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ABSTRACT. We construct the Kuranishi spaces, or in other words, thesale
deformations, for the following classes of connectionshviiked divisor of polesD:
all such connections, as well as for its subclasses of iatdgr integrable logarithmic
and integrable logarithmic connections with a paraboliactire overD . The tangent
and obstruction spaces of deformation theory are definetdeastpercohomology of
an appropriate complex of sheaves, and the Kuranishi spgaeefiber of the formal
obstruction map.
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INTRODUCTION

We construct the Kuranishi space, or in other words, theavetsformation, of
connections belonging to each one of the following classes:
meromorphic connections with fixed divisor of poles
integrable meromorphic connections with fixed divisor oligsd);
integrable logarithmic connections with fixed divisor olg®D;
integrable logarithmic connections on curves with para&itucture at singular points.

The interest in versal deformations is twofold. First, asa¢deformation is a kind of
a local moduli space which exists in a much wider range ofasits than the moduli
spaces in the proper sense do. Second, versal deformat®nsaally easier to write
down than the moduli spaces, and one can use the versal dgfonto determine the
germ of the moduli space up to analytic, formal or étale esjence.

Historically, versal deformations were introduced for fiivst time in late50’s in
the work of Kodaira and Spencer ([KS-1],JKS-2]), and Kusdmi ([Ku-1],[Ku-2]). In
the beginning, this theory was only concerned with deforomst of compact complex
manifolds and was viewed as a replacement for Riemann'ghhsif moduli of compact
complex curves in higher dimensions. But since then therthikas been significantly
formalized and extended to a much wider range of domainguganities [Ar], [Schl-2],
[AGZV], vector bundles and sheaves [Rim-1], [Rim-2], [Amal], [Artam-2], singular
complex spaced_[Gro], [lMu+1],[lu-2], [[Pat1l,[Pa-2hnd morphisms of varieties or
complex spaces [FI], [Bi]/[Ran+1], [Ran-2].

Recently, many people believe that a deformation theory @¥ield of characteristio
should be taken over by a differential graded Lie algebradted DGLA). This principle
deriving from researches regarding homotopy theory, geatntn, mirror symmetry, etc.
(see, for instance| [Kon]). One prototype example to thisgyple is the deformation
theory of compact complex manifold via Maurer-Cartan eiguabn the vector field
valued(0, 1) forms. This is the Newlander-Nirenberg theorem (or rathanakishi’s proof

Partially supported by grant FWF-AP19667.
1


http://arxiv.org/abs/1009.1898v3

of the existence of the Kuranishi space). If we restrict fmitesimal deformations, we
can describe the situation as a bijection between

{Maurer-Cartan solutions ift S} ® m 4} ~ 1 deformations ofX on A} ; P
gauge equivalence - isomorphisms ! where A is a local artinianC-

algebra andx'S3, = (AY'(Ox),d,[—,—]) the Kodaira-Spencer algebra on. This
isomorphism is functorial iMl. The left-hand side is the deformation functor associated
to the Kodaira-Spencer DGLA'S%, denoted byDef i s, , and the right-hand side is the
usual deformation functdpef x of X.

All the constructions are enclosed in the paradigm of theaishi space associated
to a "good” deformation theory. A "good” deformation thedr some type of object
X consists in determining a tripl€T;, 7%, ), where T is the tangent space to

deformations ofX, 7% is the obstruction space, : T+—T% a formal map without
linear terms, called the Kuranishi majénotes the formal completion at zero). Then the
formal scheme —1(0) is the Kuranishi space, or a formal germ of the versal deftiona
of X.

We provide the triple$T;, 7%, f) for the above four classes of connections. In allthe
cases]% = H'(C*), the hypercohomology of an appropriate complex of shearesthe
initial componentf, of f is the Yoneda square map. For instance, in the gase (&, V)
is a meromorphic connection with fixed divisor of polesthe complexC® is a two-term
one and is

e = [€nd(&) —=E&nd(&) ® Q'(D)].

A similar situation occurs in the deformation theory of Hsggundles or Hitchin pairs

[B-R], whereTy = H!(€*) with complex
e = [end(&) "% end(€) © Q'(D))
defined by the Higgs fielgh : €—& ® Q!(D); contrary to our casexd ¢ is O x-linear.

Let X be a complete scheme of finite type overor a compact complex space
(thenk = C). The existence of a versal deformation and the theoretipproach
to its construction are known for coherent sheavesXn The construction of the
Kuranishi space=£ versal deformation) for coherent sheaves is done in usmjactive
resolutions. We are studying vector bundéewith an additional structure (a connection
V), and in this case the deformation theory of bétand (&, V) can be stated in terms of
the Cech cohomology of a sufficiently fine open covering’af This approach is easier
than the one via injective resolutions. We start by the cacsbn of the Kuranishi space
of vector bundles serving as a model for that of the pa@tsv). This is done in Sect.] 1,
where it is also explained how the versal deformations cansee to construct analytic
moduli spaces of simple vector bundles. In SEtt. 2, we inkredconnections with fixed
divisor of poles and show that their isomorphism classesrsif dirder deformations are
classified by the hypercohomolod¥ (C*) of some two-term complex of sheaves. In
Sect.[B, we show that the first obstruction to lifting the fosier deformation is given
by the Yoneda square and construct the Kuranishi space. 4alafine several versions
of the Atiyah class. In Seci.] 4, we describe the construaticthe Kuranishi space for
integrable and integrable logarithmic connections. Tisé &ect.[b treats the Kuranishi
space of parabolic connections.

0.1. Deformation theory. In this section, we follow[[Ma], and_[H4L] to remind the

framework of the deformation theory.
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Let Art be the category of local artiniatralgebraA such thatd /m 4 ~ C, wherem 4
is the maximal ideal ofA. We mean by a functor of artinian rinds [Schl-1] a covariant
functor

D : Art—Set such thatD(C) is the one-point set. The tangent spdgeto a functor
of artinian ringsD is defined byl', = D(Cle]), whereCle| is the ring of dual numbers
Cla]/(z?).

Let A, B, C be local artiniarC-algebras ang) : D(B x4 C')—D(B) xp) D(C) be
the natural map. We call a functor of artinian ringsa deformation functor if it satisfies
(1) if B—Ais onto, so ig), and(ii) if A = C, n is bijective [Ma](Definition 2.5). Note
that these conditions are closely related to Schlessimgéterion of existence of a hull
(see Remark to Definition 2.7 in [FAM]).

An obstruction theory of a functor of artinian ring®is a pair(U, ob(—)), consisting
of a finite dimensionalC-vector spacd/, the obstruction space, and a malp«a) :
D(A")—U ® a, the obstruction map such that for any small extension

a:0—=a—A—-A =0,

with kernela such thatn ,a = 0, the following conditions are satisfied:
1. If 2’ € D(A') lifts to D(A), thenob(a)(2") = 0.
2. For any morphisnp of small extensions

oy 0O — o — A — A — 0
-
Qo 0 — a — Ay — A, — 0,

we have the compatibilitpb(as) (¢, (2")) = (idy ®¢,.)(ob(ay)(z’)), for everyz’ €
D(A!). Moreover, ifob(a)(z’) = 0 implies the existence of a lifting of’ to D(A),
the obstruction is called complete.

In the sequel, we always assume thais an algebraically closed field dr = C.
For instance, ifX is a smooth projective variety ovér, and let/' be a coheren® x-
module which is simple. 1A € Art /k, let Dp(A) be the set of isomorphim classes
of pairs (Fy4,¢) where F4 is a flat family of coherent sheaves on parameterized
by Spec(A) and ¢ : F4 ®4 k—F is an isomorphism of) x-modules. Following
[H-L], the mapDr(a) : Dp(A)—Dpr(A’) has for fibers affine spaces with affine group
Ext'(F, F) ® a, and the image ofD:(a) lies in the kernel of the obstruction map
ob(a) : Dp(A))— Ext*(F, F) ®y a.

Proposition 0.1. (See[Ma], Proposition 2.17].) LetD, and D, be deformation functors
andy : D;— Dy a morphism of functorg,V;, obp, ) and (13, obp, ) obstruction theories
for D; and D,, respectively. Assume that

(7) ¢ induces a surjection (resp. bijection) on the tangent spd¢e—1p,.

(77) There is an injective linear map between obstruction spatesl;—V, such that

obp, o = ® o obp,.

(77i) The obstruction theor{/;, obp, ) is complete.

Then, the morphism is smooth (resggtale).

1. CONSTRUCTION OF THEKURANISHI SPACE IN THE CASE OF VECTOR BUNDLES
OVER ANY BASE.

Let X be a complete scheme of finite type oweor a complex space (then= C),

iU = (U,) be an open covering of, e, a trivialization of€ ;.. The transition functions
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gap relate the trivializations by the formutg = e,g.5 overU,s = U, N Uz and satisfy
the following relations

Gap = gﬁ_ia 9ap9ByGya = 1. (1)
In other words(g.s) € C' (4, GL(r, Ox)) is a skew-symmetric multiplicative-cocycle.

1.1. Construction of the Kuranishi space in the case of simple vear bundles over
any base.

Definition 1.1. A vector bundle on X is simple if and only ifH°( X, End(€)) = kid.

In the case of a simple vector bundle, the versal deformasiam fact universal and
this is a local version of the moduli space:

Proposition 1.2. Let £ be a simple vector bundle on a scheiieof finite type onk or
a complex space (in which case= C). Then there exists an analytic spakg£) with
a reference poink and a vector bundléy on X x M (&) which satisfy the following
properties:

(1) E|xxs =~ E.

(2) If T is an analytic space with a reference pokdnd £’ a vector bundle ok x 7" such
that F'| x .~ &, then there is a holomorphic mappidg: T— M (&) such thatb () = x
andE' ~ (1 x ®)*(E).

(3) The above mapping is unique as a germ of a holomorphic mapping fr@f ) to
(M(&),*). (M(€),*) and E are called the Kuranishi space and the Kuranishi family of
&, respectively.

Proof. See [Mu-1]. O

We define SVy as the set of isomorphism classes of simple vector bundles on
X. Using Proposition_1]2, we can endow it with an analytic ctite so thatSVy
has a universal family only locally in the étale or claskittigpology. Then there
exists a sufficiently small open sét of SV in the classical or étale topology and
a vector bundleF on X x U satisfiying the following property: For any analytic
spacesS, there exists a functorial bijection between the sgteorphismsS—U} —
{vector bundlesZ on X x S such that's € S, E; is simple and its class belongsig/ ~
given byy — (1 x ¢)*(E).

Proposition 1.3. Let X, € be as in Propositiod.2 Every obstruction to the smoothness
of SVx at [€] lies inker(H?(Tr) : H*(X, End(&))—H?*(X,Ox)). In particular, SVy is
smooth af€] if H%(Tr) is injective.

Proof. See [Mu-1]. O

Note, however, that'Vy, even if it is smooth, is not a nice concept of moduli space: it
is non-separated in many examples.

We now treat the case of vector bundles over any base.

1.2. First order deformations. Deform the transition functionsj.g = gas + €gag,1,

whereg.s1 € T'(Uap, M, (Ox)) ande? = 0. We haveg,s; = d“;’l—‘j‘. Differentiating [1),
we obtain: .
dg,, _ _
9Ba,1 = d—j = _gaglgaﬁ,lgagla (2)
9a8,196~v9va t 9ap9py.19va T 9ap9syGraa = 0,
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and by [(2).gy0.1 = —g;,ylgawg;,}. Plugging this into the previous formula, we get

9aB,198v9~va + 9ap9py,19va = gaﬁgﬁvgo_rylga'y,lgo_ryl'
Multiply by g.~ on the right:

9op 196y T Gapgpy1 = Jary,1- (3)

We want to represent this in the formgs + as, = a,, for an appropriate additive-
cocyclea = (aq5) € C'(4, End(€)), associated witkig,s ;) and skew-symmetriat, s =
—ago. Definea,s € I'(Uyp, End(E)) by its matrix:ga‘ggam in the basiss andgagvlga‘g
in the basis,. Then [2) givesyy,s950.1 + gag,lgggl = 0, written in terms of matrices
with respect to the basis,, and [3) amounts ta,s + ag, = a.,. Thus the first order
deformations of are classified by thé-cocyclesa = (aq3) € C'(U, End(€)). Such a
deformation is trivial if the vector bundI& defined overX x Spec Cle]/(¢2) by the1-
cocyclegas = gus + €gap.1 IS isomorphic topr; (&), wherepr, : X x Spec Cle]/(e?)—X
is the natural projection. This means that there exists aghaf basis, — é, =
eq(1 + €hy) Which transformgj, s into g,5. We computeés = eg(1 + €hg) = eagap(l +
ehg) = €4(1 — €hqa)gap(1 + €hg) and we want that this coincides with = €,7.s. That
iS: gap + €9ap1 = (1 — €hqa)gap(l + €hg), OF gop1 = —hagas + gaphs. INterpreting
h. as the matrix ob, € I'(U,, End(E)) with respect to the basis,, we obtaina, s =
—b, + bg Which is written in the basis, in the form ga@lga_ﬁl = —ho + gaghgga_ﬁl.
Thus the equivalence classes of first order deformatiosowerV = Spec Cle]/(€?) are
classified by

’ {coboundaries.s = bs — b,, Where(b,) € C°(L, End(€))}

1.3. First obstruction. We denoteV;, = SpecCle]/(e)*™!. We will investigate the
following question: which of the deformations &foverV/ liftto 15?
Let Gap = Gapo + €9as1 + €29a5.2 be a deformation of the cocyclgs = gas,0 Overva.
We want to prove, in other words th@t, s gives a validznd-order deformation if and only
if it satisfies the cocycle condition.

Assume that?,s mod €* is al-cocycle, then(2) and13) are verified, and compute the
coefficientK 4, 2 Of €2 in G,3G3,G-a, Which will be denoted<,, s, »:

Kopy2 = 9ap096+,19va,1 T 9ap,195v,09va,1 + Gap,196v,1970,0 (4)
+gaﬁ,2.gﬁ'y709'ya,0 + 9a,098~,29~v0,0 + 9aB,098+,09va,2

Similar to the above, introduce the sections;;, (¢ = 1,2) of the endomorphism
sheafSnd(SKUaﬁ)) havinggaﬁﬂ-g;ﬁ1 for their matrices in the bases,. Then, as above,

gaﬁ,ZgB'y,_Og'ya,O + 9aB,098~,29v0,0 + 9a,098~,09va,2 iS the matrix Ofa(_yﬁ,Z + ag~y.2 _"’ Aye,2 in
the basis:,, andgas,09sy,19va,1 + 9a8,1967.097a,1 + Jap,1987,19-a,0 IS the matrix of

By 10ya,1 + Qo 10ya,1 + Gag10py1 (5)

in the basise,. Leta; denote the cocycléu,s ;) and|a,] its class inf' (U, End(€)).
Thenag, 10,41 = g0 represents the Yoneda prodiiet] o [a1] = [c] € H?(4, End(€));
see for instanceé0.1.1. of [H-L] for the definition of the Yoneda product

H(4U, End(&)) x HI (U, End(&))—H™ (8, End(E)).
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The whole expressiofl(5) is the skew-symmetrizatigy of cs,,, hence it represents the
same cohomology class. Let alsoa, denote theCech cochairfa,s2). We can rewrite
Ky = (K,p,2) in the form

Ky = ¢+ das. (6)
We now see that we can find in such a way thatG ;) is a cocycle ovei; if and only
if ¢is d-exact. We have proved:

Proposition 1.4. Let X be a complete scheme of finite type oker a complex space
(and thenk = C), & a vector bundle onX, [a] € H'(X,End(&)). Then the first order
deformation of€ over V; defined byq] lifts to a deformation ovet; if and only if the

Yoneda squaré| o [a] is zero inH?(X, End(E)).

Definition 1.5. The map
HY(X, End(€)) — H2(X,End(€)) @)
([a]) = [a]o]d]
will be called first obstruction, and denotetd? .

Thus 0b® is the map of taking the Yoneda square. We will now construct a
universal first order deformation df on X. Let W = HY(X,&nd(€)), t1,...,tx @
coordinate system oW, W, = Speck[t1,...,tx]/(t1, ..., tx) ! the k-th infinitesimal
neighborhood of the origin iml/. The universal first order deformati@h of & overV;
can be described as follows.

Choose an open covering &f as above, so thdt is defined by a-cocyle(g,z). We
deformé& by specifying a familyG,5(t1, . . ., tx) Of 1-cocyles overX x W;. Pick upN
cocyclesa; = (agg) € C'(4, End(€)) whose cohomology classés], . . ., [ax] form a
basis off¥’ dual to the coordinates. ..., ty. Then we sey) = a(}g.s, wherea(} is
represented by its matrix in the basjsand writeG.5(t1, ..., tn) = gup + Zf\il gsgti.
ThenG,; is al-cocycle and defines a vector bundleover X x 1, called a universal
first order deformation of. The whole universal deformation ovBr; cannot be lifted
to a deformation ofV,. Proposition 14 implies:

Proposition 1.6. There is a maximal subschemd& C W, with the property that,
extends as a vector bundle fraf x W; to X x K,. This maximal subschenTe, is
the (second infinitesimal neighborhood of the origin in tbae) defined by the equation
ob@ (2) = 0in Wy.

We will now prove the following theorem, providing a consttion of the formal
Kuranishi space:

Theorem 1.7.Let X, & be as abovelV = H'(X, &nd(€)), (d1,...,0y) a basis ofli’
and(t ..., ty) the dual coordinates oi/. LetW;, = Speckl[ty, ..., tx]/(t1, ..., tx)*!
be thek-th infinitesimal neighborhood of the origin i/, &, a universal first order
deformation o€ over X x W, as above. Then there exists a formal power series

Fltr,. o tn) = fults... ty) € HX(X, End(€))[[t1, .. . tu]],

where f. is homogeneous of degréewith the following property. Lef be the ideal of

k[[t1,...,tn]] generated by the image of the map: H2(X, End(&))*—k[[ty, ..., tn]],

adjoint to f. Then for anyk > 2, the universal first deformatio8; of £ over X x W,
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extends to a vector bundés, on X x K, wherekK, is a closed subschemeldf, defined
by the ideall ® k[[t1,...,tn]]/(t1,. .. tx)FFL.

Definition 1.8. The inverse limitKk = @Kk is called the formal Kuranishi space &f
and€ = I'&n&g the formal universal bundle ové.

Proof. Let 4 = (Ux) be an open covering, sufficiently fine so titat_ is trivialized

by a basise,, and the groups‘(X,End(€)) are computed by th€'ech complex
(C*(4, End(&)), d). Let Z'(s, End(€)), Bi (4, End(€)) denote the subspaces of cocycles
and coboundaries 0" (4, End(&)) respectively. Let us fix some cross-sectiens:
HY(X,End(E))—Z (U, End(&)) andT : B2(U, End(€))—C' (4, End(€)) of the natural
maps in the opposite direction. Let = (a g)ﬁ) = 01(d;), and denote, as above, by,s)
the 1-cocycle definingg, so thates = e,g.5. We will construct by induction o > 0

the homogeneous forms of degrfea ¢4, ..., ty
Gop(ti,. .. tn) € (Uag, M (Ox)) @ k[t1, ..., tn], (8)
Fag%k(tl, c ,tN) c F(Uaﬁy, Snd( )) (029 /{Z[tl, C ,T,N]

fulty, ... tn) € HA(X,End(E)) @ k[t . .., ty]

with the following properties:
(1) Gapo = Gop, Gapa = S, afj)ﬁgagti, Whereafj)ﬂ are represented by their matrices in
the basis,,.
(’LZ) fk = O, Fag%k =0fork = O, 1.
(iii) For each k> 1, let f® = >._ f;, and let/**V) be the ideal generated by
(t1,...,ty)" 2 and the image of the adjoint magi¥”* : H2(X, End(€))*—k[t1, ..., tn].
Then (F.3,4+1) is @ cocycle moduld**V) and f,.,, is a lift to H%(X, End(€)) ®
k[ti,...,ty] Of the cohomology clas§(F.s, 11 mod I**tV)] € H?(X,&nd(€)) ®
k[tl,...,tN]/ﬂkH).

» k) _ (k) (k) (k)
(iv) Foranyk > 1, setGyy = >, Gagi- ThenGGuiGha = (1 + Fopypia)
mod I*+1). Propertieg(i), (ii) determineG s x, Fus, 1. for k < 1.

The proof of Proposition 114 allows us to see thiat), (iv) are verified fork = 1 with

N
Fupna = 3 (a0t + a3 + ahod)r;
ij=1

and to determing-,s, we proceed as follows. Lef, = [(F,p,2)], and I be the
ideal of K5, that is the ideal generated Iy, ...,¢x)% and the image of the adjoint
map f@* . H2(X,End(€))*—ks[t, ..., tx] = Sym?*(W*) (the degree homogeneous
part of k[t;,...,ty]). Then the reduction mod I® of F, = (F,p,2) is an element
Fy = (F.py2) mod I® € B4, End(€)) @ (Sym?(W*)/I® N Sym?(W*)). We define
a skew-symmetri¢-cochaina, = a.s. € C(4, End(€)) ® Sym?(W*) as an arbitrary
lift of (7 ®id)(F,) € CH(YU, End(€)) @ (Sym?(W*)/I® NSym?(1W*)) under the quotient
map. Next we defin€/,z2 by Gop2 = aap 293, Where the matrix of,s - is taken in the
basise,,.

Likewise, assuming thaG (k-1) F(k) are already fixed, we can choo$égs. j+1

and G, as foIIows By the |nduct|on hypothesis, we hawd; VG4 V6l =

(1 + Fupy) mod I®) . Then (F, wBy.k) IS @ cocycle moduld®), and |s a coboundary
modulo I**Y: Fy, = (Fap,x mod I*tD) € B2(4, End(€)) @ (Sym*(W*)/1¢-+D)
7



Sym*(W*)). We defineGusir = dapirgas With (aesx) € C1(U, End(€)) @ Sym*(W*)
an arbitrary skew-symmetric lift t8ym” (W) of (7 ® id)(Fy). ThenGg}GmGgo? =1
mod (1Y) + (t;,...,ty)**Y) and we can defind,s, ;.1 as the degre¢k + 1)
homogeneous component drﬁjgc;g;czw. To end this inductive construction of the

sequencesi s i, Fupy i1, We need only to prove thd, 1 = (F,s,.41) IS a2-cocycle
modulo/*+1) with values inEnd(€). O

The latter is proved in Lemna1.9 below.

Lemma 1.9. The2-cochain(F,z. 1+1), constructed in the proof of Theordld as the

degreetk + 1) homogeneous component@ngg‘?Gg@, is a 2-cocycle moduld 1)

with values inEnd(&).

Proof. The hypotheses, under which we have to prove the assertiamwhal 1.9, are
the following: ng; = Zf:o Gopi € T'(Uap, M (Ox)) ® k[t ..., ty] are the matrix
polynomials of degree< kin ty,...,ty and there is an ideal C (t1,...,ty)? such
thatG*)G%) =1 mod J andGY) GMG%CB =1 mod (J + (t1,...,ty)* ). The ideal
Jin Theoren1__f]7 id* D The collection(F,, ;) is considered not as &cochain in
M,(Ox), but as a2-cochain inénd(€), € being defined by the multiplicative cocycle
(gap) = Gapo € Z1 (U4, GL,(0x)). ThusE,s3, = F.p,k+1 iS @ certain section dnd(€)
overU,s, given by its matrix in the basis, of &y, , . We want to show that

Faﬁ-y — Faﬁ(g + Fa,ﬂ; — ngg =0 modJ (9)
We will replace it by a slightly different identity
Faﬁ-y -+ Fa,ﬂ; + Fa(gﬁ -+ FB(;.Y =0 mod J, (10)

which is the same aEl(9) as soon as we know {that., ) is skew symmetric. We have:

Faﬁw = [GaﬁGﬁfyGwa]k—i—h Fawé = [GawGwéGcSa]k—i-la Faéﬁ = [Ga5G5BGBa]k+17
Fpsy = Gapol[GasGoyGrplii1)G oo = [GapGssGoyGrpGaliia,
where we omitted the superscript in Gg“), [...]k+1 stands for the homogeneous

component of degrefe+ 1inty, ..., ty, and all the four terms are given by their matrices
in the basis:,. Now

Faﬁy + Fa*y& + Faéﬁ + Fﬁ&y = [GaﬁGﬁwG'ya + Ga'yGwéGéa + Ga5G56Gﬁa+
GapGpsGayGraGaalir = [GapGayGra X GayGreGoa X GasGopGpa
XGaﬁGB(SG&/G'yﬁGﬁa]kJ,-l =0 mod J.

The skew symmetry ofF.,s,) is a particular case of (10) when= ~. O

2. CONNECTIONS

Let X, & be as above. A rational (or meromorphic in the case wkieis a complex
space) connection ahis ak-linear morphism of sheavég : €& @ Q% (D) satisfying
the Leibniz rule:

Vpe X,Vf €0, Vse&, V(fs)=fVs+sxdf.
8



We assume thab is an effective Cartier divisor and cdll the divisor of poles oV. We
can extendV in a natural way to

ERN(xD) = @ Pi>0 € @ Q' (nD)

as ak-linear mapV : €@ Q' (xD)—E& @ Q' (xD) satisfying the Leibniz rul&/ (s @w) =
Vs A w + s ® dw. The connection is integrable W? = 0. In this caseV defines the
generalized de Rham complex

0—E(*xD) —=€ ® Q' (*D) —= & ® Q*(*D) —— ..., (11)

If X is smooth at all the points of \ D, then this complex is exact ovéf \ D in all
degrees different fror by the Poincaré lemma. Under the same assumption, theesafbsh
&h of sectionss of €| x\ p satisfyingV(s) = 0 is a local system of rank, that is a vector
bundle with constant transition functions, afifh\p = &" ® Ox\p; the sections ot”

are called horizontal sections f, V). The complex defined above, when restricted to
X\ D, is aresolution of".

A connectionV on € induces natural connections én, End(€&), (£*)®™ @ £%", and
more generally, on any Schur functor &for £*. We will use in the sequel the induced
connectionVe,q¢) on End(€). Taking a local sectiop of End(E), we can think ofp as
a sheaf homomorphis@— € over an open sdf C X , andVe,q(¢) is defined by

Venae)(p) =Vop—poV
Vende) : End(E)—End(€) ® QD)

If V is integrable, thelV¢,q) is also integrable, anéind(&)" = End(E™).

Let nowil = (U,) be a sufficiently fine open covering of, e, a trivialization of
overU,, (g.3) the transition functions of with respect to the trivilizationse, ). The
connection matriced,, € I'(U,, M,(Ox) ® Q'(D)) of V are defined by (e,) = e, Aq.
The transition rule for the matrices, is

Ap = 939908 + 9oz Aabas (12)
over U,s. This equation can be given a cohomological interpretatidio this end,
introduce the cochainsl = (A,) € C°(4End(E) ® QY(D)), § = (Jap) €
CH, End(E) ® Q') by saying that the matrix ofl,, (resp. G,5) in the basis, is A4,
(resp.dgasg.s). Then§ is a cocycle.

Definition 2.1. The cohomology clas$j] of §in H'(X, End(&) ® N') does not depend
on the choice of trivializationg,, ) and is called the Atiyah class 6f We will denote this
class byAt(&) and its image it (X, End(&) @ QY(D)), in H'(X, End(&) @ Q' (xD))
by At” (€),(resp.At*P(€)).

Now we can write[(1R) in the form
G =dA,
and we get the following assertion:

Proposition 2.2. Let X, £ be as abovel) an effective Cartier divisor itX'. ThenE admits
a connection with divisor of pole® if and only if At” (€) vanishes inif' (X, End(€) ®
QN(D)).

9



Informally speaking, this property is expressed by sayiraj the Atiyah class is the
obstruction to the existence of a connection on a vector leurkebr future use, we also
provide the integrability condition d¥ in terms of the local datd,,:

dAy + Ay A A, =0 (13)

2.1. First order deformations of connections with fixed divisor d polesD. I~_et~(8, V)
be defined as above afi = Spec k[¢]/(¢*). We represent the deformed péir, V) over
V1 by the local data

9o = Gap + €9ap 1, Ay = Aa + eAaJ

We have already studied the compatibility conditions whiglarantee thag.s ia a
cocycle; they can be stated by saying that the cochain (a.;) € C'(U, End(€)),
defined ovel/, 5 by the matrngaﬁvlg;E in the basis,, is a cocycle. Now, we fix this
cocycle and search for a cochdif, ;) compatible witha. Expanding[(IR) to ordet, we
obtain:

Az 1 = 08014908 + 980d9as1 + 980140908 + 98aAa19a8 + 980AaGas 1 (14)

Lemma 2.3. Define thed-cochainA; = (A1) in End(€) ® Q% (D) whose matrix over
U, is A, 1 in the basis,. Then [[4) implies:

(dAL)ap = Ap1 — Ao = daag + [Aa, dag] (15)
Proof. Conjugatel(I4) by.s:
908461905 = 95a96019908905 + A9ap190s + JapdsaiAa + Aot + Aadapi9ns (16)

Then gaﬁAmga‘g, A, are the matrices aflz,, A, 1 respectively in the basis,;
we will also interprete all the remaining terms bf(16) as nicas of some sections of
End(&) ® Q(D). We have

gﬁ_;gﬁa,l = ABa = —QAap; gaﬁ,lgﬁ_; = Qap, (17)
so that
gaﬁgﬁa,lAa + Aagaﬁ,lgo_lﬁl = [Aom aaﬁ]- (18)
Next, gos1 = aapgas , SO that
dgaﬁ,l = daaﬁgaﬁ + aaﬁdgaﬁ- (19)
Further, by[(1T),
9509601990895 = —aapdgapgas (20)

Combining [(19),[(2D), we obtain
9509019908905 + A9ap 1005 = —apdgasdas + ddas + Gasdgapgns = daas  (21)
Substituing[(1B),[(21) intd (16), we obtaln {15). O
Corollary 2.4. The pair (jas), (A,) defines a first order deformation ¢&, V) if and

only if the cochains: = (a.3) = (ga@lggﬁl),flml = A, (both given in the basis,)

satisfy the relationgl(a.s) = 0, d(Aa1) = (daas + [Aa, o))
10



We will interprete the latter result in terms of the inducedection or€nd(€). As we
saw, given a connectioW : E—¢& ® Q'(D) on &, we can define a connectiong,q) :
End(&)—End(&) @ Q' (D) by Venae)(p) = Vo p — ¢ o V. If we representp by its
matrix M, in the basis.,, thenVe,qe) () = dM, + [Aq, M,]. Now, we can reformulate
Corollary[2.4 as follows.

Proposition 2.5. The first order deformations @€, V) with fixed divisor of pole® are
classified by the pairga, A;) € C'(4, End(&)) x CO(L, End(€) ® Q(D)) such that

d(a) = 0,d(A1) = Venae)(a). (22)

Now, let us assume in addition that the initial connectionintegrable. Then the
condition that the deformed connectith V), given by the datéa, A,) as in Proposition
[2.3, remains integrable, can be written in the form:

dAoz,l = _Aoz,l A Aa - Aa A Aa,la (23)

or in an invariant form,\Ve,qe) (A1) = 0. We remark that here we consid®f,,q)
extended t€nd(€) @ Q*(xD) in the same way as was explained Yor= V.

Proposition 2.6. The first order deformations of integrable connectiodsV) with fixed
divisor of polesD are classified by the pairg:, .A;) as above satisfying three relations

d(a) = 0,d(A;) = Vende) (@), Venaeey (A1) = 0. (24)

2.2. Hypercohomology. Let K* = (K?,d) be a complex of sheaves ov&r, andil =
(U,) a sufficiently fine open covering of. The Cech complex ofK* is the double
complex ) )

(Cp(ua Kq)7 d7 (_1)de> (25)
The hypercohomology groufil’(X, K*) is by definition thei-th cohomology of the
simple complex L®, D) associated td (25):

L" = @pyq=nCP (8, K9, Dy cry = d 4 (=1)Pd,

Hi (X, K*) := H'(L*, D).
A hypercohomology class € H'(X, K*) is represented by a cocycle € L,
c= (.. ,cp—lvq“,cpvq,cp“vq—l,...),vwherep + g = 1, and the cocycle condition is
(oo, deP™ b 4 (=1)Pdpec?t = 0,dcP? 4+ (=1)PHdgert™a7t = 0,...). A cocycle
(c”?),4 .~ IS @ coboundary if there exists a cochéf?),,,—,—1 such that

P4 = dPH - (—1)Pd b
We denote theé-cocyclesZ‘ (4, K*) and thei-coboundariess’ (4, K*), so that
H (X, K*) = Z/(U, K*) /B (U, K*).
Let now come back to the setting of Proposition] 2.5. Definettb@term complex of
sheaves
e =[C'—=el, (26)

whereC® = &nd(&), €' = &nd(€) ® Q*(D), and differentialde = V¢,qe). Then the
equations[(22) express the fact tat.A,) € Z'(i, C*). Changing the bases, over
Vi = Speckle]/(¢*) by the ruleé, = e, (1 + ¢h,), whereh = (h,) € C°(8, End(€)) =
C(44, €%), we obtain the transformation rule of the cocygleA, ) in the following form:

(a,A1)—(a + dh, A, + deh), so that isomorphic first order deformations differ by-a

coboundary. We deduce:
11



Theorem 2.7.Let X be a complete scheme of finite type over a complex space (then

k = C). Leté& be a vector bundle oX and V a rational (or meromorphic) connection
on & with divisor of polesD. Then the isomorphism classes of first order deformations of
(&, V) with fixed divisor of poles are classified Hy (X, C*).

In order to characterize the first order deformations ofgrdable connections, we
introduce two other complexes:
R = [End(E)—End(E) @ V' (D)—=End(E) ® Q*(*D)— .. .|
with differentialdg = Vg,q(¢), and

Fo= [P g, 27)

whereF? = &nd(€), dy = Venae), andF' = ker(End(&) @ Q'(D))—End(€) ®
O2(xD)). It is easy to see that these complexes have the saooeycles andi-
coboundaries, so that

H'(X,T°*) = H'(X, R*).
The formulas[(20) express the fact that the paitA, ) is al-cocycle in either one of the
complexesFe, Re.

Theorem 2.8.Let X be a scheme of finite type oveor a complex space (then= C).
Let € a vector bundle otX andV a rational (or meromorphic) integrable connection on
& with fixed divisor of pole®. Then the isomorphism classes of first order deformations
of (€, V) in the class of integrable connections with fixed divisoraép D are classified
by

H'(X,F*) = H'(X,R*).

3. OBSTRUCTIONS

3.1. First obstruction. Let X, &,V, (a,A) be as in Theorem 2.7, and Iet;, V) be

the first order deformation ¢, V) overV; associated t¢a, A). We want to determine

the obstruction to extentE,, V) to (€, Vo) overV, = Spec k[e]/(e*). As before, we

only consider deformations with fixed divisor of polBs We search for the extended data
Gap = (1 + €tap + €a0p2)9as = Gop + €Jap1 + € Gap2

Aa = Aa + EAa,l + €2Aa,27 ‘Aa,l = Aa,b
with respect to the basis,. We assume that they satisfy the cocycle condition modulo
€. Then the cocycle condition moduté has two counterparts: the one expressing the
extendability of€;, which we have already treated in Sectiyrand the other expressing
the extendability of the connection. The latter has theofeihg form:
Ag2 = 9pa,2d9as + 9pa,149a8,1 + gsadgas,2 (28)
+gﬁa,2AagaB + gBaAa,2gaB + gBaAagaﬁ,2
+gﬁa,1Aa,lgaﬁ + gﬁa,lecgaB,l + gBaAa,lgaB,l
Introduce the cochaid, € CO(4U, End(€) ® (D)) given overU, by the matrixA,, ; in
the basis:,. By transformations similar to those used in the proofldf), and in using
formulas(22) andaga 2 — (@ap,1)* + aas2 = 0, we reducel(28) to the following equation:
Vendee)(@ag2) — Vende)(@api)tas — [Gap1, A1) (29)

= Vende) (@ap2) + Aa10ap1 — Gap1Asy = Aga — Aap
12



Let us denote
kog = Venae)(@ap2) + Aai@apr — GapiAp. (30)
We considelk = (k.s) as a cochain i (4, End(€) @ Q(D)).

Lemma 3.1. k is a skew-symmetric cocycle.
Proof. A straightforward calculation using the relations

Uap2 t Apy2 + Aya2 = —Qap108y,1 — Ay,107a,1 — Qap10ya,l (31)

andVe,ae) (XY) = Venge)(X)Y +Y Venae) (X), for any local sectionX’, Y of End(€)
O

Proposition 3.2. Let (a,.A4;) € Z'(44, C*), and let(&,, V,) be the deformation df¢, V)
overV; defined by(a, A;). Then(&;, V) extends to a deformatiof€,, V3) overV; if
and only if the following two conditions are verified:

(1) The Yoneda squafe,] o [a1] € H?*(X, End(€)) vanishes.

(#7) Provided (i) holds, letay, = (anp2) € C'(4,End(E)) be a solution of (1),
and letk = (k,3) be the cocycle[J0) determined by this choice af. Then[k] €
HY(X, &nd(&) ® Q'(D)) vanishes.

The expressiot,, 1aa51 — aapi1As 1 entering [(3D) is a component! of the Cech
cocycle(c!!, ¢*%) € Z%(u, €*) representing the Yoneda squdae, A,] o [a;,A;]. The
other componentig’’). = ap103y,1 + 4p7,1050,1 + Gap1040,1. HENCE We have:

Proposition 3.3. Under the assumptions of Prof8.8), (€1, V1) extends tg&,, V) over
V5 with fixed divisor of pole® if and only if the Yoneda squafe,, A;]o[a;, A;] vanishes
in H2(X, €.

3.2. Infinitesimal deformations of the Atiyah class. We fix a vector bundlé€ on X
given by a cocycley,s. Recall that we defined the Atiyah class&#hs the cohomology
class of the cocycl§,z = dgaﬁga‘g (here§,s is considered as a section &hd(€) ®
QYD) given by the matrix;lgaﬁgcjﬁ1 in the basis:,,).

If &, is an extension of (as a vector bundle) t& x V;, whereV; = Spec kle] /(e"™1),
then we can define the Atiyah class(&;) € H'(X, End(&;)®0Q") by the cocycle; .5 =
dgi,aﬁggjﬁ, where(g; .5) is a cocycle defining;, gi o5 € T'(Uag, M, (Ox) @ k[e]/(¢11)).
The following assertion is obvious.

Lemma 3.4. Assume that admits a connectiolvV with fixed divisor of pole®. Then
V extends to a connectidvi; on &; with fixed divisor of pole® if and only if the image
AtP(&;) of At(€;) in H'(X, End(&;) ® QY(D)) is zero.

Corollary 3.5. Letj > 0, and assumé extends to a vector bundé over X x V;. For
any: > 0,7 < j, denote by¢, the restriction ofé; to X x V;. The following assertions
hold:

(¢) if V; is a connection with fixed divisdp of poles on¢;, thenV,; = V¢, is such a
connection or€;. ThusAt” (€;) = 0 = At”(€;) = 0(i < ).

(i7) Let At”(€;) = 0. Introduce the natural restriction map

res;; - HO(End(€;) ® Q'(D))—~H(End(&;) ® Q'(D))

@ o kle/(e)
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Then any connection with fixed divisor of polen &; extends to such a connection on
¢; ifand only ifres;; is surjective.

Proof. (i) is obvious. To prove(ii), we use the following observation: for two
connectionsV;, V; on &; with fixed divisor D of poles, the differenc&; — V' is an
element ofH(End(E;) ® Q'(D)) and(V; — V)¢, = res;s(V; — V) € HO(End(E;) ®
QY(D)). O

In this Corollary, it is possible that bo®y, €; admit connections with fixed divisor of
polesD, but not every connection with the sameon &, extends to such a connection
on &;. To produce an example, sBt= 0,i = 0,j = 1, X an elliptic curve,£ = 0%>.
Define&; as a nontrivial extension of vector bundles

O—>OXle—u>81—V>OXXv1—>O (32)

Such extensions are classified Byt' (Ox v, Oxxv,) = H'(Oxxv,) ~ k[e]/(€?), and
we choose an extension class in the fafiifi, so that the extension is trivial modué.
We can describéf] and the associated extension explicitly as follows. dtet {U,_}
be an open covering of X, anfl € I'(U,, Ox) a function whose cohomology clag§
generated/' (X, Ox). Letey = (ex1,e42) be a basis o€|;, , and define the transition

matrix overU, _ by
1 ef
( 0 1 ) : (33)

Define the mapg, vin 32) byy : 1 — exq, v : (e41, e2) — (0,1). To be more explicit,
we will give X by the Legendre equation

y'=a(z—1)(x—1) (t€k\{0,1}),

and define an open coveringof X by U, = X \ {o0},U_ = X \ {0}. Then we can
choosef = £ as a function having two simple polesiandoo and no other singularities.
The Residue Theorem implies that it is impossible to repregeas the difference of
two functions, one regular ofi, and the other o/_, so the cohomology class gf
considered as @'ech cocycle of the covering with coefficients inOx is nonzero. We
now verify thatAt(€,) = 0. It is represented by the cocycle

_ 0 ed
dgi_g7! = ( 0 EOf ) : (34)
and 1 1
xr
df:d<g)__y_y_2:w+ w—,
s x x
where
dy dx dy
Wy =2— — o M= =
x s s
wy (resp.w_) being regular ot/ (resp.U_). Hence,
_ 0 0 _
aneait = (0 %)= (0 %) (35)

is aCech coboundary, andit(€,) = 0. Thusé&; has a regular connection.
Now, we will show that the mapes;, defined in the last corollary is not surjective,

SO not every regular connection dh extends to a regular connection én. We
14



remark that in our cas€! is trivial, D = 0, soresy, is just the restriction map
resyo : HO(End(€,))—H(End(&y)). Consideré; as an extension of another kind:

0—eE—E1—E—0,

wheree€ ~ 0% and€ ~ &,/e€ ~ 0%, Apply to it Hom(€&,,.)(the Hom-sheaf as
O x v, -modules):

0—FHom(Ey, E)—End(E1)—Hom(E, E)—0.
As & ~ 0%?, the first and the third terms of the last triple are descrimtbllows:
Hom(&E1, &) =~ End(E) = My(Ox).
Take an element it/ (Hom(E1, €)) ~ M, (k) given by the matrix

0 0
(59).

(as aboveé, € are trivialized by the bases. = (e11, e12)). We will see that it is not in
the image of the restriction maps o.
Indeed, assume there is a lift of
00
( 00 ) @37)

to H(&nd(&,)). Then itis given in the basis, by a matrix of the form

0 0
B € M,(k[U4]). Transforming it to the basis_, we obtain the matrix
_ (0 —¢f
A_—<0 1 )+EB, (39)

which has to be regular iti_. Thusef = ebjs —a_19, whgrebm is regular inUer anda_is
is regular inU_. This contradicts the fact thdtis not aC'ech coboundary i/ (4, Ox),
and this ends the proof.

3.3. Kuranishi space for deformations of connections.

Theorem 3.6. Let X be a complete scheme of finite type okeor a complex space
(in which casek = C), C* the 2-term complex of sheaves df defined by[Zg), W =
H'(X,C*),(d; ...,0yx) abasis ofi¥ and (¢, ..., ty) the dual coordinates of/. Let1V},
denote thet-th infinitesimal neighborhood df in W, and (&, V) the universal first
order deformation oveX x W of a connectior{&, V) on X with fixed divisor of poles
D. Then there exists a formal power series

fltr o tw) = fulti. .o ty) € B (X, €)[[t, .., tx]],
k=2

where f;, is homogeneous of degree (¢ > 2), with the following property.
Let / be the ideal ofk[[t;,...,tx]] generated by the image of the mafJ
H?(X, C*)*—kl[[t1, ..., tx]], adjoint to f. Then for anyk > 2, the pair(&,, V;) extends
to a connectior{&, V) on X x Vj, whereV, is the closed subschemeldf, defined by
the ideall @ k[[t1,...,tn]]/(t, ..., tn)*TL
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Proof. We will start by fixing a particular choice of coordinatgs, . . ., ¢y ), coming from
the spectral sequend®? = H?(CP) = HP™7(C*). The latter is supported on two vertical
stringsp = 0 andp = 1 (see Fig[1L).

q A

d EPd ) =12
=0 °
d
o=@ °
d1
=@ °
d d=0
o =0 =
p
FIGURE 1. The spectral sequence is supported arertical stringsy =

0,p=1.

Thus the spectral sequence degenerates in the secondvieland we have the long
exact sequence
0—H (X, €*)— HO(X, End(€)) —2> HO(X, End(E) ® QL4 (D))

S HY(X, C*)— HM (X, End(E))—2~ HY(X, End(€) @ QX (D))

—SHA(X, ) HA(X, End(E)) —2> H2(X, End(&) © Q% (D)) . ..,
We deduce the exact triple
0—W'—=W—=W"—0,

with
o~ HUGE@©) 8 O (D)) 1 sy o
1md1
W” = ker(H'(X,End(€))—H'(X,End(€) ® Q% (D)).
Let NV = dimW’', N’ = dimW"”; chooset;,...,ty In such a way thats; =
tnri1y oy Sy =ty (N = N+ N”), are coordinates oiW’” andty, . . ., ty restrict

to W’ as coordinates ol/’. We will construct by induction ok > 0 the homogeneous
forms

Gag,k(sl, cey SNH) € F(Uaﬁ, End(E)) & ]{2[81, ceey SNH], (40)
Faﬁ%k‘(sly e SN//) - F(Uaﬁ»}/, 8nd(8)) & ]’C[Sl, ey SNN],

fk(sl, cee SN//) c Hz(X, End(E)) & /{3[81, e SN//],
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Aai(ts ... ty) € D(Ua, End(€) ® QL (D)) @ k[t1, . .., t],
kit ty) € HY(X, End(€) ® Q% (D)) @ k[t1, .. ., tn],
Kopalts .. tn) € D(Uag, End(E) @ Q% (D)) @ klt1, .. ., tn]

with the following properties:

(1) Gapo = gap, andA, o define€ and resp¥V with respect to the local trivializations,
of E onU,.

(i1) fx = 0, Fapyp = 0for k =0,1, and K,z = 0.

(iii) For eachk > 1, let f® = > _ f, and let I**Y bpe the
ideal generated by(si,...,sy»)*™2? and the image of the adjoint magp®)*
H*(X, End(€))*—k[sy, ..., snyv]. Then(F,p, x+1) is a cocycle moduld*V) and fy 4
isalifttoW” & k[sy, ..., sy of the cohomology class

[(Fagyirr mod I ) € W @ ks, ..., sh]/ T+,

(iv) For anyk > 1, setGg“ﬁ) = > i<k Gapi- Then
GHGYEY) = (1+ Fopyper) mod THHD, (41)

By v
(v) For eachk > 1, setx™ = 3" _ x;, and letJ**!) be the ideal generated
by (t1,...,tn)"*? and by the image of the adjoint map”* : H'(X, &nd(&) ®
QD)) —k[ty, ..., ty]. Then(Kyp 1) is a cocycle moduld *+Y 4 [(:+2) andky, ; is
a lift of the cohomology class
[(Kagrsr mod (J*HIW2)] € HY (X, End(8)@Q"(D))@k([ty, ..., ty]]/ (ST +THHD)
in H'(X, &nd(€) ® Q'(D)) @ k[t1, . .., tn].
(vi) For anyk > 0, setAl) = > i<k Aai- Then

Kopper = dGUTY — GEVAY 4 APGEY mod (J41 4+ T*+2). (42)

In these properties’}fg is considered as an endomorphisnégfoverU,s x Vi, given by
its matrix with respect to two bases, for the sourceg; for the target, wheré€, is the

vector bundle ovek x V; defined by the-cocycle(G'")). Similarly (A%”) is understood

as al-cochain with values it€nd(€;) ® Q'(D), and in formulal[@R) ALY (respAY’) is
represented by its matrix in the basis(respeg). The base changés,s .1 acting on
both sides of[(42), reduce @,z 0, since the only nonzero terms in {42) are of degree
k + 1, and everything is reduced modulq, . . ., tx)**2. Thus [42) define$K 5 1.1) as
a 1-cochain with values ir€nd(&) @ Q'(D). Going over to the proof, we first remark
that G50, Aa,o are already known, and we have to indicate the choic& of;, A, «
inductively onk > 0, the other datd’, s, fr, Kapk, fi1, being recovered via formulas
(41),(42). To initialize the induction, first look di_(41) thik = 0. ThenF,z,; = 0 by
(1), which implies

Gaﬁ,lGB'y,OG'ya,O + GaB,OGB’y,lG'ya,O + GaB,OGB’y,OG’ya,l =0 (43)
The latter equation expresses the fact tldats ) is al-cocycle with values iEnd(€) ®
(W")*. As in Section 2, we can writé/,5; = Zagggagsi, Where[(ag%)] for i =
1,..., N” form the basis o#/” dual tos, ..., sy». Here and further on, we adopt the

following convention: all the&x s . (resp.Gg“B)) are regarded alscochains with values in
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End(€E) (resp.End(Ey)) given by matrices with respect to two baseg:for the source,
eg for the target. We denote [, the vector bundle ovekX x Vj, defined by the cocycle
G

I?Ience, looking at the first ter&,51G g, 0G,a,0 Of the sum in(4B), we see that it
represents the matrix @f .z ; with respect to one and the same basidor the source
and the target. The same applies to the other two summan@8jnttus [(4B) is the
cocycle condition

Gop + gy + Ay =0

put down via matrices of the three summands in the basis

We will adopt the same convention for cochains with valuegid(&) @ Q'(D) or
in &nd(&;,) ® Q1(D). The A, (respAJ’) will be considered as matrices representing
cochains inénd(&) ® QY(D) (resp. End(&;) ® Q'(D)) in the basis, overU,. Now
write (42) fork =0

Kop1=dGap1 — Gap1As0 + Aa0Gas1; (44)

we take into account thdt) = JU = 0 and thatdG .50 — Gap0As0 + Aa0Gaso = 0,
the latter equation being a form df (12) in which,s, are considered as matrices of
endomorphisms of written with respect to two bases;, for the sourcegs for the
target, anddG,z,) is a cocycle representingt” (€).

The r.h.s of((4k), with the same convention thal; ; are matrices of endormorphisms
of € with respect to the two bases, is just the coctfdin,s+[A,, ass]) € C* (4, End(E)®
QY(D)). Asin (22), we can rewrite it a¥¢,q¢)(a), wherea = (Gp5,1), and this
representation makes obvious thd{,s) is a 1-cocycle. The differentiat/, of the
spectral sequence being induced Wy, q¢), we see that the cocycleiK,z:) is a
coboundary if and only if

[a] = [Gapi] € ker(HY(X, End(&)) @ (W")*—H (X, End(€) @ QY(D)) @ (W")*).
Assuming that K, 1) is a coboundary, we choosd,, ;) as a solution to
Kaﬁ,l = Gaﬁ,OAB,l - Aa,lGaﬁ,O (45)

Such a solution can be chosen as a linear form,in. . sNu Single out one such solution
and denote i A/ ) = (Al (s1,...,sy)). Let (AX]),i = 1,...,N' be a basis of
HO(4U, End(€) ® QY(D)) dual to the coordinates, . . . ,tys 0N W’. Then set

1"

Aa,l A (81, .. SN// + Z A,(Z t

Now assume that the formis_(40) have been constructed up teeleg> 0 and define
them for degreé + 1. Start byF,, s, 1+1, Which we define, as in the proof of Theoreml1.7,
to be a lift toZZ(Ll End(€)) ® k[sy, ..., sy, of the homogeneous component of degree
k+1in GGG, which is a cocycle moduld® ) + (s, ..., sy»)**! by the proof
of Lemmd‘ig

Then we setfy,; equal to any lift of the cohomology clas&F,z,.11) €
H?(X,End(&)) ® K[[s1,...,syu]]/I*Y to H?*(X,End(€)) ® k[si,...,syn]. By
construction(F,,s. 1+1) is a coboundary modulB*+2 + (s, ..., sy»)*¥*2, so there exists
a cochain in

C’l(il, End(E)) &® ]{5[81, ey SN//]/<j(k+2) + (517 couy SN//)k+2)
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whose coboundary i§F,s, 1) mod (152 + (s1,...,sy0)**2), and (Gapri1)
is defined as any lift of this cochain t6 (4, End(€)) ® k[sy,...,sy»] which is
homogeneous of degréet+ 1 in sq, ..., sy». Consider now the expression

K'aﬁ,kﬂ = dG((XkBJrl) — Gé’f;l A A(k G! k+1) dGékg) . G(OZ)A(;_I) i Agk_l)Gg})
+dGa5,k+1 - Gaﬁ,kﬂAﬁk ) + A&k b Gaﬁ,k—i—l - ngkﬁ+1)AB,k + Aa,ngzkﬁ+1)7

By the induction hypothesis,s; = dG\) — G AT + AT VG is a cocycle

modulo.J* 4 I**Y) and is a coboundary modultf ™ + I*) + (¢, ..ty )*!. From
(42), in order that[(a@“l has no homogeneous components of okdef + 1 modulo
JEHL 4 0D (4. ty)*, we have to set4, ;) to be a solution of

Gik;l)AB,k — A, kG AR ~aﬁ,k mod (JF 4 TFFE (g, )R, (46)

where ng;” can be replaced by+,s,, so that[(4B) is an equation for the cochain

(GupoApr) with values in &nd(€) @ QY(D). Thus we come to the following
inductive procedure: defin&,s .1 as the homogeneous form of degreet 1 in

Kosri1. Assuming it is a cocycle modules*+! + 1*+2) we definex,, as a

lift to H'(X,End(&) ® Q'(D)) ® k[ty,...,tx] of the cohomology clas§(K,px+1)

mod J¥+1 + [*+2)] ThenJ*+2) is well-defined and K5 1) becomes a coboundary

modulo J*+2)  Tk+2) (¢, t5)**2. Hence we can constru¢tl, ) as a lift to

CO(U, End(&) ® QY(D)) @ k[ty, ..., ty] of a solution(A, ) of the equation
Gaﬁ70A57k+1 - Aa,k-i—lGaﬁ,O = f{aﬁ,k—i—l mod (Jk+2 + j(k+2) + (tl, Ce ,tN)k+2).

Thus we have to verify thdt/{, s x+1) is a cocycle. O

Lemma 3.7. (K,p.+1) defined as the homogeneous component of degreel of
Kopri1, is al-cocycle modulg/*+! 4 [(:+2),

Proof. By the induction hypothesis, we have

GHCYC®) =1+ Fpper mod THH),
and by construction,

Gap G GCE) + GUG s, k1 GE) + GG G

By 'ya
= —F.gyk1 mod (I k+2) 4 (s1,..., 5n0)F2),

Kopper = dGUTY — GUEVAT + APGEY mod (J4! 4 T*HD),
DenoteGg‘j;rl ,Gg}, Gap kt1, Aa ,Ka@kﬂ by Gag, aﬁ, Gaﬁ, A,, K,z respectively.
We have

KopG,Gro + GopKpyGro + GopGpy Koo = dGopGpyGra + GopdGa, G (47)
+GapGpydGra — GapAsGpyGra + AaGapGpyGra — GapGay Ay Gw + GapApGayGra
—GopdGs,GraAn + GaﬁdGﬁwA Gro = dG G G + G, BdGm Lo + GGl dG’W

+dG GG, G, + GLedGl G o + G3G,dGY, +dG G G+ dGL Gl G,

+G Gl Gy + GlgdGl, Gl + G"ﬁa dG’ = (Gl 3G, Gly) — GGl dGE

ngcﬁ = G(k A(k 1) A(k—l)Gng) mod (Jk + [_(k+1)),



_'_d(G/o/zﬁG/ ! + G;B g ! _'_ GlaﬁG/ ! ) = d(Faﬁfy’kJ,_l) - d<FCYB’Y,k+1> = O

By e By~ va By~ e
mod (JFF1 4 [*+2))

This ends the proof. O

Coming back to the proof of the Theorem, we defifieas any lift to H?*(C*) ®
k[t1,...,ty], homogeneous of degréein t,...,ty, of the cohomology class of the
cochain

((Kag k), (Fagy)) mod (J*+T**) € CH(8L, C)@K([tr, ..., tx]]/(J*+T*TY), (48)
which we are assuming to be a cocycle. Then quotienting imakes|[(4B) a coboundary
of ((Aan), (Gagpy)), and the paitGL), (ALY)) defines(€y, V) overX x Vj. It remains

to prove that[(48) is a cocycle with valuesGnh® klt, ..., tyx]/(J* + I**1). One part of
this, namely, the equation

d(Kap ) = Venae)(Fapyk)

is verified by the computation (47). The second pHiE,;,,) = 0 is guaranteed by
Lemmd1.9.

4. INTEGRABLE CONNECTIONS

4.1. Higher order deformations of integrable connections.From now on, we take
into account the fact thgi€, V) is an integrable connection with fixed divisor of poles
D and consider deformations ¢, V) preserving the integrability and the divisor of
poles. In Theorern 218, we characterized the first order deftions of(€, V) in terms of
the hypercohomology groufi! (X, F*) = H'(X, R*). Now we will consider the second
order deformation and respectively the first obstructian.v#& search for the extension

Gop = (1 + €anp1 + €aap2)gos (49)
/~la = A, +€Au1+ €2Aa72

of (gup, Aa) t0 V = Spec k[e]/(€*). To orderl, we have the conditions (R4):

d(aag’l) = 0, CZ(AQ’1> = v<aa5,1), V<Aa,1) =0. (50)
Expanding((I1B) to ordet, we obtain in addition td_(6) an@3), the equation
vAa,2 - _Aa,l A Aa,la (51)

Note thatV(A,1) = 0 implies thatV (A, 1 A A,1) = 0. One easily verifies the following
relations

V(Aa1 AN An1) =0
I(Aaa A Agr) = —V(Ag10as1 — Gap1As)
d(Au10ap1 — Gap1As1) = V(aap 10,1 O),

where (9 denotes the skew-symmetrization on the subscripts,y. These three
equations express the fact that the triple

((aagiapy1 O), (Aa1@ap1 — @ap1As1), (Aai A Aat)) € C2 (U, R%)
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is a cocycle with respect to the differenti@l = V + d. Then the conditions saying that
(49) is an integrable connection with fixed divisor of paleésnoduloe?, that is, formulas
(29), (31) and[(51), mean that the cocycle defined above ischeundary of the cochain

((aap2), (Aap2)):
D(azqu) = ((%5,1%%1 O)u (Aa,laaﬁ,l - aaﬁ,lAB,1)7 (Aa,1 A Aa,1))-
As the cocyclel(52) represents the Yoneda squafe, ofi, ], we deduce:

Proposition 4.1. The first order deformatioi€,, V) of (£, V) defined by the cocycle
((anp1), (Aq1)) extend to an integrable connectidi,, Vo) over X x V, with fixed
divisor of polesD if and only if the Yoneda squafe,, A,] o [a;, A4] is zero inH?(R*).

Thus the integrable case looks similar to the non-integrabk (compare to Prgp 1.6),
provided we replace thzterm complext* by R°. As far as only the hypercohomology
H' andH? are concerned, we can also trunciteat the leveb: Hi(R*) = Hi(R*), for
i =0,1,2, whereR* = [RO—R'— ker(R2—R?)].

4.2. Kuranishi space of integrable connections.Now, we turn to the construction of the
Kuranishi space of integrable connections with fixed divisigpolesD. Its construction
is completely similar to the one in the non-integrable casanstead of giving a proof of
the next theorem, we will only supply some remarks indigatimodifications that should
be brought to the proof of Theorédm B.6 in order to get the pirotie integrable case.

The spectral sequendg® = HY(X,RP) converging toH*(R*) is not concentrated
on two vertical strings, so herd[?(R*) has a filtration consisting of three nonzero
summands which are subquotients BP (X, End(€) @ Q3% (D)), HY(X, End(&) ®
OL(D), H*(X, End(€)). Hence, we have to add to the forms](40) two more homogeneous
forms of degreé;, say

La,kz(tla e ,tN) € P(Ua, Snd(ﬁ) X Q%(*D)) X ]{?[tl, Ce ,tN], (52)
L(t, ..., ty) € HY(X, End(€) ® Q% (xD)) @ k[t1, ..., tx],

and modify according the conditior$), . .., (vi) to which the forms[(40),(52) should
satisfy. Remark also that the long exact cohomology seaquear®* introduced in the
proof of Theoren) 3]6 remains exact only indtserms where* is replaced byR*.

Theorem 4.2.Let X be a complete scheme of finite type ovar a complex space (in
which casek = C), V an integrable connection oé with fixed divisor of pole®, R*
the complex of sheaves on defined abovelV = H!'(X,R*), (6;...,dn) a basis of
W and (t,...,ty) the dual coordinates ofl’. Let W, denote thek-th infinitesimal
neighborhood ob in W, and (&, V;) the universal first deformation a€, V) over
X x Wy in the class of integrable connections with fixed divisora@tepD. Then there
exists a formal power series

fltr. o ty) = fults. o ty) € (X, RY)[[t, -, ta]),

where f, is homogeneous of degree ( > 2), with the following property.
Let I be the ideal ofk[[ti,...,tx]] generated by the image of the maff
H? (X, R*)*—k[[t1,. .., tn]], adjoint to f. Then for anyk > 2, the pair(&,, V) extends
to an integrable connectioft, V) on X x Vi, whereV, is the closed subschemeldf,

defined by the ideal ® k[[ti,. .., tx]]/(t1, ..., tx)F L.
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Remark4.3. The complexR® may be replaced by its subcomplexEnd(€)—End(€) ®
Q% (D)—End(&) ® V% (2D)— . ... Theoren 3.6 will remain valid if we replace® in its
statement by this smaller complex.

In the case wher¥ is an integrable logarithmic connection, we can redidcéurther
to L* = [0—End(&)—End(&) @ Q% (log D)—End(&) @ % (log D)— . ..]. We now go
over to integrable logarithmic connections.

4.3. Integrable logarithmic connections.

Definition 4.4. Let X be a nonsingular complex projective variefya normal crossing
divisor with smooth components. An integrable logarithooanectiont on X is a pair
(€, V) where€ is a torsion free coherent sheaf @k -modules onX andV : E—& ®
QL (log S) is C-linear and satisfies the Leibniz rule and the integrabdiitgditionV? = 0
(see in the beginning of Se¢l. 2).

Let Dx be the sheaf of algebraic differential operatorsXrand letD x[log S| be
the O x-subalgebra generated by the germs of tangent vector fidhshvpreserve the
ideal sheaf of the reduced scheeAccording to [Ni], a logarithmic connection ok
with singularities ovelS can be interpreted aslay [log S]-module which is coherent and
torsion free as af y-module.

Remark4.5. A nonsingular integrable connection ohis simply aD y-module which is
coherent as af) xy-module.

Definition 4.6. An infinitesimal deformation of an integrable logarithmanmectiore is
a pair(Ey, a), where&y is a family of logarithmic connections parameterizediby=
Spec(Cle]) /€2, with an isomorphisna : €y /ey —E.

We defineT as the set of all equivalence classes of infinitesimal dedtions of €.
Let the sheafK: be the kernel oV : End(&) ® Q' (log S)—End(&) ® Q*(log S). As
the curvature ofV is 0, the image ofV : €—& @ Q'(log S), is contained inK,. If
A€ H%X,X¢), thenV + €A is a family of logarithmic connections on the underlying
sheafé parameterized by. This gives a linear map: H°(X, K¢)—T¢.

Theorem 4.7.1f an integrable logarithmic connectiod is locally free, the vector space
T of infinitesimal deformations d@f (which equals the tangent space/&} to the moduli
scheméV of stable integrable logarithmic connections wheis stable) is canonically
isomorphic to the first hypercohomoloBy (C ) of the complex: = (V : End(€)—XKe),
which is in turn equal to the first hypercohomology of the hiiynic de Rham complex
L= (End(E) ® Q% (log S), V) associated t&nd(E).

Proof. See [Ni]. O

We deduce the construction of the Kuranishi space of inb#grdogarithmic
connections ovek .

4.4. Kuranishi space of integrable logarithmic connections.

Theorem 4.8. Let X be a smooth projective variety over an algebraically clogeltl &
(oronC), € a vector bundle onX, V an integrable logarithmic connection dh £° the
complex of sheaves o¥i defined in Theorefd.d, W = H'(X, £*), (¢;...,dy) a basis
of W and (¢, ..., tx) the dual coordinates ofil’. Let W}, denote the:-th infinitesimal

neighborhood off in W, and(€&,, V) the universal first order deformation ¢f, V) over
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X x W7y in the class of integrable logarithmic connections with dixivisor of polesD.
Then there exists a formal power series

Flti,. .ty ka v) € (X, L[t - - -, ]l

where f; is homogeneous of degree (k > 2), with the following property.
Let / be the ideal ofk[[ti,...,tx]] generated by the image of the maff
H?(X, L*)*—k[[t1,...,tx]], adjoint to f. Then for anyk > 2, the pair(&,, V;) extends
to an integrable logarithmic connectiof€,, V) on X x Vi, whereV, is the closed
subscheme d¥,, defined by the ideal @ k[[t1, ..., tn]]/(t1, ..., tn)*+E

5. PARABOLIC CONNECTIONS

Let X be a smooth projective curve of genusiWe set

n

—_—~—
T, = {(tl,...,tn)eXx---xX t,-;étjfori%j}

for a positive integen. For integersl, r with » > 0, we set

d+ZA§?>:0}.

2

A () = {u;%sz;zﬁ_l com

Take an element= (¢4,...,t,) € T,, and\ = (Ag.i))lgigmogjg_l € A,(n”)(d).

Definition 5.1. (E,V, {lii)}lgign) is said to be dt, \)-parabolic connection of rankif
(1) E is arankr algebraic vector bundle oi, and

(2) V: E—FE ® QL(log(t; + - - - + t,,) is a connection, and

(3) for eacht;, I i =1 o1 550, 51 = 0 such that
dim(/1,) = 1 and(Res,, (V) — A“ idp,, ) (1) lyﬂ forj=0,...,r—1.

Remark5.2 By condition (3) above and [EV-1], we have

n r—1

deg £ = deg(det(E Z Tr Res;, (V Z Z )\(2

=1 j=0

Let 7" be a smooth algebraic scheme which is a covering of the madiadik of
n-pointed smooth projective curves of gengsover C and take a universal family
(C,tq,...,t,) overT.

Definition 5.3. We denote the pull-back @ and? with respect to the morphisffi x
A™(d) — T by the same characte€sandi = (4, ...,%,). ThenD(f) :== &, + - + &,
becomes a family of Cartier divisors @rflat overT x A{™ (d). We also denote by the
pull-back of the universal family on{™ (d) by the morphisnil” x A (d) — A™(d).
We define a functoMg/T(t, r,d) from the category of locally noetherian schemes over

T x A,(n”)(d) to the category of sets by
Mg (., d)(8) = { (B, V. {11 } / ~,

where

(1) E is avector bundle oBg = C x S of rankr,

TxA™ (d)
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) V:E—E®Q /S(D(E)S) is a relative connection,
®3) Eli)s = 51 5 519 51 = ois afiltration by subbundles such that
(Res, s (V) — <xy>>s><zy>> cl foro<j<r—1li=1,..,n,
(4) for any geometric point € S, dim( /lg+1) k(s) = 1 for anyi,j and
(B, V,{I{"}) @ k(s) is a-stable.
Here (E,V,{I"}) ~ (£, V' {I"}) if there exist a line bundlel on S and an
isomorphisny : E 5 E w (1) = IV for anyi, j and the diagram

E Y E®Q(D()

UJ/ 0®idJ/
EeL s B'a /(D) ® L
commutes.

We now can construct the moduli space of this functor.

Theorem 5.4. There exists a relative fine moduli scheme

M (t,r,d) = T x A (d)
of a-stable parabolic connections of ramkand degreel, which is smooth, irreducible
and quasi-projective and has an algebraic symplectic stmec The fiberMg (¢, \)
over(z,A) € T x A™(d) is the irreducible moduli space ef-stable(,, \) parabolic
connections whose dimensiori€ (g — 1) + nr(r — 1) + 2 if it is non-empty.
Proof. See[l]. O

Let (£, V, {I\"}) be a universal family o& x Mg:,.(Z, r,d). We define a compleg*
by

G0 = {s € &nd(F) ‘s\t M i) J(117) 11 for anyi,j}

§' = {5 € &nd(E) ® Qb (D(D) [Resy wagg, () (1) € I, for anyi, j}
Vg : 3G Vg(s) =Vos—soV.

As in the previous section, we can construct the Kuranishtemf(¢, \)-parabolic
connections on a smooth projective curve in using the hyenmology ofge.

Theorem 5.5.Let X be a smooth projective curve ovier(¢, V, {li’)}) a(t, \)-parabolic
connection onX, G* the complex of sheaves on defined abovely = H'(X,§*),
(01...,0x) @abasisofi and(ty, ..., ty) the dual coordinates ofi/. Let W, denote the
k-th infinitesimal neighborhood ofin W, and (€4, V4, {lii)}l) the universal first order
deformation of(€, V, {lii)}) over X x W in the class of(¢, \)-parabolic connections.
Then there exists a formal power series

Pt ot ka w) € H2OG G [ty ]
where f;. is homogeneous of degrée(k > 2), with the following property. Lef be the

ideal of k[[ty, . . ., tn]] generated by the image of the map: H?(X, §*)—k[[t1, - . ., tn]],
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adjoint to f. Then for anyk > 2, the triple(&;, V;, {I”},) extends to dt, \)-parabolic

connection &y, Vi, {lf)}k) on X x Vi, whereV,, is the closed subschemeldf, defined
by the ideall ® k[[t1,...,tn]]/(t, ..., tn)*+E

We now want to construct the Kuranishi spacdgbarabolic bundles. Lét be a finite
set of smooth point§P;, ..., P, } of X andWW a vector bundle orX.

Definition 5.6. By a quasi-parabolic structure on a vector buridiet a smooth poinP
of X, we mean a choice of a flag

Wp = Fl(W)p D) FQ(W)]D D...D F}(W)p =0,

in the fiboreWp, of W at P. A parabolic structure aP is a pair consisting of a flag as
above and a sequenge< oy < ap < ... < oy < 1 of weights oflV at P.

The integersg:; = dim F1 (W) p — dim F»(W)p,..., k = dim(F;(W)p) are called the
multiplicities of aq, . . ., ay. A T-parabolic structure oW/ is the triple consisting of a flag
at P, some weightsy;, and their multiplicitiest;. A vector bundlell endowed with a
T-parabolic structure is calledZparabolic bundle.

Definition 5.7. A T-parabolic bundlél; on X is a T-parabolic subbundle of &'-
parabolic bundléV, on X, if W, is a subbundle o1, and at each smooth poirit
of T, the weights ofli’; are a subset of those &F,. Further, if we take the weight
aj, such thatl < j, < m, and the weight3,, for the greatest integét, such that
Fjo(Wh)p C Fiyy(W2)p, thenaj, = By,

Definition 5.8. The parabolic degree of &-parabolic vector bundl& on X is

par deg(W) := deg(W) + Z Z ki(P)a;(P).

Pel i=1
Definition 5.9. A T-parabolic bundldV is stable (resp. semistable) if for any proper
nonzerol-parabolic subbundl&” c T the inequality
par deg W rk(1W")

degW’ <
pardegW’ < (resp.<) T

holds.

We have a forgetful map from (¢, \) parabolic connections t@-parabolic bundles.
We thus can construct the Kuranishi spaceZéparabolic bundles by following an
analogous argument to the one given above. We first introtlueeHiggs fieldd :
E—E& ® Q4 (D) defined as follows:

Vpe X,Vf € Ox,, Vs € Ep, O(fs) = fO(s).
We afterwards consider a parabolic bundlevith fixed weights and parabolic points
Pi,...,Py. WesetL = K ® O(Py, ..., Py), the line bundle associated to the canonical
divisor together with the divisor of pole® = P, + --- + Py. The sheaf of rational-
forms onX is identified with the sheaf of rational sections of the cacarbundle having
single poles at point®,, . .., Py. We replacé; by P,,fori =1,..., N andMg‘/T(E, r,d)
by M;.. We define a comple®° by

B .= {s € End(E)

Sl pars o (pra () € I for anyi, j}

Bl .— {s € &nd(E) ® Qp,r(D(Pi)) ResﬁiXM}"e/T(ﬁ,r,d)(S)<l~§'i)) c 1), for anyi,j}
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ad @ge : BB adPge(s) =Pos—sod.

From this, we deduce the construction of the Kuranishi sp&déparabolic bundles on
a smooth projective curve.

Theorem 5.10.Let X be a smooth projective curve oveor a complex space (in which
casek = C), & aT-parabolic bundle onX, B* the complex of sheaves ohdefined as
above,W = H!(X,B*), (6 ...,0y) abasis ofi¥ and (¢4, . .,ty) the dual coordinates
onWW. LetW, denote thé-th infinitesimal neighborhood ofin 1/, and&; the universal
first order deformation o€ over X x W;. Then there exists a formal power series

fltr o ty) = fults. . ty) € HX(X, B)|[t, ..., tw]],

where f;, is homogeneous of degree (¢ > 2), with the following property.
Let I be the ideal ofk[[ti,...,tx]] generated by the image of the maff
H2(X, B*)*—k[[t1,...,tx]], adjoint to f. Then for anyk > 2, &, extends to al-
parabolic bundle€, on X x V,, whereV}, is the closed subscheme f, defined by
the ideall @ k[[t1,...,tn]]/(t, ..., tn)*E
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