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Multidimensional Kruskal-Katona theorem™*

Boris Bukh'

Abstract

We present a generalization of a version of the Kruskal-Katona theorem due to

d
Lovéasz. A shadow of a d-tuple (S,...,Sq) € (¥)" consists of d-tuples (S],...,5%) €
X
(’I"fl 4
F C () has size |[F| = (f)d for a real number z > r, then the shadow of F has size

at least (7)) ¢

)d obtained by removing one element from each of S;. We show that if a family

Introduction

An r-uniform set family F is simply a collection of r-element sets. The shadow of F,
denoted OF, consists of all (r — 1)-element sets that can be obtained by removing an
element from a set in F. If (X, <) is an ordered sets, then A C X is colexicographically
smaller than B C X if the largest element of (AU B) \ (AN B) lies in B.

Kruskal-Katona theorem [Kru63|,[Kat68§] is a classic result in combinatorics that states
that |0F| > |0Fy|, where Fy is the initial segment of length |F| in colexicographic order
on r-tuples of some ordered set. Moreover the equality is achieved only if F is an initial
segment of such a colexicographic order. As the quantitative form of Kruskal-Katona
theorem is unwieldy, in applications one usually uses the weaker form due Lovéasz [Lov79),
Ex. 13.31(b)]: if |F| = (%) for some real number@ x>, then [0F| > (7).

In this paper we present a generalization of Lovész’s theorem to multidimensional r-
uniform families. A d-dimensional r-uniform family is a collection of d-tuples of r-element
sets. In other words, if we denote by (‘i{ ) the family of all r-element subsets of X, then

d-dimensional r-uniform family is a subset of (): )d. A shadow of such a family F C (i,{ )d
is defined to be

OF = {(S1\ {xi},...,Sq\ {zq}) : (S1,...,584) € Fyand a; € S; for i = 1,...,d}.

The special case d = 1 of the following theorem is Lovasz’s result.

*The paper is in public domain, and is not protected by copyright.
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'For real x and integer r the binomial coefficient (¥) is defined by z(z — 1)+ (z —r + 1)/rl.


http://arxiv.org/abs/1009.2375v1

d
Theorem 1. Suppose F C (‘f) s a d-dimensional r-uniform family of size

T d
r
where x > r is a real number. Then

d
T
> .
‘8]:‘ - <r — 1>

Moreover, the equality holds only if F is of the form ();1) X e X (Yrd) for some sets
Yi,....Y;C X.

The rest of the paper contains the proof of this result.

Proof

For simplicity of notation we shall assume that the ground set is [n] © {1,2,...,n}, with
the ordering on it being the standard ordering of the integers. This incurs no loss of
generality.

A k-dimensional section of a d-dimensional family F C ()f )d is the subfamily of F ob-
taining by fixing d—k coordinates. For example, for any (d—k)-tuple S = (S1,...,Sq-%) €
(X )d_k the family

T

X
r

k
Fs d:ef{(sd—k-i-lv"'vsd) € < > : (Slv"'vsd) G]:}
is a k-section of F. In general, any d — k coordinates might be fixed, not necessarily the
first d — k.

We say that a family is monotone if every 1-dimensional section is an initial segment
in the colexicographic order.

d
Lemma 2 (Proof deferred to p. Bl). For every family F C ([Z]) there is a monotone
d
family Fo C ([:‘}) of the same size as F, and such that |0Fy| < |0F)|.

By the Lemma [2]it suffices to restrict the attention to monotone families. The shadows
of monotone families are most easily described using the colexicographic ordering. That
will permits us to establish a correspondence between the d-dimensional monotone families
and subsets of N%. Let N & {1,2,...,} be the set of positive integers, and partially order
N? by

(x1,...,2q) < (Y1,-..,yq) whenever z; < y; for every i =1,...,d. (1)

A set L ¢ N% is said to be monotone if whenever z = (x1,...,2q) € L, then L contains
all the elements smaller than .



IfS e (["]) is the 7’th in the colexicographic ordering on ([Z]), then we put ind,(S) = i.

T

A tuple S = (S1,...,54) € ([Z])d is mapped to ind,(S) ¥ (ind,(S1),...,ind,(Sy)). In this
manner every F C ([?})d is associate to its image ind,(F) C N%. An extreme point of a
monotone set L C N? is a point € L such that no point in L is larger than z. The
set of extreme points of L will be denoted extr L. Monotone closure of a set L C N% is
mclos(L) = {x € N?: z <y for some y € L}. Tt is clear that L = mclos extr L.

For an integer m > 1 let K K,(m) be the size of a shadow of the initial segment of
length m in colexicographic order of ([’Z]). The Kruskal-Katona theorem states that if
F < ("), then |0F| > KK, (|F)).

T

d
Lemma 3 (Proof deferred to p.[@l). Let F C ([:f]) be a monotone family. Then its shadow
OF is also a monotone family, and

extrind,_;(0F) = KK, (extrind, (F)).

The preceding lemma permits us to forget about shadows of set families, and instead
think about images of monotone sets under K K,. However, as KK, is quite an erratic
function, our next step is to replace it by a smoother function. For an integer r > 2 put

LL<<f>) - <T ’ 1) if o > 1. (2)

Since (f) is an increasing function of x for z > r — 1, the function LL, is well-defined on
[1,00). We would like to extend LL, to [0, 1) while maintaining the inequality LL, < K K,.
Furthermore, as it will become clear below, it will be essential for LL, to be increasing,
concave and to satisfy

fz)  Fy)
i@ SV

Any extension of LL, to [0,00) satisfying these conditions is equally good for us. For

when = > y. (3)

example, one permissible extension is

1
LL.(7) = = (x — 2? ifo<az<l. 4
W= (ot e a)  oses W
Lemma 4 (Proof deferred to p.[d). The function LL, defined by [2) and {@) is a contin-
uously differentiable function that is strictly increasing, concave, and satisfies ([3)).

Put Ry = [0,00). Partially order R% according to (I)), and extend the definitions of
the terms “monotone” and “extreme point” in the obvious way. We associate to every
monotone set L C N? the set M C N% given by M = L+ [—1,0]%. Geometrically, M is set
obtaining by filling in the square lattice boxes indexed by L. The volume of M is equal
to the number of points in L. The set M so obtained is monotone. Since LL,(0) = 0 and
LL, < KK,, Lemma [3 implies that if |0F| < X for some family F C ([Zf})d, then there is
a closed monotone set M C RY for which vol(LL,(M)) < X. The Theorem [T thus follows
from the following claim.



Figure 1: The area-reducing transformation for an elongated rectangle (left), and for a
general monotone set (right).

Claim 5. Suppose f: Ry — Ry is a continuously differentiable, strictly increasing, con-
cave function satisfying @) and f(0) = 0, and define f: Ri — Ri by f(x1,...,2q) =
(f(z1),..., f(za)). Then for every closed monotone set M C R% we have

vol(f(M)) = vol(f(My))

where Mo = [0, {/vol(M)]? is the cube of the same volume as M, and one of whose vertices
is at the origin. Furthermore equality holds only if M = M.

To prove the claim we shall first establish it in the dimension d = 2, and use that to
deduce the general case. Indeed, assume that the two-dimensional case is known, d > 3,
and M is not a cube. Pick any 2-dimensional coordinate plane P. On each 2-dimensional
section of M by a plane parallel to P, replace the section of M by a square of the same
area as the area of that section. The operation yields a monotone set, and by the case
d = 2 of the claim, it reduces the volume of f(M) unless every section of M is a square.
Therefore, the only minimizer of vol(f(M)) is the cube [0, {/vol(M)]%.

So assume d = 2. To see where the condition (3] comes from consider the case where
M is a rectangle, i.e. a set of the form M = [0, X] x [0,Y], with say X > Y. In that
case, if we are to move a small amount of mass from the shorter side to the longer one,
to obtain a less elongated rectangle M* = [0, X — AX] x [0,Y + AY], then (@] is exactly
what is necessary to conclude that area(f(M*)) < area(f(M)).

The situation when M is not a rectangle is to our advantage because f is concave
and we place the mass farther from the origin than in the case when M is a rectangle.
The only complication is that we need to introduce continuous time to avoid technicalities
arising from discrete time increments.

Since M is monotone there is a decreasing function g..: Ry — Ry so that M =
{(z,y) € R : y < goo(®)}. Since M is closed, goo is left-continuous. Define g;: Ry — Ry
by

() = {900(33) + % f[t,oo) Jo(y)dy if x <t
0 if x > t.



Let M; = {(z,y) € R% : y < gi(z)}. Then area(M,;) = area(M). Differentiating

avea(f(My) = [ Flgu(a)) () da,

[0,4]
we obtain

Oarea(f(My)) / / Ogt /
P = o))+ [ ) Gt @) i

> Fa®) 0+ o) | @) f () do

[0,¢]
2 x
— Fa®)F ©) + 7 (a(®) (—%(t)f(t) R dx)

= o)1) ~ (o) 2 1) 50,

where the inequality holds since f is concave, and (Jg;/0t)f is negative (see Figure [ for
a geometric illustration of the inequality). Since J¢;/0t = —g:(t)/t, from (@) it follows
that area(f(M)) is an increasing function of ¢ as long as g;(t) < t.

Let T = (/area(M). Since area(M;) > tg:(t), it follows that g; < t for every ¢t > T.
Thus area(f(Mr)) < area(f(M)), with equality only if M C [0,7] x R4. Since gr(z) <
gootarea(M)/T it follows that if M C Ry x[0,Y], then My C [0,T]x[0,Y 4area(M)/T] =
[0,7] x [0,Y + T]. Reversing the roles of z and y axes, and applying the argument to
M, it follows that for every closed monotone set M C Ri there is a compact monotone
set M’ C 0,277 x [0,T] for which area(f(M')) < area(f(M)) with equality holding only
for M = [0,T]%. Since the space of compact monotone subset of [0,27] x [0,7] endowed
with Hausdorff distance is a compact space, and area(f(-)) is a continuous function on the
space, it follows that [0, 7]? is a unique set minimizing this function. This completes the
proof of the Claim [B]in the case d = 2.

Deferred lemmas

Proof of Lemmald. For the duration of this proof define the weight of F C ([’;])d to be
Y serllind,.(F)|1, where ||(my,...,mq)|l1 = m1 + -+ mq. We may assume that F has
smallest weight among families of size |F| and whose shadow does not exceed |0F].
Suppose some 1-dimensional section of F is not an initial segment of the colexicographic
order. Without loss of generality we may assume that the section is of the form Fg for
some S. Define a compression operator A: 2([:]) — 2([?]) which takes F C ([:f}) to the
initial segment of ([Zf}) in the colexicographic order. One can write F as a disjoint union

of its 1-dimensional sections as

F= | {s}xFs.

se(ihy*!

T
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Define
F= |J {s}xAFs.
se(iy*!

T

d—
We claim that |0F'| < |0F|. Indeed, let S’ € (T[f]l) " e arbitrary, and consider the
d—
section (OF")g. The section has at least ¢ elements if and only if there is a S € ([?}) '

such that " € 9S and KK, (|Fs|) > t. Hence, if [(OF")s/| > t, then by the classical
Kruskal-Katona inequality |(OF)g/| > t. Since the inequality holds for every S’, it follows
that

0Fl= > (0Fsg = >, (0F)s =|0F]
Sle(r-[ﬁ]l)d71 Sle(r[ﬁ]l)d71
Since the weight of F' is less than that of F, this contradicts the choice of F. O

Proof of Lemma[3. First we establish that F is monotone. Suppose S = (S1,S2,...,S54) €
OF and S precedes S; in colexicographic order. There is an S = (5,...,5;) € F so
that S € 0S. Since shadow of an initial segment of colexicographic order is an initial
segment of colexicographic order, there is an 5'{ € ([:f}) so that 5'{ precedes S; in the
order, and S} € dS]. Thus (S}, Ss,...,54) € 9(S},S2,...,S4) C OF. This shows that
the 1-dimensional section (0F)g,,.. s, of OF is monotone. Since ordering of coordinates
is arbitrary, it follows every 1-dimensional section of F is monotone, i.e. F is monotone.
From the definition of KK, it follows that maxind,_1(0Fy) = KK,(|F|p) whenever
Fo is the initial segment of ([Zf]) in the colexicographic order. The second claim of the
Lemma is then again a consequence of the fact that an image of an initial segment of

colexicographical order on ([Zf]) is an initial segment on (T[f] ) O

Proof of Lemma[j. It is clear that the function defined by (2)) is a continuous monotone
increasing function. The concavity of LL, on (1,00) follows from a simple derivative
calculation: Indeed, for x > r

from which it is clear that LL! is decreasing on (1,00). Moreover this expression for LL!

OV () e
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imply that

L. () 1

(@) e (et )

Since (x —r +1)/(z —t) is a decreasing function of x for every ¢t < r — 1, it follows that

o ()

is increasing, i.e. LL, satisfies ([B]) on (1,00).
()

Since x — x

2 is concave, the function given by (@) is concave on [0,1). For brevity of

notation put ¢ & > i1 1/i. Monotonicity of LL, on [0, 1) follows from ¢ < 1. Furthermore,
for x € [0,1) we have
LL.(x)  14€(1—2x) 1+e

xLLr(lﬂ) _:E:E—I—e(az—a:?) T 14l —a)

from which we see that LL, satisfies (8]) on [0, 1). Finally, it is easy to check that at x = 1
the function LL,(x) is continuous and the left and right derivatives agree. O

Concluding remarks

For us the original motivation for the study of shadows of d-dimensional families was
in their application to convexity spaces, and Eckhoff’s conjecture[Bukl10]. For that ap-
plication the Theorem [ sufficed. However, it would be interesting to find the sharp
multidimensional generalization of Kruskal-Katona theorem.

It is worth noting that the argument given in this paper is largely insensitive to the
poset structure of 2%. The only input it uses is the one-dimensional Kruskal-Katona
theorem. First, Lemma [2] is a direct consequence of the fact in the Kruskal-Katona
theorem the equality is attained only for an initial segment of a certain linear order.
Secondly, a weaker quantitative form of the Kruskal-Katona theorem is used to construct
in Lemma (4] a continuous function to which Claim [B] applies.
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