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Abstract

Penrose’s work [6] established a connection between the edge 3-
colorings of cubic planar graphs and tensor algebras. We exploit this
point of view in order to get algebraic representations of the category
of cubic graphs with free ends.

keywords: 3-colorings of cubic planar graphs, tensor algebras, Penrose
invariant, monoidal categories.
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1 Introduction

Although it first appeared as a simple geometric curiosity the Four Color
Problem became one of the most important fields of research in discrete
mathematics linking several areas and having dozens of equivalent formula-
tions.

The original statement said the following:

Theorem 1 (4-CT) Every planar map can be colored using no more than
four colors in such a way that no pair of adjacent regions receive the same
color.

Avoiding the rigorous definitions of map, region or adjacent regions, this
result can be given an equivalent but simpler statement:

Theorem 2 Every planar simple graph can be colored using no more than
four colors in such a way that no pair of adjacent vertices receive the same
color.

We say that a graph with such a coloring is a 4-colorable graph or it has
a (vertex) 4-coloring.

Since any simple planar graph can be embedded in the graph (i.e. the 1-
skeleton) of a triangulation of the sphere, the 4-Color Theorem is equivalent
to the following theorem:

Theorem 3 The graph of any sphere triangulation is 4-colorable or has a
loop edge.

Now regarding a 4-coloring φ on the graph of a sphere triangulation T as
a 0-cochain in the simplicial cohomology of T with coefficients in the field of
order 4, F4, its coboundary δφ gives a 3-coloring on the edges (with colors
in F4 \ {0}) such that, for any face f of T , the three edges e1, e2 and e3 of
its boundary receive different colors (the only way to have δφ(e1) + δφ(e2) +
δφ(e3) = δφ(∂f) = 0 with δφ(ei) ∈ F4 \ {0}). Note that, since F4 is a field of
characteristic 2, it does not matter what order the simplices (faces, edges or
vertices) of T have.

On the other hand if we have a 3-coloring ψ on the edges of the triangu-
lation T assigning different colors to the three edges of the boundary of any
face of T , then ψ can be regarded as a closed 1-cochain. Thus ψ should be
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the coboundary of some 0-cochain φ which would be a (vertex) 4-coloring of
the triangulation T .

This proves a result due to Tait that says that the Four Color Theorem
is equivalent to the following proposition:

Theorem 4 Every planar bridgeless cubic graph is edge 3-colorable.

A cubic graph is a graph where each vertex is adjacent to three edges.
If a cubic graph is planar then it is the dual graph of a triangulation of a
sphere. A graph is bridgeless if there is no edge that after being removed
increases the number of the connected components. A planar cubic graph is
bridgeless if and only if it is the dual graph of a triangulation without loops
of a sphere.

Much of the research in this area focuses mainly on the Tait version of the
Four Color Theorem. The references [7, 8] provied a good overview about
the Four Color Theorem and its ramifications.

2 Category of cubic graphs (with free ends)

It is possible to study the edge 3-colorings of cubic graphs by introducing a
category of cubic graphs with free ends.

Consider the following (monoidal) category CG. The objects of CG are
the non-negative integer numbers and a morphism from m to n is a regular
immersion of a cubic graph with m+ n free ends in the strip R× [0, 1] such
that the free ends are placed at the points (1, 1), ... ,(m, 1) and (1, 0), ...
,(n, 0) (see the next figure).
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To simplify the treatment we consider piecewise linear immersions rather
than smooth immersions.

The composition in this category is defined in the following way. Given
two morphisms g1 : l → m and g2 : m → n then their composition g2g1 :
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l → n would be the immersion g(f(g1) ∪ g2) where f(x, y) = (x, y + 1) and
g(x, y) = (x, y/2) (see the next figure)1.

g1 =
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This category places the same role for cubic graphs as the category of
the tangles is for links and like the latter it has a monoidal structure. Given
two morphisms g1 : k → l and g2 : m→ n we get a new morphism g1 ⊗ g2 :
k + m → l + n by putting the two graph immersions side by side (see the
next figure).

g1 =
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It is easy to see that with these two operations the category CG is gener-
ated by the following morphisms:

1 2

∩ : 0→ 2 , ∪ : 2→ 0 1 2

1

1 2

. λ : 1→ 2 , y : 2→ 1
1

1

2

.

1

1

2

2

x : 2→ 2 and I := id1 : 1→ 1
1

1

There are some relations that these generators should satisfy:

(∪ ⊗ I)(I ⊗ ∩) = I = (I ⊗ ∪)(∩ ⊗ I) = =

(x⊗ I)(I ⊗ ∩) = (I ⊗ x)(∩ ⊗ I) =

∪x = ∪ =

1In this paper, the downward direction composition is used, some authors use the
opposite direction.
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xx = I ⊗ I =

(I ⊗ x)(x⊗ I)(I ⊗ x) = (x⊗ I)(I ⊗ x)(x⊗ I) =

(λ⊗ I)∩ = I = (I ⊗ λ) ∩
.

=
.

(y ⊗ I)(I ⊗ ∩) = λ = (I ⊗ y)(∩⊗ I)
.

=
.

=
.

(x⊗ I)(I ⊗ λ)x = (I ⊗ x)(λ⊗ I)
.

= .

Besides these relations, as a strict monoidal category, CG should satisfy
the following equality:

Given two morphisms f : k → l and g : m→ n

f ⊗ g = (f ⊗ idn)(idk ⊗ g) = (idl ⊗ g)(f ⊗ idm)

As a consequence of this identity and the previous relations we have that
this representation is invariant under ambient isotopies.

If we drop the generator x we get a subcategory PCG of CG which only
contains planar cubic graphs with free ends.

Now let K be a field of characteristic zero and let V be a 3-dimensional
K-vector space. We fix a canonical basis {e1, e2, e3} for V and introduce the
following (monoidal) functor from CG to the (monoidal) category VectK of
vector spaces over K:

F : CG→ VectK

defined on the objects by

F (n) = V ⊗n (F (0) = K)

and on the morphisms by the following definitions on the generators:

F (∩) : K −→ V ⊗ V
α 7−→ αei ⊗ ei
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F (∪) : V ⊗ V −→ K∑3
i,j=1 αi,jei ⊗ ej 7−→

∑3
i=1 αi,i

F (λ) : V −→ V ⊗ V∑3
i=1 αiei 7−→

∑
{i,j,k}={1,2,3} αiej ⊗ ek

F (y) : V ⊗ V −→ V∑3
i,j=1 αi,jei ⊗ ej 7−→

∑
{i,j,k}={1,2,3} αi,jek

F (x) : V ⊗ V −→ V ⊗ V∑3
i,j=1 αi,jei ⊗ ej 7−→

∑3
i,j=1 αi,jej ⊗ ei

It is easy to see that this functor is well defined under the relation (i.e.
F [(∪ ⊗ I)(I ⊗ ∩)] = F (I) = F [(I ⊗ ∪)(∩ ⊗ I)], F [(x⊗ I)(I ⊗ ∩)] = F [(I ⊗
x)(∩ ⊗ I)], ..., etc). In fact, we have the following theorem.

Theorem 5 If a morphism g : m→ n represents a cubic graph with m+ n
free ends then for each element, ei(1) ⊗ · · · ⊗ ei(m), of the canonical basis of
V ⊗m

F (g)(ei(1) ⊗ · · · ⊗ ei(m)) =
∑

j(1),...,j(n)

χ
i(1),...,i(m)
j(1),...,j(n)ej(1) ⊗ · · · ⊗ ej(n)

where χ
i(1),...,i(m)
j(1),...,j(n) is the number of edge 3-colorings of the graph such that it

has the free edges on the top colored by i(1), ..., i(m) (in this order) and the
free edges on the bottom colored by j(1), ..., j(n) in this order.

Example 1 g : 2→ 2 : . .

. .

egde 3-colorings with colors 1, 1 on the top: { . .

. .

1 1

2

3 3

2

11

, . .

. .

1 1

3

2 2

3

11

}, . .

. .

1 1

3

2 2

1

33

and . .

. .

1 1

2

3 3

1

22

F (g)(e1 ⊗ e1) = 2e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

Proof.
It is enough to check the statement on the generators ∩, ∪, λ, y and x

(which is straightforward) and to note that the composition and the monoidal
operation on CG satisfy also the required:
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χ
i(1),...,i(k)
j(1),...,j(n)(gf) =

∑

α(1),...,α(m)

χ
α(1),...,α(m)
j(1),...,j(n) (g)χ

i(1),...,i(k)
α(1),...,α(m)(f)

χ
i(1),...,i(k+m)
j(1),...,j(l+n) (g ⊗ f) = χ

i(1),...,i(k)
j(1),...,j(l)(g)χ

i(k+1),...,i(k+m)
j(l+1),...,j(l+n) (f)

The following corollary is an immediate consequence of the theorem.

Corollary 6 Given a cubic graph g (without free end edges) viewed as a
morphism g : 0 −→ 0 the value F (g)(1) is the number of edge 3-colorings of
the graph. In particular g is edge 3-colorable if and only if F (g)(1) 6= 0.

Next, we introduce another functor F̃ : CG −→ VectK which is a small
modification of the functor F .

F̃ is equal to F on the objects and on all the generator morphisms except
on the morphism x where

F̃ (x) : V ⊗ V −→ V ⊗ V∑3
i,j=1 αi,jei ⊗ ej 7−→

∑3
i,j=1 δ̃i,jαi,jej ⊗ ei

with δ̃i,j = −1 + 2δi,j where δi,j is the Kronecker delta.
We have that F̃ = F when restricted to the subcategory PCG (the planar

cubic graphs).
The special feature of the functor F̃ is that it satisfies the Penrose formula:

F̃ (
.

.

) = F̃ ( )− F̃ ( )

Thus it also satisfies the IHX identity on chinese characters (see [1])

F̃ (
.

.

) = F̃ ( . . )− F̃ (
. .

)

We also have the formula

F̃ ( . ) = −F̃ ( . )

To see what the functor F̃ gives let us introduce the notion of the sign
of an edge 3-coloring of a cubic graph. The sign of an edge 3-coloring of a
cubic graph projected on the plane is +1 or −1 if the number of crossings of
edges of different colors is even or odd. Then we have the following result.
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Theorem 7 If a morphism g : m→ n represents a cubic graph with m+ n
free ends then for each element, ei(1) ⊗ · · · ⊗ ei(m), of the canonical basis of
V ⊗m

F̃ (g)(ei(1) ⊗ · · · ⊗ ei(m)) =
∑

j(1),...,j(n)

χ̃
i(1),...,i(m)
j(1),...,j(n)ej(1) ⊗ · · · ⊗ ej(n)

where χ̃
i(1),...,i(m)
j(1),...,j(n) is the sum of the signs of all edge 3-colorings of the graph

which have the free edges on the top colored by i(1), ..., i(m) (in this order)
and the free edges on the bottom colored by j(1), ..., j(n) in this order.

Since the functor F̃ satisfies the Penrose identity and, since, for a planar
graph g ∈ hom(0, 0), F̃ (g)(1) is equal to the number of edge 3-colorings, we
have that this functor generalizes the Penrose invariant [6].

3 Binary tree and Eliahou-Kryuchkov con-

jecture

From now on, we will restrict ourselves to the study of the subcategory PCG
where F = F̃ .

Recall that a graph is Hamiltonian if there close path the passes for all
the vertices of the graph. There is a well-known theorem on graph coloring
theory due to Whitney [9] that states the following.

Theorem 8 If every Hamiltonian planar graph is 4-colorable then the Four
Color Theorem is true.

Let call a morphism g : 1 −→ n in PCG generated only by the generators
λ and I a descendant binary n-tree, and call a morphism g : n −→ 1 in PCG
generated only by the generators y and I an ascendant binary n-tree.

When we look at this result in its dual form we have that the Four Color
Theorem is equivalent to the following.

Theorem 9 If a morphism g : 1 −→ 1 is a composition of a descendant
binary n-tree with an ascendant binary n-tree then F (g) is non-null.
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In CG (or PCG) there is a natural involution, called the adjoint, ∗ :
CGop → CG defined by λ∗ = y, ∩∗ = ∪ and x∗ = x (by definition of
involution we have y∗ = λ, ∪∗ = ∩, (f ◦ g)∗ = g∗ ◦f ∗ and (f ⊗g)∗ = f ∗⊗g∗).
Geometrically this involution takes the form of a reflection of the graph in
an horizontal line (see the next figure).
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For instance a descendant tree is the adjoint of an ascendant tree.
Considering the inner products in {V ⊗n}n∈N defined by their canonical

bases and the involution on VectK defined by the inner products (〈Tx, y〉 =
〈x, T ∗y〉), we have that the functors F and F̃ preserve the involution structure
(i.e. F (g∗) = (F (g))∗). In particular, we have the following proposition

Proposition 10 If f : 1 → n and g : 1 → n are two descendant binary
n-trees then F (f ∗g) = 〈F (g)(e1), F (f)(e1)〉idV

Proof.
We have that

F (f ∗g)(ei) =
∑3

j=1〈F (f
∗g)(ei), ej〉ej

=
∑3

j=1〈F (g)(ei), F (f)(ej)〉ej

So we have to prove that 〈F (g)(ei), F (f)(ej)〉 = δi,j〈F (g)(e1), F (f)(e1)〉
If we identify e1, e2 and e3 with the three non-zero elements of the field F4

we have that, for any morphism g : 1→ n, if 〈F (g)(ei), ei(1)⊗· · ·⊗ ei(n)〉 6= 0
then ei = ei(1) + ei(2) + · · ·+ ei(n).

This proves that 〈F (g)(ei), F (f)(ej)〉 = 0 if i 6= j.
On the other hand, if

F (g)(ei) =
∑

χi
i(1),...,i(n)ei(1) ⊗ · · · ⊗ ei(n)

and σ is a permutation on {1, 2, 3} then

F (g)(σ(ei)) =
∑

χi
i(1),...,i(n)eσ(i(1)) ⊗ · · · ⊗ eσ(i(n))

This proves that 〈F (g)(e1), F (f)(e1)〉 = 〈F (g)(e2), F (f)(e2)〉 = 〈F (g)(e3), F (f)(e3)〉.
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Now we consider the following decomposition of the operator F (λ):

F (λ) = F (λ+) + F (λ−) (1)

where

F (λ+)(ei) = ej ⊗ ek such that (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

and

F (λ−)(ei) = ej ⊗ ek such that (i, j, k) ∈ {(2, 1, 3), (1, 3, 2), (3, 2, 1)}

In the same way as a descendant tree is a morphism generated by λ and
I, a descendant signed tree is a morphism generated by λ+, λ− and I. One
simple observation that we can make from (1) is that for any descendant
binary tree g : 1 → n + 1 with n nodes, F (g) is equal to the sum of the 2n

signed trees corresponding to g. Thus

F (g)(e1) =
∑

χ1
i(1),···,i(n+1)ei(1) ⊗ · · · ⊗ ei(n+1)

with χ1
i(1),···,i(n+1) = 1 for some 2n indices and zero for the others.

As a consequence of this we have:

Proposition 11 For any descendant binary n-tree g : 1 → n + 1 we have
F (g∗g) = 2nidV .

Another observation that we can make is a signed reassociation identity:

F ((I ⊗ λ+)λ+) = F ((λ− ⊗ I)λ−) and F ((I ⊗ λ−)λ−) = F ((λ+ ⊗ I)λ+)

It is well known that any pair of binary trees with the same number of
nodes is connected by a finite sequence of (non-signed) reassociation moves:

.

.

←→
.

.

For instance:
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.

..

. ↔
.

..

. ↔ .

.

..

In fact, the graph for which the vertices are the n- dimensional descendant
binary trees and the edges represent reassociation moves between two trees
is the 1-skeleton of the n − 2-dimensional associahedron An−2 or Stasheff
polytope (see [3] for the definition).

However when we take the analogous graph As
n−2 for signed trees and

signed reassociation moves we get a non-connected graph. Indeed, two signed
trees f and g are connected if F (f) = F (g).

This last graph can be projected in a natural way onto the first but it is
not true that any path on the associahedron An−2 can be lifted to a path on
As

n−2.
Eliahou [2] and Kryuchkov (cited from [5]) conjectured the following:

Conjecture 12 (Eliahou-Kryuchkov) For any pair of vertices on An−2 there
exists a path connecting them that can be lifted to a path on the graph As

n−2

It is easy to see that this conjecture implies the Four Color Theorem since
two signed trees connected by a sequence of signed reassociation moves give
the same colors on the ends.

In the paper [4] Gravier and Payan proved that this conjecture is, in fact,
equivalent to the Four Color Theorem.

Acknowledgment - I wish to thank Roger Picken for his useful sugges-
tions and comments. Supported by Fundação para a Ciência e a Tecnologia,
project New Geometry and Topology, PTDC/MAT/101503/2008.
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