(i)
∗ }k) onX × Vk, whereVk is the closed subscheme ofWk defined

by the idealI ⊗ k[[t1, . . . , tN ]]/(t1, . . . , tN)
k+1.

We now want to construct the Kuranishi space ofT -parabolic bundles. LetT be a finite
set of smooth points{P1, . . . , Pn} of X andW a vector bundle onX.

Definition 5.6. By a quasi-parabolic structure on a vector bundleW at a smooth pointP
of X, we mean a choice of a flag

WP = F1(W )P ⊃ F2(W )P ⊃ ... ⊃ Fl(W )P = 0,

in the fibreWP of W at P . A parabolic structure atP is a pair consisting of a flag as
above and a sequence0 ≤ α1 < α2 < ... < αl < 1 of weights ofW atP .

The integersk1 = dimF1(W )P − dimF2(W )P ,. . . ,kl = dim(Fl(W )P ) are called the
multiplicities ofα1, . . . , αl. A T -parabolic structure onW is the triple consisting of a flag
at P , some weightsαi, and their multiplicitieski. A vector bundleW endowed with a
T -parabolic structure is called aT -parabolic bundle.

Definition 5.7. A T -parabolic bundleW1 on X is a T -parabolic subbundle of aT -
parabolic bundleW2 on X, if W1 is a subbundle ofW2 and at each smooth pointP
of T , the weights ofW1 are a subset of those ofW2. Further, if we take the weight
αj0 such that1 ≤ j0 ≤ m, and the weightβk0 for the greatest integerk0 such that
Fj0(W1)P ⊂ Fk0(W2)P , thenαj0 = βk0.

Definition 5.8. The parabolic degree of aT -parabolic vector bundleW onX is

par deg(W ) := deg(W ) +
∑

P∈I

r∑

i=1

ki(P )αi(P ).

Definition 5.9. A T -parabolic bundleW is stable (resp. semistable) if for any proper
nonzeroT -parabolic subbundleW ′ ⊂ W the inequality

par degW ′ < (resp.≤)
par degW rk(W ′)

rkW
holds.

We have a forgetful mapg from (t, λ) parabolic connections toT -parabolic bundles.
We thus can construct the Kuranishi space ofT -parabolic bundles by following an
analogous argument to the one given above. We first introducethe Higgs fieldΦ :
E→E⊗ Ω1

X(D) defined as follows:

∀p ∈ X, ∀f ∈ OX,p, ∀s ∈ EP ,Φ(fs) = fΦ(s).

We afterwards consider a parabolic bundleE with fixed weights and parabolic points
P1, . . . , PN . We setL = K ⊗ O(P1, . . . , PN), the line bundle associated to the canonical
divisor together with the divisor of polesD = P1 + · · · + PN . The sheaf of rational1-
forms onX is identified with the sheaf of rational sections of the canonical bundle having
single poles at pointsP1, . . . , PN . We replaceti byPi, for i = 1, . . . , N andMα

C/T (t̃, r, d)
by Ms

T . We define a complexB• by

B0 :=
{

s ∈ End(Ẽ)
∣
∣
∣s|P̃i×Ms

Z,C/T
(P̃ ,r,d)(l̃

(i)
j ) ⊂ l̃

(i)
j for anyi, j

}

B1 :=
{

s ∈ End(Ẽ)⊗ Ω1
C/T (D(P̃ i))

∣
∣
∣ResP̃i×Ms

Z,C/T
(P̃ ,r,d)(s)(l̃

(i)
j ) ⊂ l̃

(i)
j+1 for anyi, j

}
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adΦB• : B0−→B
1; adΦB•(s) = Φ̃ ◦ s− s ◦ Φ̃.

From this, we deduce the construction of the Kuranishi spaceof T -parabolic bundles on
a smooth projective curve.

Theorem 5.10.LetX be a smooth projective curve overk or a complex space (in which
casek = C), E a T -parabolic bundle onX, B• the complex of sheaves onX defined as
above,W = H1(X,B•), (δ1 . . . , δN) a basis ofW and(t1, . . . , tN) the dual coordinates
onW . LetWk denote thek-th infinitesimal neighborhood of0 in W , andE1 the universal
first order deformation ofE overX ×W1. Then there exists a formal power series

f(t1, . . . , tN) =

∞∑

k=2

fk(t1 . . . , tN) ∈ H
2(X,B•)[[t1, . . . , tN ]],

where fk is homogeneous of degreek (k ≥ 2), with the following property.
Let I be the ideal ofk[[t1, . . . , tN ]] generated by the image of the mapf ∗ :
H2(X,B•)∗→k[[t1, . . . , tN ]], adjoint to f . Then for anyk ≥ 2, E1 extends to aT -
parabolic bundleEk on X × Vk, whereVk is the closed subscheme ofWk defined by
the idealI ⊗ k[[t1, . . . , tN ]]/(t1, . . . , tN)

k+1.
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