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Abstract

We present the elements of a new approach to the foundations of quantum theory and information theory which is
based on the algebraic approach to integration, information geometry, and maximum relative entropy methods. It
enables us to deal with conceptual and mathematical problems of quantum theory without any appeal to Hilbert
space framework and without frequentist or subjective interpretation of probability.

PACS: 89.70.Cf 02.50.Cw 03.67.-a 03.65.-w

1 Introduction

The notion of information, quantified by entropy, is usually defined using the notion of probability [39]. But Ingarden
and Urbanik [25] showed that the notion of information is independent of the notion of probability, and that the
latter can be defined by the former. Moreover, probability theory can be considered as a special case of quantum
theory [37]. So, what is the relationship between information theory and quantum theory? Considering information
theory as more fundamental than quantum theory requires founding it independently of the notion of probability, and
equipping it with the dynamical structures sufficient to recover dynamics of quantum theoretic models.

We define the quantitative inductive inference theory as a theory of information dynamics, independent of prob-
ability theory.1 This calls for an independent mathematical formulation of information kinematics and information
dynamics, equipped with an independent semantic justification. We replace the information kinematics based on
probability measures on commutative countably additive algebras of subsets of a given space by one based on spaces
of finite integrals on abstract commutative or non-commutative algebras. This change has two reasons: (1) the
conflict between the Bayes–Laplace (BL) [32] and the Borel–Kolmogorov (BK) [6], [29] approaches to mathematical
foundations of the probability theory can be resolved by the Huygens–Whittle (HW) [24], [43] approach, which is
based on the Daniell–Stone (DS) [15], [41] theory of integrals on commutative algebras; (2) the analogous approach
to mathematical foundations of quantum theory, provided in terms of integrals (normal algebraic states) on non-
commutative W ∗-algebras avoids several important problems of Hilbert space based approach, including the problem
of representation-dependent separation of the Hilbert space vectors into amplitudes and phases that has troubled the
attempts to consider the Hilbert space approach to quantum theory as an extension of probability theory. Next we
find an information theoretic justification for a unique choice of the measure of relative information distance. This
way we derive the constrained maximum relative entropy updating as a unique method of quantitative inductive
inference. Previous derivations of uniqueness, based on the work of Shore and Johnson [40], are dependent on the
notion of probability which in turn requires its own additional semantic derivation, e.g. following [11], and they do
not extend to non-commutative case. Our derivation does not refer to the notion of probability, but is instead based
on the information geometry on the mathematical level and on the information semantics on the conceptual level. We
define the information dynamics as a mapping on the space of finite integrals provided by the constrained maximi-
sation of relative entropy. According to information semantics, the spaces of finite integrals (models of information),
represent quantified knowledge, the entropic updating (dynamics of information models) represents quantitative in-
ductive inference, while the underlying algebra represents an abstract qualitative language subjected to quantitative
evaluation.

Finally, we apply this framework to the spaces of integrals on integrable non-commutative algebras (that is, to
the spaces N+

∗ of normal finite positive linear functionals on W ∗-algebras), recovering and generalising the existing
settings of quantum theory. In [30] we derive the ordinary description of temporal behaviour of quantum theoretic
models specified by the perturbations of generators of unitary dynamics from the entropic updating, using the Tomita–
Takesaki theory. This way we show that the quantum theory in its ordinary setting is nothing else than a particular

∗kostecki@fuw.edu.pl
1In general, by inductive inference we understand some form of inductive logical reasoning, as opposed to deductive logical reasoning.

The latter specifes premises by the valuations of sentences in truth values, and provides an inference procedure which is considered to lead
to certain conclusion on the base of given premises. The former specifes premises by the valuations of sentences in possible (plausible)
values and provides an inference procedure which is considered to lead to most possible (most plausible) conclusions on the base of given
premises. An example of inductive inference procedure is any statistical reasoning based on probabilities.
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case of quantitative inductive inference (information dynamics). This closely follows the ideas of Jaynes on the
character of quantum theory and the ideas of Ingarden on the foundational role of the information theory and
information geometry in quantum theory. As opposed to existing ‘objective bayesian’ (e.g., [46], [9]) and ‘subjective
bayesian’ (e.g., [17], [20]) derivations and/or interpretations of elements of the formalism of quantum theory, our
derivation is completely independent of the notions and semantics of probability and Hilbert spaces, as well as of
the choice of a particular Hilbert space representation. Our approach to foundations of quantum theory replaces the
use of geometry of commutative L2 spaces (which quantitatively represent the abstract Hilbert spaces) by the use of
information geometry of non-commutative Lp spaces (which quantitatively represent the abstract N+

∗ spaces). Hence,
specification of quantitative results of experimental procedures in terms of the semispectral measures within a fixed
Hilbert space representation of the chosen operator algebra is replaced by the specification in terms of algebraic states
and their non-commutative Lp space representations, while the description of temporal behaviour of these quantitative
results in terms of unitary or completely positive mappings is replaced by the constrained relative entropic updating
of algebraic states. This procedure is described in terms of information geometry as a non-linear projection. Its
constraints, specified by nonempty closed convex sets of non-commutative Lp spaces, define the domain of this
projection. Quantum information channels become replaced by the (algebraic) quantum histories of constrained
updatings [30]. As opposed to the ordinary settings of quantum information and algebraic quantum theories, our
approach can be directly used to construct ‘interacting’ (predictive, experimentally verifiable) models of quantum
field theory. This way it provides the extension of the approaches of Jaynes and Ingarden, who showed that statistical
mechanics and thermodynamics can be derived as particular instances of probability (or information) theory.

This paper is only a brief introduction to the more detailed discussion provided in the series of papers [30]. Due
to restrictions of the size of the present paper, the exposition and references were abridged.

2 The foundations of information theory

The BL and BK approaches to probability theory can be viewed as extreme cases of an application of two competing
principles: evaluational (kinematical) and relational (dynamical). The notion of probability in BL approach is specified
by the conditional probability map B ∋ A 7→ p(A|I) ∈ [0, 1], which assigns a quantitative value to an element
(‘statement’) of a Boole or Heyting algebra B under condition that the reference statement I ∈ B is true. This
notion is essentially relational, and it is justified by an appeal to relational frameworks, such as Bayes’ rule, de
Finetti’s type derivations (c.f. [20]), or the Cox’s type derivations [11]. The notion of probability in BK approach
is specified by the probability measure on the countably additive algebra of subset of a given space. This notion is
essentially evaluational, and it is justified by an appeal to the evaluational framework provided by measure theory.
The HW approach [43] to the foundations of probability theory is based on probabilistic expectations and conditional
expectations on commutative algebras. For a given space X the linear lattice is defined as a commutative algebra C
such that:

i) it is a subspace of a space of functions f : X → R ∪ {∞},

ii) f ∈ C ⇒ |f | ∈ C,

iii) (f ≡ const) ∈ C,

while the DS integral is defined as a map ω : C → R that is positive, linear, and monotone (ω(inf(un)) = inf(ω(un))
for every convergent monotone sequence {un} with inf un ∈ C). When normalised, ω satisfies all properties of the
probabilistic expectation. The conditional expectation is then defined as a function Eω(·|g) ∈ C such that

ω((f − Eω(f |g))h(g)) = 0 ∀f ∈ C ∀h : R → R,

where h(g) ∈ C. Eω defines uniquely the ‘updated’ (conditioned) expectation by

ω 7→ ωnew := ω(·|Eω) := ω ◦ Eω.

The probability and conditional probability are defined, respectively, by p(A) := ω(χA) and p(A|B) := ω(χA|χB),
where χA(x) is a characteristic function on the (finitely or countably) additive algebra. The DS and the Radon–
Bourbaki integration theories are equivalent. The setting of BK (resp., BL) approach is recovered by restriction to
the evaluational (resp., relational) component, via expectations (resp., conditioned expectations) on χA’s on countably
(resp., finitely) additive algebras. The HW approach treats both components as equally fundamental.

This shows that the DS integration theory on commutative algebras is an appropriate candidate for the mathe-
matical framework of information theory built without reference to the notion of probability. However, the DS theory
lacks the relational notions, and there is also an important disproportion between the kinematic and dynamic struc-
tures of HW approach: while the expectation is a normalised canonical DS integral, the definition of a conditional
expectation is not canonical. If ω(f2) < ∞, then the latter is equivalent with

Eω(f |g) := arg inf
fe∈C

ω((f − fe(f, g))
2),
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but there is still no justification given of a choice of such functional. Considering the updating [ω, f ] 7→ [ω ◦ Eω(·|g), f ]
instead of [ω, f ] 7→ [ω, Eω(f |g)] makes us wonder to what extent the definition of a map ω 7→ ωnew can be generalized or
changed and under which conditions this new map can be unique. We consider the space M+ of all finite DS integrals
as a framework for the kinematics of models of commutative information dynamics theory. In order to propose a
general framework for dynamics of this theory, we have to replace the relational component of HW approach by
minimisation of some uniquely characterised functional on M+.

This is possible for the functionals of the relative distance between the integrals, implemented by the deviation
maps

D : M+ ×M+ ∈ (ω, φ) 7→ D(ω, φ) ∈ [0,+∞)

such that D(ω, φ) ≥ 0 and D(ω, φ) = 0 iff ω = φ. Deviation is one of two founding notions of the information
geometry theory [1], [2]. The second is the structure of the differential manifold that is imposed on M+ by the local
coordinate systems given by embeddings into appropriate Banach spaces (in general, LΦ1 Orlicz spaces for γ ∈ {0, 1}
and L1/γ spaces for γ ∈ (0, 1)), see [1], [36], [47], [21]. We will use the framework of information geometry to select
a unique deviation functional. By convenience, we will pass on description in terms of measures. Eguchi showed, for
dimX < ∞, that any deviation that is symmetric in first derivatives and has a negative definite hessian determines
uniquely (up to a scalar factor) the riemannian metric and a pair of two affine connections on M+, defined by

gµ(u, v) := −(∂u)µ(∂v)µD(ν, µ)|ν=µ,
gµ(u∇µv, w) := −(∂u)µ(∂v)µ(∂w)νD(ν, µ)|ν=µ,
gµ(v, u∇∗

µw) := −(∂u)ν(∂w)ν(∂v)µD(ν, µ)|ν=µ.

If the torsion and Riemann curvature tensors of both these connections are equal to zero, then (M+, g,∇,∇∗) is
called a dually flat manifold and there exists a pair (θ, η) of coordinate systems on M+, called dually flat coordinates,
such that θ consist of ∇-geodesics, while η consists of ∇∗-geodesics. They are called orthogonal at q ∈ M+ iff

gq((∂θ)q, (∂η)q) =: [θ(η), η(q)] = 0.

A point pQ ∈ Q ⊂ M+ is called a ∇-projection of p ∈ M+ iff the ∇-geodesic connecting p and pQ is orthogonal to
Q w.r.t. g, while Q ⊂ M is called ∇-convex iff ∀p1, p2 ∈ Q ∃! ∇-geodesic connecting p1 and p2 and entirely included
in Q. If Q is a ∇∗-convex closed set then the unique ∇-projection of p ∈ M+ on Q is given by [1]

Q ∋ pQ = arg inf
q∈Q

D(p, q).

Hence, the dual flatness of the geometry of M+ is a necessary condition for the existence of the unique ∇-projections
on the ∇∗-convex subspaces provided by the minimum of the deviation functional. Let P (p) be a probability measure
on M+, let ℓ be some coordinate map on M+, and let

P (p).f(p) :=

∫

p∈M+

P (p)f(p).

Define a (D,P )-optimal estimate w.r.t. Q ⊂ M+ as

arg inf
q∈Q

P (p).D(p, q) =: qe,Q ∈ Q,

a (D,P )-ideal estimate as (D,P )-optimal estimate w.r.t. M+, and an (ℓ, P )-average of p as

ℓ−1(P (p).ℓ(p)) =: 〈p〉ℓP ∈ M+.

If M+ is dually flat and if (ℓ, ℓ∗) are its dually flat coordinates, then (D,P )-ideal estimate is equal to (ℓ, P )-average
[47], [19]. Moreover, if D satisfies the generalised cosine equation

D(p1, p2) +D(p2, p3)−D(p1, p3) = [ℓ(p1)− ℓ(p2), ℓ
∗(p3)− ℓ∗(p2)],

then the error decomposition theorem

P (p).D(p, q) = P (p).D(p, 〈p〉ℓP ) +D(〈p〉ℓP , q)

holds. Zhu and Rohwer [47] proved this for the family of γ-deviations, defined by [47]

−Sγ(µ, ν) := Dγ(µ, ν) :=

∫ (
µ

1− γ
+

ν

γ
−

µγν1−γ

γ(1− γ)

)

for γ ∈ (0, 1) and by

−SKL(µ, ν) := D1(µ, ν) :=

∫ (
ν + µ+ µ log

(µ
ν

))
= D0(ν, µ)
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for γ ∈ {0, 1}, with the corresponding dually flat coordinates given by Amari γ-embeddings

ℓγ : M+ 7→ ωγ/γ ∈ L1/γ

and ℓ∗ = ℓ1−γ for γ ∈ (0, 1). The setting of [19] enables to generalise this proof to the family of Bregman deviations
[7], characterised as deviations satisfying the generalised cosine equation and generating the dually flat geometry
[2]. The family of Csiszár deviations [12] is characterised by nonincreasing under the information loss provided by
partitioning of the space X and invariance under permutations of partitions [13]. Csiszár [14] showed that SKL are
the only deviations on P := M+ ∩ {ω|ω(I) = 1} that are both Csiszár and Bregman deviations. Amari [3] showed
that Dγ are the only deviations on M+ satisfying this condition.

This allows us to propose an information theoretic characterisation of the family Dγ on M+ for γ ∈ [0, 1] (and SKL

on P) based on three conditions: nonincreasing under the loss of information, existence of the unique minimisers for
the projections on the nonempty closed convex subspaces, and existence of ideal and optimal estimates that satisfy
the error decomposition theorem. On the base of this characterisation, we propose a new approach unifying the
probability and information theories in one information dynamics theory. Its evaluational component is given by the
finite DS integrals. Its relational component is given by the constrained maximum relative γ-entropy updating rule,
defined as a map between two finite DS integrals

M+ ∋ p 7→ pnew := arg inf
q∈Q

{∫

p′∈M+

E(p′)Dγ(p
′, q) + F (q)

}
∈ M+,

where E is a finite integral on M+, while F : Q → (−∞,+∞] is a constraining function. This map provides a selection
of γ-optimal estimates w.r.t. Q that are weighted by E and satisfy the constraints F . If F is lower semicontinuous
and (1 − γ)-convex, if E(p′) = δ(p − p′), and if the above infimum is finite, then the updating procedure selects a
unique pnew.

Differences between γ-ideal estimates appear only in the third order of expansion of Dγ . Up to the second
order all Dγ are determined by the same riemannian metric, and the inferences based on Dγ on M+ agree with
the inferences based on the Hilbert space L2 norm (the D1/2-estimates). The latter is useful, because the L2 space
always contains the 1/2-ideal estimates, hence the problem of ‘best’ estimation always has a solution, as opposed to
arbitrary γ-optimal estimates when restricted to arbitrary subspaces of M+. Beyond the second order, the use of
the L2 space and its norm is not justified. Moreover, the projections in Hilbert space are linear operators, hence
they can deal only with linear problems (constraints), as opposed to nonlinear γ-projections onto convex subspaces
of L1/γ spaces. The constrained relative γ-entropy updating incorporates all Hilbert space methods as a special
case. Under restriction to P , the only justified method of inference is given by constrained maximisation of SKL.
This solves the problem of the relationship between information and probability, made explicit by [25] and widely
present in [26] and [27]. The probability theory is just a restriction of the information dynamics theory and requires no
additional justification. The HW approach is recovered by the fact [5] that conditional expectations are characterised as
minimisers Eω(f |g) := arg infg∈C ω(DB(f, g)) for Bregman deviations DB, the BK approach is recovered by forgetting
the relational component, and passing to probabilistic measures, while the BL approach is recovered by normalisation
and by the fact [45] that the Bayes rule is just a special case of the entropic updating rule with Dirac’s delta constraints.

3 The foundations of quantum theory

An algebraic approach to the mathematical framework of quantum theory [38] replaces the consideration of abstract
Hilbert space by the consideration of abstract C∗-algebra, which is a Banach space A over C equipped with a map
∗ : A → A such that (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗, (λa)∗ = λ̄a∗, (a∗)∗ = a, ||a∗|| = ||a||, ||ab|| ≤ ||a||||b||,
||I|| = 1, and ||a∗a|| = ||a||2. An algebraic state is a functional ω : A → C that is linear, positive and normalised.
A functional ω on A is called normal iff ω(supF) = supa∈F ω(a) for every directed filter F ⊂ A with the upper
bound supF . A W ∗-algebra is defined as such C∗-algebra N which is a Banach dual to some Banach space N∗.
This algebra directly generalises the notion of an ‘integrable’ commutative algebra (a linear lattice in the DS theory)
to the non-commutative case. The space N∗ is a space of all normal functionals on a W ∗-algebra N . The spaces
N+

∗ =: N∗ ∩ {ω|ω(A∗A) ≥ 0} (resp., the spaces N+
∗1 of normal algebraic states) on N generalise the spaces M+

of finite (resp., the spaces P of normalised) DS integrals on C. For any pair of a C∗-algebra A and linear, positive
functional ω on A, the Gel’fand–Năımark–Segal (GNS) theorem associates a unique Hilbert space Hω and a unique
(up to unitary equivalence) representation πω : A → B(Hω) such that ∃Ωω ∈ Hω that is cyclic for πω(A), ||Ωω||2 = 1,
and ω(A) = 〈Ωω, πω(A)Ωω〉ω ∀A ∈ A. This theorem enables to recover the Hilbert space based framework from the
non-commutative generalisation of DS theory. The evaluation of tr(ρ·) on B(H) and the evaluation of probability
measure tr(ρE(·)) on spectrum of a given operator are replaced by acting with ω(·) ∈ N+

∗ on N . Because semispectral
measures E(·) no longer define the probabilistic evaluations, the von Neumann’s spectral theorem loses its importance,
and the associated problems of the uniqueness and contextuality of definition of operators corresponding to particular
quantitative experimental results and descriptions [8] disappear. The only meaning of elements of W ∗-algebras is:
they are the statements of an abstract language subjected to quantitative evaluation.
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Now we need to equip this general setting with the information geometric and dynamical structures. Falcone and
Takesaki [18] formulated the canonical theory of non-commutative Lp(N ) spaces on von Neumann algebras N (i.e.,
on the concrete instances of abstract W ∗-algebras). The equivalence relation

(x, ω) ∼t (y, φ) ⇐⇒ y = x[Dω : Dφ]t

defines the space
N (t) := N ×N+

∗0/ ∼t,

where N+
∗0 := N+

∗ ∩ {ω|ω(A∗A) = 0 ⇒ A = 0}, and [Dω : Dφ]t is Connes’ cocycle (a non-commutative generalisation
of the Radon–Nikodým derivative). The elements of N (t) are denoted by xωit. The action of an algebra of sections

x̃ : R ∋ t 7→ x(t)ωit ∈
∏

t∈R
N (t) on a Hilbert space H̃ (which is defined by a suitable equivalence relation involving N

and N+
∗ ), defines the core von Neumann algebra Ñ . The definitions of Ñ and H̃ do not depend on the choice of ω, and

the assigment N → Ñ is functorial. The core Ñ is equipped with a canonical trace τ : Ñ → [0,+∞]. The algebraic
structure of Lp(N ) is defined as a space of all closed densely defined positive τ -measurable operators A affiliated with

Ñ such that θs(A) = e−s/pA, where θs(xω
it) := e−istxωit. Authors of [18] define the integral

∫
: L1(N ) → C such

that, in particular,
∫
xω = ω(x) ∈ C. This integral is meaningful also for such formulas like

∫
ωityφγϕαabc, as long

as the powers of functionals sum up to 1. The bilinear map [x, T ] :=
∫
xT gives the pairing between N and L1(N )

which identifies L1(N ) with N∗. The duality for S ∈ Lp(N ), T ∈ Lq(N ), 1/p+ 1/q = 1, reads [S, T ] =
∫
ST . The

analytic structure of Lp(N ) is defined by the Banach norm ||T ||p := (
∫
|T |p)1/p.

Our novel result is a generalisation of quantum information geometric structures which are based on Falcone–
Takesaki theory. In analogy with [47], we define the quantum γ-embeddings (γ-coordinates) by

ℓγ : N+
∗ ∋ ω 7→ ℓγ(ω) := ωγ/γ ∈ L1/γ(N ),

and define the quantum relative γ-deviation Dγ : N+
∗ ×N+

∗ ∋ (ω, φ) 7→ Dγ(ω, φ) ∈ R by

Dγ(ω, φ) := Re

∫ (
ω

1− γ
+

φ

γ
− ℓγ(ω)ℓ1−γ(φ)

)
= Re

∫ (
ω

1− γ
+

φ

γ
−

ωγφ1−γ

γ(1− γ)

)
,

for γ ∈ (0, 1), and by the limits under integral sign for γ ∈ {0, 1}. The quantum relative γ-entropy is defined as
Sγ(ω, φ) := −Dγ(ω, φ), and −S(φ, ω) := D0(ω, φ) = D1(φ, ω). This definition reduces to the Jenčová–Ojima [28],

[34] quantum γ-deviation for any particular choice of unitary representation of action of Ñ on H̃ in terms of action
of N ⋊σω R on Hω ⊗ L2(R, dt), to the Umegaki–Araki quantum relative entropy [42], [4] in the Petz [35] form
limt→+0

i
tφ([Dω : Dφ]t − I) for ω, φ ∈ N+

∗1, to the Hasegawa quantum γ-deviation [23] tr(ρφ − ργωρ
1−γ
φ )/(γ − γ2)

for ω = tr(ρω·) and φ = tr(ρφ·), and the Zhu–Rohwer γ-deviation Dγ in commutative case. We generalise the
γ-representation of tangent spaces to

TωN
+
∗ ∋ v 7→ ℓγ

∗(ω)(v) := xφγ ∈ TωγL1/γ(N ),

where

TωL1/γ(N ) := {xφγ ∈ L1/γ(N )|Re

∫
ω1−γxφγ = 0} = {xφγ ∈ L1/γ |Reω([Dω : Dφ]iγ(x)) = 0}.

In the special cases, this definition reduces to those given in [28], [22], and [21]. It allows us to define a quantum
γ-metric and a quantum γ-connection for u, v, w ∈ N+

∗ as

gγω(u, v) := Re

∫
ℓγ
∗(ω)(u)ℓ

1−γ
∗(ω)(v) = Re

∫
ω1−γxωγy ∈ R

and
∇γ

ω(u, v)w := (γ − α)ω1−3αℓα∗(ω)(u)ℓ
α
∗(ω)(v)ℓ

α
∗(ω)(w) = (γ − α)ω1−3αxωαyωαzωα ∈ N+

∗ ,

generalising the Wigner–Yanase–Dyson γ-metric [44], [23] and quantum γ-connections of [22], respectively.
The properties of Dγ are the same as in [28]. For γ ∈ (0, 1), Dγ is both Petz’ f -deviation [35] (which is a

non-commutative generalisation of Csiszár’s deviation) and the Jenčová deviation [28] (which is a non-commutative
generalisation of Bregman’s deviation). Dγ (resp., S) is convex and lower semicontinuous on the space N+

∗ × N+
∗0

(resp., N+
∗ × N+

∗ ) endowed with the product of norm topologies (resp., the topology of pointwise convergence on
N∗ [33]). If Q ⊂ N+

∗ is weakly closed and convex in terms of the γ-coordinates, then ∃! projection N+
∗ ∋ ω 7→

ωQ = arg infφ∈Q D1−γ(ω, φ) ∈ Q. The space L2(N ) equipped with the inner product 〈S, T 〉 :=
∫
T ∗S is a Hilbert

space that can be identified with the GNS Hilbert space Hω for any choice of ω ∈ N+
∗ , with 1/2-deviation taking the

form D1/2(x, y) = 1
2 ||x− y||2. The 1/2-projection is a minimiser of the Hilbert space norm. Hence, we recover all

Hilbert space geometry as a special case of quantum information geometry. Following Amari’s and Csiszár’s results,
we conjecture that Dγ (resp., S) is a unique deviation on N+

∗ (resp., N+
∗1) that belongs to both Jenčová and Petz

families of quantum deviations. Using Bauer’s maximisation principle and the results in [33] and [28], we conclude
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that if Q is a nonempty (1−γ)-convex weakly closed subspace of N+
∗ , ω ∈ N+

∗ , and F : Q → (−∞,+∞] is a weakly-*
lower semicontinuous (1 − γ)-convex function, then ∃! arg infφ∈Q{Dγ(ω, φ) + F (φ)} =: ωQ,F if this infimum is finite.

We define the quantum constrained maximum relative γ-entropy updating rule by

N+
∗ ∋ ω 7→ arg inf

φ∈Q⊂N
+
∗

{∫

ϕ∈N
+
∗

E(ϕ)Dγ(ϕ, φ) + F (φ)

}
∈ N ∗

+, (1)

for the Borel measure E on N+
∗ , and constraints given by convex weak-* lower semicontinuous F : Q →]−∞,+∞],

which guarantees the existence and uniqueness of the result of this updating when this infimum takes a finite value
and if E(ϕ) = δ(ϕ − ω). This rule equips the evaluational theory of integrals on non-commutative algebras with
the relational (dynamical) counterpart, which provides a selection of γ-optimal estimates that are weighted by E,
relative to Q, and constrained by F . This generalises and replaces the Hilbert space approach. The Hilbert spaces are
replaced by the convex subspaces of non-commutative Lγ spaces used as the codomain of embeddings of the functionals
ω ∈ N+

∗ . If the constraints F (φ) = c(t) depend on ‘time’ parameter t (discrete or continuous), then the resulting
trajectory on quantum information manifold can be understood as a dynamics of quantum states, which is non-linear
and non-unitary. Interpretation of these spaces as a general framework for nonlinear quantum theoretic models and
interpretation of the above updating rule as a general description of their nonlinear temporal behaviour (quantum
dynamics) opens new perspectives for the foundations and applications of quantum theory. If Petz’s deviation and
Jenčová’s deviation can be equipped with the characterisation analogous to the characterisation of Csiszár’s deviation
and Bregman’s deviation, respectively, and if our conjecture holds, then the choice of deviation Dγ and the choice
of dynamical rule (1) as a principle of inference has a justification based on simple information theoretic postulates,
providing a concrete reply to requests of [20] and [10]. This way quantum theory becomes a theory of quantitative
intersubjective inductive inference provided w.r.t. the qualitative abstract language of non-commutative algebras.
The constraints of this inductive logic are imposed by the intersubjective decisions of choice of γ, Q, E and F when
applied to some particular experimental situations and procedures.

On the conceptual level, our approach strips quantum theory, information theory and probability theory from any
ontological assumptions. An abstract algebra N subjected to quantitative evaluation (integration) is understood as
a qualitative abstract language used as a common reference in an intersubjective communication. The finite integrals
of N+

∗ are just the carriers of quantitative intersubjective knowledge. The quantitative information models formed by
the choices of Q and E (in particular, an ‘initial state’ ω) as well as the quantitative dynamical models formed by the
additional choices of γ and F (in particular, an ‘actual history’ F (t)) are just the results of intersubjective agreement
with respect to the method of processing the quantitative results and descriptions of some experimental procedures.
The ontological interpretations of quantum theoretic formalism as well as the internal problems of these interpretations,
usually introduced by the use of such terms as ‘matter’, ‘fields’, ‘particles’, ‘quantum objects’, ‘randomness’, ‘universe’,
‘nature’, etc., are completely irrelevant for this framework. As follows from the above formulation, quantum theory
is just a particular instance of intersubjective quantitative inductive inference (information dynamics) theory, and
nothing else.
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[32] de Laplace P.-S., 1812, Théorie analytique des probabilités, Courcier, Paris.
[33] Ohya M., Petz D., 1993, Quantum entropy and its use, Springer, Berlin.
[34] Ojima I. 2004, Temperature as order parameter of broken scale invariance, Publ. Res. Inst. Math. Sci. Kyōto Univ. 40,
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