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INJECTIVITY OF A CERTAIN CYCLE MAP FOR FINITE DIMENSIONAL
W-ALGEBRAS

CHRISTOPHER DODD

ABSTRACT. We study a certain cycle map defined on finite dimensional modules for the
W-algebra with regular integral central character. Via comparison with the theory in postive
characteristic, we show that this map injects into the top Borel-Moore homology group of
a Springer fibre. This is the first result in a larger program tocompletely desribe the finite
dimensional modules for the W algebras.

1. INTRODUCTION

Recently, the subject of the finiteW-algebras has come to the attention of many re-
searchers. Although originally introduced in the physics literature, they were first defined
in a mathematical context by Premet [P1], who related them tothe study of (non-restricted)
modular representations of semisimple lie algebras. The fundamental paper of Gan and
Ginzburg [GG] reproved some of Premet’s results, and recastthem in the light of non-
commutative algebraic geometry. Since then, many authors have made contributions to
their study, c.f., e.g., [P2], [L1], [L2], [BGK],[DK], and the survey articles [L3] and [W]
have appeared. In particular, the results of [BGK] and [L2] are concerned with the finite
dimensional representations ofW-algebras. Despite the significant progress made there,
some fundamental questions remain open. For instance, given a finiteW-algebraU(g,e)
and an integral central characterλ , it is still not known how to parametrize the simple finite
dimensionalU(g,e) modules with characterλ . The goal of this paper is to provide the first
step to answering this question. In fact, we will provide some detailed information on the
K-groupKQ(modf .d.(Uλ (g,e))).

Our main tool will be the use of a certain characteristic cycle map which takesKQ(Uλ (g,e))
to the the homology groupHtop(Be,Q)- this is the top Borel-Moore homology of the
Springer fibre associated to the nilpotent elemente (definitions will be recalled below).
The latter group has a natural basis (as aQ- vector space) indexed by irreducible compo-
nents of the varietyBe. In addition, it has the structure of a module over the Weyl group
associated tog, W. This is the classical construction of Springer, which findsall of the
simpleW-modules in such homology groups.

The groupKQ(Uλ (g,e)) also has a natural structure of aW-module, via the action of
reflection functors on the categoryUλ (g,e)−mod. The theory of these functors, which
is parallel to the classical theory of reflection functors for U(g) developed by Jantzen, has
been worked out by Losev. We shall recall their basic properties below.

With all of this in hand, we can state the basic theorem of thispaper.

Theorem 1. The cycle map

cc : KQ(modf .d.(Uλ (g,e)))→ Htop(Be,Q)

is injective and W-equivariant, with respect to the actionsof W discussed above.
1
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Let us note right away that the paper [ES] provides a weaker version of this result;
namely, they prove the numberical bound

dim(KQ(modf .d.(Uλ (g,e))))≤ dim(Htop(Be,Q))

Their proof usesD-module theory in characteristic zero and the theory of springer’s
representations.

The main tool of this paper will be the use of reduction modp and a comparison with
the theory ofW-algebras over algebraically closed fields of positive characteristic. Fol-
lowing the reasoning of [BMR], we shall construct a localization theory for such algebras,
and compare the resulting geometry with the geometry in characteristic zero. In positive
characteristic, we have extra tools such as the Azumaya splitting and the action of the
frobenius morphism. We shall use these to deduce the result for sufficiently large positive
characteristic, and then we shall transfer to characteristic zero.

We should also point out that I. Losev and V. Ostrik have a conjecture about the image
of the mapcc, which has been partially proved by them. To state it, let us recall that to
the nilpotent elemente, we can also associate a (possibly trivial) cellc in the Weyl group
W (c.f. [Lu] for a complete introduction to cells and representations of Weyl groups and
Hecke algebras). To this cell we can then associate

Htop(Be,Q)c

a sub-W-representation ofHtop(Be,Q). They conjecture that this is the image of the map
cc. Therefore, combined with the result in this paper, the proof of this conjecture would
yield a complete description ofKQ(modf .d.(Uλ (g,e))).

The author would like to express his gratitude to Ivan Losev,for suggesting the problem,
and to Roman Bezrukavnikov for many helpful conversations.

2. FINITE W-ALGEBRAS

There are a great many references which explain the basic construction of the finite
W-algebras. The papers of Premet [P1], Gan-Ginzburg [GG], and Brundan-Goodwin-
Kleschev [BGK] all have very complete introductions. For now we shall just recall the
very basic outline of what we need.

We let g be a complex semisimple lie algebra, and lete∈ g be a nonzero nilpotent
element. By the Jacobson-Morozov theorem, there existf ,h ∈ g such that{e, f ,h} form
an sl2-triple, and we fix such a triple. We define the Slodowy sliceS⊆ g∗ to be the
affine subspace which corresponds, via the killing isomorphismg=̃g∗, to the affine space
e+ ker(ad( f )). Slodowy’s book [Slo] contains a wealth of information on these spaces
and their uses in lie theory. Three facts about these spaces are crucial for us.

The first, recorded in [G-G] section 3, is that this affine space has a natural Poisson
structure inherited from the Poisson structure ong∗. The second, to be found in [G-G],
section 2, is that the spaceS admits a naturalC∗ action defined as follows: our chosen

sl2-triple gives a homomorphism̃γ : SL2(C) → G, and we defineγ(t) = γ̃
(

t 0
0 t−1

)
, so

thatAd(γ(t))e= t2e; so we definēρ(t) = t−2Ad∗(γ(t)), aC∗-action ong which stabilizes
Se and fixesχ (the element ofg∗ corresponding toe under the killing isomorphism). In
fact, this action contractsSto χ . So, we get a grading onO(S) and it is easy to see that the
Poisson multiplication respects this grading.

Finally, we wish to recall that the spaceScan be realized as a “Hamiltonian reduction”
of the spaceg∗. To explain this, we letχ ∈ g∗ be the element associated toe under the
isomorphismg=̃g∗ given by the killing form. We define a skew-symmetric bilinear form on
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g(−1) via < x,y>= χ([x,y]), which is easily seen to be nondegenerate. Thus,(g(−1),<
,>) is a symplectic vector space, and we choosel ⊂ g(−1) a Lagrangian subspace. We
defineml = l ⊕

⊕
i≤−2g(i), a nilpotent lie algebra such thatχ |ml is a character ofml . We

let Ml be the unipotent connected algebraic subgroup ofG such thatLie(Ml ) =ml . We let
I denote the ideal ofSym(g) = O(g∗) generated by{m− χ(m)|m∈ml}. Then we have an
isomorphism of algebras

O(S)=̃(O(g∗)/I)Ml

whereMl acts via the adjoint action (c.f. [G-G], lemma 2.1).
Given this, we can recall that the finite W-algebra associated to e∈ g, denotedU(g,e),

is a filtered associative algebra whose associated graded Poisson algebra is isomorphic to
O(S). In fact, the algebraU(g,e) can be defined as the Hamiltonian reduction of the en-
veloping algebraU(g) in a manner exactly parallel to the formula above. There is a natural
mapZ(U(g))→ Z(U(g,e)) which is an isomorphism. So we have the usual description of
central characters indexed by elements of the affine spaceh/W (whereh is a Cartan sub-
algebra ofg, andW is the Weyl group). Given aλ ∈ h, we thus get an ideal ofZ(U(g,e))
and then an idealJλ of U(g,e), and we defineUλ (g,e) :=U(g,e)/Jλ .

3. THE CYCLE MAP

In the paper [DK], the author and Kobi Kremnizer gave a geometric interpretation of
certain categories of modules over finite W-algebras. Inspired by the classical Beilinson-
Bernstein localization theorem, we considered the singular Poisson varietyS∩N := SN ,
whereN denotes the nilpotent cone ofg∗. The varietyN has a resolution of singulari-
ties, denotedµ : ˜N → N , called the springer resolution (see [CG], chapter 3, for a very
complete treatment). It turns out that the restriction of this mapµ : µ−1(SN )→SN is also
a resolution of singularities, and the scheme theoretic preimageµ−1(SN ) is denotedS̃N .
Further, this variety has a natural symplectic structure which extends the Poisson structure
on the baseSN .

Now, theC∗ action constructed above lifts naturally toS̃N , and it contracts the smooth
variety S̃N to the singular varietyBχ := µ−1(χ), the springer fibre ofχ . This provides
the perfect setting to do geometry.

In particular, given an anti dominant regular weightλ , we constructed a sheaf ofC[[h]]-
algebrasDh(λ ,χ)(0) on S̃N , which is a quantization in the sense of [BK], i.e., it is flat
overC[[h]] and satisfiesDh(λ ,χ)(0)/hDh(λ ,χ)(0)=̃O(S̃N ). This algebra is related to the
finiteW-algebra in the following way:

The algebraUλ (g,e) is naturally filtered, as recalled above. Thus we can consider the
Rees algebra associated to this filtered algebra (c.f. [BFG], section 2.4) which is naturally
an algebra overC[h]. If we then complete with respect toh, we obtain an algebra which
we callUλ

h (g,e)(0) (One can then formally inverth to obtain aC((h))-algebraUλ
h (g,e),

which is one of the main players in [DK], although it won’t be used here). We then have

(3.1) Γ(Dh(λ ,χ)(0)) =Uλ
h (g,e)(0)

With these ingredients in hand, we can explain our construction of the cycle of a finite
dimensional moduleM overUλ (g,e). Given such, we choose any good filtrationF on M
(c.f., [HTT], appendix D). Then we have the moduleRees(M;F) and, after completion, the

C[[h]]-module ̂Rees(M;F). We can then define a localization functor

Loc(M;F)(0) = Dh(λ ,χ)(0)⊗Uλ
h (g,e)(0)

̂Rees(M;F)
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which makes sense because of 3.1. BecauseDh(λ ,χ)(0) is a quantization of̃SN , we then
get a coherent sheaf oñSN by letting

CS(M;F) := Loc(M;F)(0)/hLoc(M;F)(0)

Now we define our main object of study, the cycle map, by

cc(M) :=CC(CS(M;F)) ∈ Htop(Bχ ,Q)

whereCCstands for the characteristic cycle of a coherent sheaf. A very complete treatment
of characteristic cycles is provided by the book [F], and some details are recalled in section
8 below. For now, we just recall that there is a chern character map

K(X)→ H∗(X)

from the K theory to the total Borel-Moore homology of a projective schemeX. The
projection of this map to the top graded piece ofH∗(X) yields the mapCC.

The fact that, in our case,CS(M;F) is actually supported onBχ will also be addressed
in section 6 below.

The fact that the constructon ofcc does not depend on the filtration chosen (while
CS(M;F) does) is a standard argument (c.f. [HTT], appendix D).

The main objective of the next few sections will be to relate this construction to the
positive characteristic machinery of [BMR], where the relation betweenK groups of rep-
resentations and homology of springer fibres is very strong indeed.

4. LOCALIZATION MOD P

In this section, we’ll review the main results of the localization theory for enveloping
algebras in characteristicp, which can be found in [BMR I,II] and [BM]. We recall that
the lie algebrag has an integral formgZ (c.f. [H]), which then has a base extension to any
field k, calledgk. Throughout the rest of the paper, we will usek to denote an algebraically
closed field of positive characteristic. Whenchar(k)> h (whereh is the Coxeter number
of g), Bezrukavnikov-Mirkovic-Ruminyin have developed a localization theory for the en-
veloping algebraU(gk). Since this theory is extremely important for us, we shall recall
their basic notations and results in some detail.

4.1. Quantized Twisted Differential Operators. We start with the quantized sheaf of
twisted differential operators onT∗BC. We first recall that the original sheaf of twisted
differential operators can be defined using the following two steps (c.f. [Mil], Chapter C1
for details):

First, one defines the sheaf of algebrasU0 = OB ⊗CU(g), where the multiplication is
twisted by the action of an element ofg, considered as a vector field, on a local section of
OB. InsideU0, we have the sub-ideal-sheafn0, which is generated at each pointx ∈ B

by the subspacenx ∈ g (thinking ofB as the variety of Borel subalgebras ing, each point
gets a Borelbx and a corresponding maximal nilpotent subalgebra; this isnx). We also,
therefore, have an ideal sheafb0 insideU0, and containingn0.

From here, we define the sheaf of algebrasDh = U0/n0. Thus there is a natural map
from the sheaf of lie algebrash0 = b0/n0 to the sheafDh, which then induces a map
φ : U(h) → Γ(B,U0/n0). For any elementλ ∈ h∗, we have an idealIλ ⊆ U(h), which,
due to normalization reasons, is the ideal chosen to correspond the characterλ +ρ (where
ρ is the half sum of the positive roots, as usual). Thus we have an idealIλ Dh, and we can
finally putDλ = Dh/Iλ Dh.
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Now, we can quantize each step of this construction in a natural way. We start by
defining, for an affine cover ofB, {Ui} the sheavesU0

h = OUi ⊗C[h]Uh(g), whereUh(g) is
simplyRees(U(g)) (with respect to the usual PBW filtration). These are not merely sheaves
on the varietiesUi , but, by using ore localization, we can view them as quantizations1 of
the varietiesUi ×g (we get the structure algebras of these varieties by settingh= 0). This
construction glues naturally, and so we get a sheafU0

h onB×g.
Given this, we still have subsheavesb0 andn0 generated by the same elements, and

so we can consider the quotientDh,h =U0
h/n

0, with its associated mapUh(h)→ Γ(Dh,h).
Then the elementλ ∈ h∗ still defines an ideal ofUh(h) (defined as the ideal generated by
{v−h(λ +ρ)(v)|v∈ h}) again calledIλ , and we can now defineDλ

h =Dh,h/Iλ Dh,h, which
are now sheaves on the spaceT∗B. We also note that the sheafDh,h can be considered a
sheaf on the spacẽg∗- the full Grothendeick alteration (c.f. [CG], chapter 3)

4.2. Differential Operators in Positive Characteristic. Now suppose, in addition to the
assumptions of the above section, that the elementλ ∈ h∗ is integral. Then every object that
we have used in the above construction; the enveloping algebraU(g), the groupG, its Borel
and nilpotent subalgebras, and flag variety, exists overZ. Therefore, it makes perfect sense
to construct the algebraDλ

h (Z) as a quantization ofT∗B(Z), and further, to base change
to an algebraically closed field of positive characteristic, and thus obtain an objectDλ

h (k)
(from now on in this section we shall drop thek, understanding that we are working over
a closed field of positive characteristic) . Upon taking the quotientDλ

h/(h−1), we obtain
the sheaf of crystalline differential operators as featured in [BMR], which we will simply
denoteDλ . This sheaf has the feature that there is a “frobenius morphism”

F : O(T∗
B

(1))→ Dλ

obtained by usingpth iterates of vector fields, c.f. [BMR], section 2.
In the case of the sheafDλ

h , we can liftF to a morphismF : O(T∗B(1)×A1)→Dλ
h (sim-

ply by sending the extra variable toh). This means thatDλ
h (technically, itsh-completion) is

a “frobenius constant quantization” in the terminology of [BK]. Let us recall the definition
there:

Definition 2. Let Oh be a quantization of the Poisson schemeX (defined overk). Then
Oh is a frobenius constant quantization if the frobenius morphism F : Op

X → OX lifts to a
morphismF : Oh → Z(Oh) (whereZ is the algebra center).

In this case, the sheafOh can be regarded as a locally free coherent sheaf of algebras on
the schemeX(1)×Spec(k[[h]]).

In the case of the sheafDh,h, we can even say a bit more. By the same reasoning, there

is a morphismF : g̃∗(1) → Dh,h. But in fact there is also a morphism in any characteristic
(even overZ) O(h∗)→ Dh,h, simply by noting thatU(h)→ Dh,hby construction.

Now, in positive characteristic, both of the schemesg̃∗
(1) andh∗ live over the scheme

h∗,(1). The morphismg̃∗(1) → h∗,(1) is Grothendieck’s invariants map (c.f. [CG] chapter 3),
and the maph∗ → h∗,(1) is the Artin-schreier map forp−lie algebras, which on algebras
of functions is the morphismSym(h(1))→ Sym(h) which takesh→ hp−h[p] (c.f. [BMR],
section 2.3).

1In fact, these are not quite quantizations as we have defined them above, because these algebras are not
compete with respect toh. However, they areh-free, and theirh-completions, considered below, would be
quantizations in the strict sense.
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By comparing images, we see that we actually arrive at a morphism g̃∗
(1)

×h∗,(1) h
∗ →

Dh,h, which will play the role of the frobenius morphism for this sheaf.

4.3. Localization For Lie Algebras. As in the classical case, localization involves com-
paring modules over a sheaf of differential operators to modules over the global sections.
Similarly to the classical case, forλ ∈ hk, we have that

Γ(Dλ )=̃Uλ (gk)

whereUλ (gk) is the quotient of the algebraU(gk) by the idealJλ obtained as follows:
the algebraS(hk)

(W,·) occurs as a subalgebra ofZ(U(gk)). As in characteristic zero, this
subalgebra is equal toU(gk)

Gk, but unlike in characteristic zero, this is not the whole center.
Still, any point inhk defines an ideal ofS(hk)

(W,·), which can then be extended to an ideal
of U(gk).

Then, ifλ ∈ hk is regular with respect to the dot-action ofW, we have [BMR, 3.2]:

Theorem 3. There is an equivalence of categories

RΓ : Db(modc(Dλ ))→ Db(modf .g.(Uλ ))

where modc(Dλ ) denotes the category of coherent modules over the Azumaya algebra Dλ

on T∗B
(1)
k .

The “underived” version of this; i.e., simply the functorΓ, does not produce an equiva-
lence. This is an essential difference with the characteristic zero case, where the localiza-
tion theorem is underived.

The next step is to exploit the full center of the algebraU(gk). As mentioned above, the
subalgebraU(gk)

Gk does not equal the fullZ(U(gk)). The reason for this is the existence of
the so-calledpth iterate mapg→ g(1), denotedx→ x[p] (where(1) again denotes frobenius
twist). In the case ofgl(n), this map is simply thepth power of a matrix; and one can define
it in general (for a reductive lie algebra) by using a suitable embeddingg→ gl(n).

This map allows us to construct new central elements as follows: for anyx ∈ g, the
elementxp− x[p] ∈U(gk) is now central. In fact, the algebra generated by these elements,
called thep-center ofU(gk), denotedZp, is preciselyS(g(1)), because the scalar multipli-
cation onxp−x[p] is twisted by thepth power. Then, one can describe the full center of the
enveloping algebra in positive characteristic (c.f. [BMR], chapter 3) as

Z=̃O(g∗(1)×h∗(1)/W h∗/W)

whereW acts via the dot action, and the map fromh∗ → h∗(1) is the Artin-Schreier map, a
version of thepth power map, defined, e.g., in [BMR], section 2.3, and [BFG], section 3.2.

Thus, givenχ ∈ g∗, we can associate to it an elementχ (1) ∈ g(1),∗ (c.f. [BFG], section
3.2), and from this we get a maximal ideal ofS(g(1)), and a central ideal ofU(gk). Any
irreducible module overU(gk) will have a well defined central character, which will restrict
to characters of bothZp andU(gk)

Gk (the latter is called the Harish-Chandra center of
U(gk)). If we suppose that the Harish-Chandra character is integral, then this implies that
theZp-character is a nilpotent element ofg∗ ([BMR], section 6). We will assume that we
are in this situation from now on.

Then the above localization theorem can be modified as follows: Let λ be a regu-
lar, integral central character, and letχ (1) ∈ g∗(1) be a nilpotent element. Then we have
µ−1(χ)(1) = (µ (1))−1(χ (1)), the frobenius twist of the springer fibre ofχ , which we shall
usually denoteBχ . We define the categorymodc

χ(D
λ ) to be the category of coherentDλ
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modules which are set-theoretically supported on the variety B
(1)
χ . Similarly, we define

modf .g.
χ (Uλ ) to be the category ofUλ -modules which have generalizedp-characterχ- i.e.,

they are killed by some power of the maximal ideal inS(gk) associated toχ . Then we
have:

Theorem 4. . The the above localization theorem specializes to an equivalence of cate-
gories

RΓ : Db(modc
χ(D

λ ))→ Db(modf .g.
χ (Uλ ))

Finally, we can say a little more about the structure of the categorymodc
χ(D

λ ). Since

Dλ is an Azumaya algebra, it is etale locally a matrix algebra overOT∗B(1) . We recall that
an Azumaya algebraA on a schemeX is said to besplit if it is in fact isomorphic to a
matrix algebra overOX . If this happens, then there is the standard Morita equivalence of
categoriesmodc(A)→̃modc(OX). AlthoughDλ is not split, we have the following:

Theorem 5. Under the same assumptions as above, we have that the restriction of Dλ to

the formal neighborhood ofB(1)
χ in T∗B(1) is a split Azumaya algebra. This implies an

equivalence

modc
χ(D

λ )→̃modc
B

(1)
χ
(OT∗B(1))

And therefore an equivalence

Db(modc

B
(1)
χ
(OT∗B(1)))→̃Db(modf .g.

χ (Uλ ))

Thus we observe a tight relation between representation theory and coherent sheaves
in characteristicp. In the next several sections we relate this theory to the theory of W-
algebras.

5. LOCALIZATION FOR MODULAR W-ALGEBRAS

In this section, we would like to construct the “local” object which corresponds to the
version of theW-algebra in positive characteristic (we shall give a compete definition of
this object in section six below). This object will, in particular, be a sheaf on the scheme

S̃(1)
N

(the frobenius twist of the resolution of the springer fibre). It will also be necessary
to introduce a version over the extended schemeS̃(1)×h∗(1) h

∗, which will be completely
parallel to the first version. We’ll begin by recalling, briefly, the construction of the main
object of the paper [DK], which is a quantization of the scheme S̃N ,C. We shall attempt to
keep this paper as self contained as possible.

5.1. Hamiltonian Reduction. As indicated above, the W-algebra is related to the lie al-
gebra via the procedure of Hamiltonian reduction. Since modules over lie algebras can
localized toD-modules on the flag varietyB, it stands to reason that modules over W-
algebras should localize to modules over a some sort of Hamiltonian reduction ofDB .
One version of this (overC) was worked out it [DK]. Here, we wish to construct a modular
version of this localization, based on the ideas of [BMR] andthe related paper [BFG].

In particular, we shall take the Hamiltonian reduction of differential operatorsDλ
h with

respect to the action of Premet’s subgroupMl, and characterχ . In particular, we work
under the assumption thatchar(k) is large enough so that the lie algebraml (c.f. section

2 above) exists as overk, and satisfiesm[p]
l = 0 (where[p] is the pth iterate map induced

from g) (note that this is possible becauseml is nilpotent).
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We recall that the action ofG on the flag varietyB induces a “quantum” moment map
µ : Uh(g)→ Dλ

h , which has a restriction, which we shall also callµ : Uh(ml )→ Dλ
h . In the

positive characteristic case, this map also satisfies some additional structure, as in:

Definition 6. (c.f. [BK] section 5)
Suppose thatX is a symplectic variety overk, and letOh be a Frobenius-constant quan-

tization ofX2. Suppose further that there is an algebraic group actionH ×X → X, and a
morphismµ : Uh(h)→ Oh (whereh= Lie(H)), satisfyingµ(h) = h.

1) This quantization is said to be “Frobenius H-constant” ifH acts on the sheaf of
algebrasOh in a way that preserves the subalgebraO(X)(1)[[h]], such thatH fixes the
parameterh, and such that the induced action ofH onX(1) agrees with the base change of
the action ofH onX.

For ξ ∈ h, ands∈ Oh a local section, letξ ·s denote the action (obtained by differenti-
ating the action ofH).

2) Given the set-up of 1), the mapµ is said to be a quantum moment map if the re-
striction of µ to Uh(h)

(1) = U(h)(1)[[h]] lands inO(X)(1)[[h]], and we have the “action”
relation: for allξ ∈ h, and all local sectionss∈ Oh, µ(ξ )s− sµ(ξ ) = hξ ·s.

The last part of definition 2 is the standard definition of a quantum moment map in any
characteristic. The fact that (the completion of) our mapµ is a quantum moment map
follows immediately from the definition ofµ- the algebraDλ

h was constructed out of the
enveloping algebra. Further, thepth powers on both sides clearly coincide.

Given this, we can state the version of Hamiltonian reduction which we will use, again
following [BK]. In the rest of this section, we shall work with theh−completed algebras
Uh(ml )(0) andDh(λ )(0) (we use this notation to match our characteristic zero notation
from [DK]).

First, we consider the idealIχ ⊆ Uh(ml )(0) defined as the ideal generated by{m−
χ(m)|m∈ ml}. Note that this ideal isnot homogeneous with respect to the usual grading
onRees(Uh)=̃Uh(0).

Next, we define the sheaf of algebrasDh(λ )(0)/ < µ(Iχ) >. This is naturally a sheaf
over the schemeµ−1(χ)(1) ×Spec(k[[h]]). To see why, note that the central subalgebra

Sym(m(1)
l )[[h]] has an ideal generated by the pointχ (1) ∈ m∗

l . Let I (1)χ be the ideal in
Uh(ml )(0) generated by this central ideal. From the definition of moment map above,

we see thatµ(I (1)χ ) defines the subschemeµ−1(χ)(1) insideT∗B(1). Further,I (1)χ = Iχ ∩

Sym(m(1)
l )[[h]] (recall that we are assuming thatm[p] = 0 for all m∈ml ).

Finally, we look at the pushforwardp∗(Dh(λ )(0)/ < µ(Iχ)>)Ml . Then this is naturally

a sheaf on the schemeS̃(1)
N

×Spec(k[[h]]). This is our Hamiltonian reductionDh(λ ,χ)(0).
A slight modification gives the case of the sheafDh,h: we note that the moment map

works the same way, and the groupMl only actsg̃∗(1). Then after Hamiltonian reduction,
we end up with a sheafDh,h(χ)(0) on the schemẽS(1) ×h∗,(1) h

∗ ×Spec(k[[h]]) (where

S̃(1) → h∗,(1) is the restriction of the map̃g∗(1) → h∗,(1)).

Remark7. Below, we will see how to get rid of the parameterh and work with a sheaf

simply defined on the schemeS̃(1)e . It would have been possible to do things in the opposite
order, i.e., get rid of theh onT∗B by working with the crystalline differential operatorsDλ ,

2As noted before, our objects defined above actually satisfy the property that theirh-completions are quanti-
zations. We shall work with such completions below
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and then take Hamiltonian reduction of this sheaf to get a sheaf onS̃(1)
N

. This is the approach
used for Hilbert schemes in [BFG], and it is probably the mostnatural approach in positive
characteristic. However, this approach doesn’t really have an analogue in characteristic
zero, because without including the parameterh, the sheafDλ isn’t local onT∗B, and of
course we can’t pull back to the frobenius twist because it doesn’t exist. Since the main
theorem of this paper involves comparing a construction in characteristic zero and positive
characteristic, we have to include the “unnatural” construction in positive characteristic as
well.

5.2. Azumaya Property. In this section, we use the results of [BK] (whose set-up we bor-
rowed in the previous section) to show that the algebra we have obtained by Hamiltonian
reduction is a reasonable object. This will be the key point in showing that the “localization
theorem” holds in our context.

So, let us quote the results from [BK] in the form that we need:

Proposition 8. (c.f. [BK], proposition 5.8) The sheaf Dh(λ ,χ)(0) is a Frobenius constant
quantization of the varietỹSN . Thus it can also be thought of as a coherent sheaf on the

schemẽS(1)
N

×Spec(k[[h]]). The same is true of Dh,h(χ)(0) onS̃(1)×h∗,(1) h
∗×Spec(k[[h]]).

and

Proposition 9. (c.f. [BK], proposition 3.8) Let Oh be a frobenius constant quantization of
a variety X, and let x be a closed point of X(1). Then, regarding Oh(h−1) as a coherent
sheaf of algebras on X(1) ×Spec(k((h))), the local algebra Oh(h−1)x is Azumaya over
k((h)).

From these results we derive immediately an Azumaya property for the sheafDh(λ ,χ)(0).
A similar argument shows the Azumaya property of the sheafDh,h(χ)(0) (c.f. [BMR] sec-
tion 2.3). However, we wish to obtain an even stronger property by getting rid of the
parameterh. To do that, we shall invoke some facts aboutGm-equivariant quantizations.

Before doing so, let us note that all of the varieties in the above section carry the Gan-
GinzburgGm action onT∗B, which we recall is given by

t(g,v) = (γ(t)g, ¯ρ(t)v)

whereγ : C∗ → G was the natural embedding described above in section 2, and where
we’ve identified the cotangent space at the pointg with (g/b0)

∗=̃n0, whereb0 is our stan-
dard Borel subalgebra, (which we choose to contain the “positive part” of oursl2-triple, e
andh), andn0 is its nilradical, and̄ρ(t) = t−2ad(γ(t)) as above. We also letGm act onh∗

ast ·h= t2h. 3

We can see also that all of the sheaves considered above are equivariant with respect to
this action: note that the action extends by definition toB, and then toT∗B andDλ

h by
the usual extension of an action to differential operators (as usual, we demandt ·h= t2h to
make the relations ofDλ

h homogeneous). In addition, the action preserves the varietiesSN

andS̃N , and is respected by the moment map, by its definition. The ideal of Hamiltonian
reduction, which was inhomogeneous with respect to the usual grading, is homogeneous
with respect to this one. Thus we see thatDh(λ ,χ)(0) carries this action as well, and the
same forDh,h∗(χ)(0).

3This action exists as long aschark is sufficiently large, c.f [J]. We shall assume thatchark is large enough in
the rest of the paper.
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Although this action is poorly behaved onT∗B, it is positive weight and contracting on
S̃N . So at this point we can invoke a very general lemma, which is similar to [BK], lemma
3.4, and [L1], proposition 2.1.5:

Lemma 10. 1) Let k be any algebraically closed field, and let X be smooth avariety over k,
with a quantization Oh. Suppose that X is equipped with a positive weightGm(k)-action,
which extends to an action of Oh via t · h = tnh for some n> 0. Then the sheaf Oh on
X×Spec(k[[h]]) is the restriction of a sheaf on the variety X×Spec(k[h]).

2) Now let char(k)> 0 and suppose that Oh is frobenius constant, and, in addition, that
Fr : O(X(1)) → Oh is Gm-equivariant (where we use the induced action on the frobenius
twist of a variety). Then we can say in addition that the coherent sheaf Oh on X(1) ×
Spec(k[[h]]) is the restriction of a coherent sheaf on X(1)×Spec(k[h]).

Proof. To prove 1), we first consider the case thatX is affine, following ([L1], prop. 2.1.5).
In this case, letX = Spec(A). As ak[[h]]-module, we have thatOh=̃A[[h]]. We first claim
thatA[h] = A[[h]]Gm− f in (where(V)Gm− f in denotes the sum of the finite dimensional mod-
ules of theGm-moduleV). This simply follows from the obvious fact that every eigenvalue
for theGm-action onA[[h]] is a finite sum of terms of the formhka wherea is an eigenvalue
for theGm-action onA (here we use that the action is positive weight, so that the number
of h’s must be bounded).

Now, the claim implies, sinceGm acts onA[[h]] by algebra automorphisms, thatA[h]
is a subalgebra ofA[[h]]. So this is 1) for affineX. In general, we note that takingGm-
finite vectors clearly commutes with localization by aGm-stable element ofA, and that any
smooth variety with aGm-action has an affineGm-equivariant cover (c.f., GIT, section ).
So we can take the sheaf of local sections ofGm-finite vectors, and this suffices for 1).

To get 2), we note that the image ofO(X(1)) clearly lies inOh,Gm− f in by the assumption.
Therefore the extension toFr : O(X(1))[h]→ Oh obtained by sendingh to h has image in
Oh,Gm− f in as well. But this is exactly 2). �

With this in hand, we see right away that in factDh(λ ,χ)(0) is the restriction of a sheaf,

calledDλ ,χ
h , on S̃(1)

N
×A1, and by the same reasoning, thatDh,h(χ)(0) is the restriction of

a sheaf oñS(1)×h∗,(1) h
∗×A1. By [BK] lemma 3.4, these sheaves are even the unique ones

with this property. Further, we are now free to take the quotient Dλ ,χ
h /(h− 1), (respec-

tively Dh,h(χ)(0)/(h− 1)) and obtain coherent sheaves on the varietyS̃(1)
N

(respectively
S̃(1)×h∗,(1) h

∗), which we will call Dλ ,χ (respectivelyD̃(χ), following [BMR]).. We can
now state the main result about these objects

Proposition 11. Dλ ,χ , respectivelyD̃(χ), is an Azumaya algebra on the varietyS̃(1)
N

, re-
spectivelyS̃(1)×h∗,(1) h

∗.

Proof. This will follow from proposition 9. To see how, let us note (for the first statement,

the second is similar) that it suffices to show that, for any point x ∈ S̃(1)e with associated

ideal mx in O(S̃(1)e ), (Dλ ,χ)x/mx(Dλ ,χ)x is a central simple algebra (c.f. [Milne, chapter
4]; we already know that these are locally free sheaves because they are frobenius constant
quantizations).

If Ī is a nontrivial ideal of this algebra, then we can lift it to a nontrivial ideal I of
(Dλ ,χ

h )x/mx(D
λ ,χ
h )x. Sinceh−1 is an element of̄I (by definition ofDλ ,χ), we see that no

power ofh can be an element of̄I ; if it were, then somehpk
would be inĪ (p= char(k)),

but since(h−1)pk
= hpk

−1 is in Ī , this contradicts non-triviality.
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Now, this means that the idealI can be extended to a nontrivial ideal of

[Dh(λ ,χ)(0)(h−1)]x/mx

by first completing and then invertingh. But now this is ak((h))-central simple algebra by
proposition 9, which is a contradiction. �

5.3. Localization Theorem. With the background of the previous sections, we can now
give a proof of the localization property for the sheafDλ ,χ . Throughout this section, we
make the following assumption: the cohomology groupsH i(S̃N ,OS̃N

) andH i(S̃,OS̃) van-
ish for i > 0. This is true in characteristic zero by the Grauert-Riemenschnieder vanishing
theorem, and hence it is true in sufficiently large positive characteristic. We do not know
an explicit bound.

Now, we recall the general yoga of localization in positive characteristic, which is
proposition 2.2 in [BK], and is also presented in chapter 3 of[BMR]:

Theorem 12.Let X be a smooth algebraic variety with trivial canonical class, and suppose
that X is proper over an affine scheme S. LetA be an Azumaya algebra over X, and
suppose that RΓ(A ) = Γ(A ). Then we have functor

RΓ : Db(Coh(A ))→ Db(Modf .g.(Γ(A ))

Let us further suppose that the functor

Loc : D−(Modf .g.(Γ(A ))→ D−(Coh(A ))

given by Loc(M) = A ⊗L
Γ(A ) M has finite homological dimension, and hence restricts to a

functor
L : Db(Modf .g.(Γ(A ))→ Db(Coh(A ))

Then RΓ andL are inverse equivalences of categories.

The requirement thatX have trivial canonical class is satisfied by any algebraic symplec-
tic variety. The second requirement will be fulfilled by any algebra with finite homological
dimension. It is not quite obvious that our algebras will satisfy this condition. But, follow-
ing [BMR], chapter 3, we will get around this by using a slightgeneralization for the sheaf
D̃(χ).

We should also make a few remarks about the proof. The fact that the two functors
are adjoint is general nonsense. The homological assumption on the Azumaya algebra
impliesRΓ(Loc(A ) = RΓ(A ) = A . This implies, by using free resolutions, thatLoc is
a fully faithful functor. Thus the difficulty is in showing that it is essentially surjective.
This is accomplished by using the assumption on the triviality of the canonical class. This
assumption implies that the Grothendeick-Serre duality issimply given by the shift functor
[dimX]. This means that the essential image ofLoc, which is a triangulated subcategory, is
closed under the action of this functor. This is a very strongcategorical condition, which
can be used to show that in fact the essential image ofLoc is the entire category.

In addition, we would like to have a description of the algebra Γ(A ) in our case. We
shall show in the next section that it agrees with the modularversion of theW-algebra
described by Premet. In particular, we have the following

Proposition 13. We have isomorphisms of algebras:

Γ(D̃(χ))=̃U(g,e)⊗O(h∗)W O(h∗)

and
Γ(Dλ ,χ)=̃Uλ (g,e)
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where these algebras are Premet’s modular W-algebras, defined over an algebraically
closed field of positive characteristic. The tensor productin the first line makes sense
because O(h∗)W=̃ZHC(U(g)) is a central subalgebra of U(g,e).

The reason we need to delay the proof is that these algebras are actually defined in
terms of reduction modp of the analogous characteristic zero objects. Thus we have to
use the discussion of the reduction procedure in the next section. Although we do use this
proposition later in this section, the results of the next section are completely independent
of this one.

In addition, without describing the multiplication on these algebras explicitly, we can
give the following consequences of this definition:

Lemma 14. The algebrasΓ(D̃(χ)) and Γ(Dλ ,χ) carry natural filtrations, and we have
that grΓ(D̃(χ))) = O(S)⊗S(h)W S(h) and gr(Γ(Dλ ,χ)) = O(SN ). Further, we have that

Γ(D̃(χ))=̃RΓ(D̃(χ)) and thatΓ(Dλ ,χ)=̃RΓ(Dλ ,χ).

Proof. The fact that the algebras are filtered follows by taking global sections of the natural
filtrations onD̃(χ) andDλ ,χ , respectively (we recall here that these sheaves of algebras are
defined by taking a quantized algebra modh−1; thus they carry filtrations). By definition,
we have that

gr(Dλ ,χ)=̃O(SN )

and
gr(D̃(χ))=̃O(S̃)

The cohomology vanishing assumption at the beginning of this section now shows the
cohomology vanishing forDλ ,χ andD̃(χ) by a standard spectral sequence argument. Fur-
ther, we then see that the sequences

0→ Γ(S̃N ,Dλ ,χ
i )→ Γ(S̃N ,Dλ ,χ

i+1)→ Γ(S̃N ,O(S̃N )i+1)→ 0

(and the analogous one forS̃) are exact for alli. This shows the statements about the
associated graded algebras. �

Now we are almost in a position to state and prove the localization theorems which are
relevant to this paper. The only remaining obstacle is the issue of the algebras having finite
homological dimension. We shall get around this in the same way as [BMR], section 3,
whose notation and proofs we follow very closely.

First we define the localization functor

L : Db(modf .g.(U(g,e))→ Db(modcoh(D̃(χ))

asL (M) = D̃(χ)⊗L
U(g,e) M. We note that the above proposition makesU(g,e) a sub-

algebra ofW̃(χ), and further thatU(g,e) is a filtered algebra whose associated graded
is isomorphic toO(S) (the coordinate ring of affine space). Thus this algebra has finite
homological dimension. Therefore this definition makes sense.

Next, we note that there is an action ofO(h∗) on the sheafL (M) (via its action on
D̃(χ)), while there is only an action ofO(h∗)W on M. So, forλ ∈ h∗, we can define the
categorymodf .g.

λ (U(g,e)) of modules such that the algebraO(h∗)W acts by a generalized
central characterλ (i.e., the image ofλ in h∗/W), and there is a decomposition

L (M)=̃
⊕

µ∈W·λ
L

µ→λ (M)
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via the action of the generalized characters inO(h∗). We wish to study the functorL λ→λ (M)
whenλ is a regular element ofh∗.

If we define the categorymodcoh
λ (D̃(χ)) to be the full subcategory ofmodcoh(D̃(χ)) on

objects such thatO(h∗) acts with generalized central characterλ , then we note that the
image ofL λ→λ lands inDb(modcoh

λ (D̃(χ))). We shall denote this functor by

L
λ̂ : Db(modf .g.

λ (U(g,e)))→ Db(modcoh
λ (D̃(χ)))

We note right off the bat that this functor takes makes sense on bounded derived categories
since it is defined as a summand of a functor which does the same.

Our other important functor will be the functor

L
λ : D−(modf .g.(U(g,e)λ )→ D−(modcoh(Dλ ,χ))

defined asL λ (M) =Dλ ,χ ⊗L
U(g,e)λ M. Our aim is to show that in fact this functor has finite

homological dimension. This will be accomplished once we prove

Lemma 15. Supposeλ is regular. Then we have a compatibility betweenL λ andL λ̂ ; in
other words, if we consider the inclusions i: D−(modf .g.(U(g,e)λ )→D−(modf .g.

λ (U(g,e))

andι : D−(modcoh(Dλ ,χ))→ D−(modcoh
λ (D̃(χ)) then we have

ιL λ =̃L
λ̂ i

Obviously, this lemma proves the needed claim thatL λ preserves the bounded derived
categories.

Proof. (of the lemma). The key point is to rewrite the functorL λ̂ in a way that makes it
closer toL λ . To do that, we first define the sheaf

D̃(χ)λ̂ := D̃(χ)⊗O(h∗) O(h∗)λ̂

whereO(h∗)λ̂ is the completion of the ringO(h∗) at the ideal generated byλ . Then for
anyM ∈ modf .g.

λ (U(g,e)), the definitions yield

(5.1) L
λ̂ (M)=̃D̃(χ)λ̂ ⊗U(g,e) M

On the other hand, we have by definition

Dλ ,χ = D̃(χ)⊗O(h∗) kλ

(wherekλ is the one dimensionalO(h∗)-module corresponding to the maximal idealλ ).
Now, sinceλ is regular, the projectionh∗ → h∗/W is etale atλ , and so there is an isomor-
phism

O(h∗)λ̂ ⊗O(h∗/W) kλ =̃k

and so we deduce

D̃(χ)λ̂ ⊗L
U(g,e)U(g,e)λ =̃ (D̃(χ)⊗O(h∗) O(h∗)λ̂ )⊗L

U(g,e)U(g,e)λ =̃Dλ ,χ

because of the isomorphismU(g,e)λ =̃U(g,e)⊗O(h∗/W) kλ . But this equivalence is pre-
cisely the isomorphism of functors that we wanted, after writing out the definitions of the
localization functors, and using the realization 6.1. �

With this out of the way, we can now state our localization theorem for modularW-
algebras:
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Theorem 16. The functors

RΓ : Db(modcoh
λ (D̃(χ)))→ Db(modf .g.

λ (U(g,e)))

and
RΓ : Db(modcoh(Dλ ,χ))→ Db(modf .g.(U(g,e)λ ))

are equivalences of categories, with the inverse functors given byL λ̂ andL λ , respec-
tively.

The proof of this theorem is a direct application of the general theory recalled above (in
the case of the second functor), and a slight generalizationin the case of the first functor,
as in [BMR], chapter 3.

5.4. Restriction to a Springer Fibre. Analogously to [BMR], chapter 4, (c.f. section 4
above) we can consider the above equivalence of categories after restriction to the springer

fibre B
(1)
χ . In particular, we can define categoriesmodcoh

B
(1)
χ
(D̃(χ)) andmodcoh

B
(1)
χ
(Dλ ,χ) for

sheaves which are set theoretically supported on the variety B
(1)
χ . On the representation-

theoretic side, we should restrict to those representations on which the central subalgebra
O(S̃(1)) acts via the generalized characterχ (1). We denote this category bymodχ(U(g,e)).
Then from the above equivalences of categories we immediately deduce the following

Theorem 17. We have the following equivalences of categories:

RΓ : Db(modcoh

λ ,B(1)
χ
(D̃(χ)))→ Db(modf .g.

λ ,χ (U(g,e)))

RΓ : Db(modcoh

B
(1)
χ
(Dλ ,χ))→ Db(modf .g.

χ (Uλ (g,e)))

5.5. Azumaya Splitting. Our aim in this section is to give a brief explanation of the struc-

ture of our Azumaya algebras upon restriction to the springer fibreB
(1)
χ . The result, which

will follow from the analogous one in [BMR], is the following:

Theorem 18. a)For all λ ∈ h∗, the Azumaya algebrãD(χ) splits on the formal neighbor-

hood ofB(1)
χ ×h∗(1) λ in S̃(1)×h∗(1) h

∗.

b) Let Mλ
χ be the vector bundle appearing in [BMR], theorem 5.1.1, and Eλ

χ be the

vector bundle appearing in part a). Let i denote the inclusion mapS̃(1)×h∗(1) h
∗ → g̃×h∗(1)

h∗. Then there is a vector space V, of rank pdimB−dimBe, such that i∗Mλ
χ =̃Eλ

χ ⊗kV.

The proof of this theorem relies on an examination of the proof of theorem 5.1.1 in
[BMR]. In particular, the argument there relies on an analysis of the generic structure of
the Azumaya algebrãD, which works as follows:

We leth∗unr denote the open subset ofh∗ consisting of thoseλ such that for any coroot
α we have either< α,λ + ρ >= 0 or < α,λ >/∈ Fp. These are called the unramified
weights. Then Brown and Gordon [BG] described the structureof U(g) as an algebra over
the schemeZunr := g∗(1)×h∗(1)/W h∗unr as follows:

Proposition 19. The algebra U(g)⊗ZZunr is Azumaya overZunr.

In [BMR], chapter 3, they deduce the following (which is recorded there as proposition
5.2.1b))

Proposition 20. U(g)⊗Z O(g̃∗
(1)

×h∗(1) h
∗
unr)→̃D̃|

g̃∗
(1)

×
h∗(1)

h∗unr
.
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Thus, if the weightλ is unramified, the restriction of̃D to the formal neighborhood

B
(1)
χ ×h∗(1) λ , is the pullback of an Azumaya algebra on the formal neighborhood of the

point χ (1) in g∗(1). Since every Azumaya algebra over the formal neighborhood of a point
is split, this implies the existence ofMλ

χ in this case. One can deduce the general case from
this one, by noting that there is a functor of “twist by a line bundle” which interchanges
different weights.

To see how to deduce the result in our case, we apply Hamiltonian reduction to both
sides of proposition 19. We immediately arrive at the isomorphism

U(g,e)⊗S∗(1)×
h∗(1)/W

h∗ O(S̃∗
(1)

×h∗(1) h
∗
unr)→̃D̃(χ)|

S̃∗(1)×
h∗(1)

h∗unr

Thus we will be able to finish the argument the same way if we canshow that the
algebra appearing on the left hand side is Azumaya, at least upon restriction to the formal
neighborhood of the pointχ (1). This is indeed the case, and we can argue as follows:
let U(g,e)χ denote the quotient of the algebraU(g,e) by the ideal generated by point
χ (1) ∈ S̃(1), and letU(g)χ denote the enveloping algebra at thep-characterχ . Then Premet
in [P1] has given an isomorphism

U(g)χ=̃Matpd(e)(k)⊗kU(g,e)χ

whered(e) is the numberdim(B)−dim(Be). Thus the restrictionU(g,e)λ
χ (with λ un-

ramified) is indeed a matrix algebra overk, as required. The general theorem (part a)
now follows by the same “twist by a line bundle” argument as in[BMR]. Part b) follows
immediately from the above isomorphism.

Finally, combining the last two sections we arrive at the following equivalences:

Theorem 21. There are equivalences of categories, for regular integralλ :

Db(Coh
B

(1)
χ ×λ

( ˜S(1)×h∗(1) h
∗))→̃Db(modcoh

λ ,B(1)
χ
(D̃(χ)))→̃Db(modf .g.

λ ,χ (U(g,e)))

Db(Coh
B

(1)
χ
(S̃N ))→̃Db(modcoh

B
(1)
χ
(Dλ ,χ))→̃Db(modf .g.

χ (Uλ (g,e)))

Remark22. In a later version of the preprint, we shall give some applications of this
theorem to the representation theory of modular lie algebras. In particular, we shall use
it to give a new proof of a theorem of Jantzen and Soergel concerning the endomorphism
algebra of a projective object in the case thatχ is a regular nilpotent element.

6. REDUCTION MOD P

Since our problem involves relating certain constructionsoverC with those over fields
of positive characteristic, we shall have to give a construction of all our objects over a ring
A which is finitely generated overZ. We shall have to follow very closely Premet’s work
[P2] on the modularW-algebras, since part of our goals involve relating our constructions
to his.

We begin by recalling the sheafDh(λ )(0)Z, which is a quantization of the scheme
T∗B(Z). By base extension, this yields a sheafDh(λ )(0)A for an arbitrary ringA, which
is a quantization ofT∗B(A).

At this point, we would like to ape the construction given in the previous section, and
define a quantization of̃Se(A) via Hamiltonian reduction of the sheafDh(λ )(0)A. As it
turns out, we will have to do a little more work then that to geta reasonable object.
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As a first approximation to what we want, recall from the previous section that all of
the objects needed to define the finiteW-algebra- the enveloping algebra, the nilpotent
subalgebraml , its associated groupMl , are defined and free over a ringA= Z[S−1] where
S is a finite set of primes which depends on the type ofg and the choice of nilpotent
element. Then we can define an ideal sheaf ofDh(λ )(0)A

I = Dh(λ )(0)A·< m− χ(m)|m∈ml ,A >

where an elementm∈ ml ,A acts onDh(λ )(0)A through the natural action ofgA (c.f. the
definition ofDh(λ )(0)A given above). From here, the naive Hamiltonian reduction can be
defined as:

Dh(λ ,χ)(0)A := p∗EndDh(λ )(0)A(Dh(λ )(0)A/I)

wherep : µ−1(χ)→ S̃e is the morphism of Hamiltonian reduction, as above. WhenA=C

then this is just the usual reduction of differential operators, defined, e.g., in [KR] and used
in [DK]. Unfortunately, for an arbitrary ringA, this object might not be flat over the variety
S̃e,A, and hence is unsatisfactory for use in arguments where we have to reduce modp.

To get around this problem, we shall use the technique of defining anA-lattice of the
sheafDh(λ ,χ)C (for suitableA) which will be flat by construction. For reasonable rings
A, this construction will agree with the naive one introducedabove.

We start with the “global” case, which is Premet’s construction.

6.1. Premet’s Construction. In this subsection, we give a slight variant of the construc-
tion of Premet. We start with the finiteW-algebra overC, U(g,e). We know (c.f. section
2 above) thatU(g,e) is a filtered algebra, and it satisfiesgr(U(g,e))=̃O(S). Let’s consider
the Rees algebra ofU(g,e) with respect to this filtration, which we shall denoteUh(g,e)
(this is uncompleted with respect toh). Then we have thatUh(g,e)/h=̃O(S).

So, we choose homogeneous elements{Xi} which generateUh(g,e) as aC[h]-module
and whose images modh form a homogeneous algebraically independent generating set for
O(S). The relations for the elementsXi involve finitely many complex numbers. Therefore,
we can choose a ringA, finitely generated overZ, which contains all constants for these
relations. Thus we define a ringUh,A(g,e), which is a finitely generated gradedA[h]-algebra
and which satisfiesUh,A(g,e)⊗AC=̃Uh(g,e)

4. Then this ring is clearly a freeA[h]-module
by construction, sinceUh(g,e) is a freeC[h]-module.

By possibly making a finite extension ofA, we can also demand something more. Recall
that there is an injection of algebrasC[h∗]W →Uh(g,e) via the action of the centerZ(U(g))
and the Harish-Chandra isomorphism. We choose the ringA so that there is an injection
A[h∗]W →Uh,A(g,e), which, when base-changed toC, becomes the action of the center.

Next, we define the algebraUh(g,e)A as the “naive” Hamiltonian reduction(Uh(gA)/I)Ml ,A

as in the previous section. Then we have the standard realization

Uh(g,e)A=̃EndUh(gA)(Qh,χ(A))

whereQh,χ(A) = Uh(gA)/I as a leftUh(gA)-module. ThenQh,χ(A) is an A-lattice in
Qh,χ(C). So, enlargingA if necessary, we may assume that each of theXi preserveQh,χ(A).
This yields a mapUh,A(g,e)→Uh(g,e)A.

Now, let k be any algebraically closed field of positive characteristic such that there is
a morphismA → k (there are infinitely many characteristics possible sinceA is finitely
generated overZ). The we make the

4We should note that this algebra depends on the choice of the{Xi}, which is far from unique. Premet [P]
makes a specific choice. This won’t be necessary for us, sincethe claim below implies that the resulting algebras
are well defined after base-changing to an algebraically closed field.
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Claim23. We haveUh,A(g,e)⊗A k=̃Uh(g,e)k

Proof. First, we have the natural mapUh,A(g,e)⊗A k→Uh(g,e)k obtained by base change
of the map in the previous paragraph. The right hand side is now a (Frobenius-constant)
quantization of the varietyS (by the theory of Hamiltonian reduction presented in the
previous section), and hence satisfiesUh(g,e)k/h=̃O(S). But the left hand algebra satisfies
the same relation by construction. So the natural map modh is an isomorphism, and hence
so is the map itself. �

Now we shall generalize all this to the local case.
To do this, we momentarily work overC again: we have by section 6.4 above that

the quantizationDh(λ ,χ)(0)C was the restriction of a sheaf of algebrasDλ ,χ
h (C) on the

schemeS̃N ×A1
C, which of course satisfies

Dλ ,χ
h (C)/hDλ ,χ

h (C)=̃O ˜SN

It is well-known that the schemẽSN is defined and flat overA for suitableA (in particular
Z[S−1] whereS is a finite set of primes will suffice) . For a given finite open affine cover of
S̃N ,A, denotedUi, we can choose, consistently with the cover, generators ofO(S̃e,A,Ui) (as

A-algebras), and then choose (consistently with the cover) lifts of these toDλ ,χ
h (C)(Ui).

Now we proceed exactly as above: we regard these elements as living insidep∗EndDλ
h
(Dλ

h/I),

we extendA so that they preserve the subspace(Dλ
h (A)/IA). BecauseDλ

h (A)/IA is finitely
generated overDλ

h (A), the resultingA can be chosen to be finitely generated overZ. Then,

we can look at theA[h] algebra generated by these elements inside eachDλ ,χ
h (C)(Ui). Be-

cause of the consistency conditions specified above, these glue together to form a sheaf on
S̃e,A which will be denotedDλ ,χ

h,A . It is clearly a subsheaf ofDλ ,χ
h (A). In addition, since

Dλ ,χ
h (C) is a free finitely generatedC[h]-algebra, we clearly have thatDλ ,χ

h,A is free and
finitely generated overA[h]. By the construction we see that

Dλ ,χ
h,A /hDλ ,χ

h,A =̃O(S̃N ,A)

and

Dλ ,χ
h,A ⊗AC=̃Dλ ,χ

h (C)

In a completely parallel fashion, we can define the sheafD̃h,A(χ) as a sheaf of algebras
on the varietyS̃A. We chooseA so that there is an injection of algebrasA[h∗]→Γ(D̃h,A(χ)),
which base changes to the corresponding map overC.

So, we can argue exactly as in the claim above to show

Claim 24. Let k be any algebraically closed field of positive characteristic such that there
is a morphismA→ k. Then we have an isomorphism

Dλ ,χ
h,A ⊗A k=̃Dλ ,χ

h (k)

there is also an isomorphism

D̃h,A(χ)⊗A k=̃D̃h,k(χ)
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6.2. Global Sections. In this section, we shall prove the unproved assertions of the previ-
ous chapter. Above we have defined algebrasUh,A(g,e).

Definition 25. The algebraU(gA,e) is defined to beUh,A(g,e)/(h−1). By the discussion
in the previous section, this agrees (for some choice of basis) with the definition given in
[P2].

We wish to compare these algebras to the global sections of the “local” versions that
we also introduced. This is a straightforward matter given the discussion above- we sim-
ply chooseA large enough so that there are isomorphismsΓ(Dλ

h (A)/IA)=̃Uλ (gA)/IA and
Γ(D̃h(A)/IA)=̃U(gA)⊗A[h∗]W A[h∗]/IA. Then, since everything is defined as operators on
these spaces, we immediately deduce isomorphisms of naive Hamiltonian reductions

Γ(D̃h(χ)(A))=̃Uh(g,e)A⊗A[h∗]W A[h∗]

and
Γ(Dλ ,χ

h (A))=̃Uh(g,e)A⊗A[h∗]W Aλ :=Uλ
h (g,e)A

where byAλ we mean theA[h∗]W- module corresponding to the maximal ideal generated
by the integral weightλ . By choosing appropriate bases, we then get isomorphisms ofour
flat quantizations

Γ(D̃h,A(χ))=̃Uh,A(g,e)⊗A[h∗]W A[h∗]

and
Γ(Dλ ,χ

h,A )=̃Uh,A(g,e)⊗A[h∗]W Aλ :=Uλ
h,A(g,e)

By base-change tok, we see that these isomorphisms yield immediately proposition 13
in the previous section.

6.3. Localization over A. In this subsection, we shall describe a localization functor
which lives over the ringA. In particular, the isomorphisms of the previous section al-
low us to define

L
λ
A : Db(modf .g.(Uh,A(g,e)

λ ))→ Db(modcoh(Dλ ,χ
h,A ))

via
L

λ
A (M) = M⊗L

Uh,A(g,e)λ Dλ ,χ
h,A

5For the application we have in mind, we will start with anM ∈ modf .d.(Uλ (g,e)C). We
choose a good filtrationF onM, and using it we arrive at a moduleRees(MA) over the ring
Uλ

h,A(g,e), and hence a complex of sheaves, its localization, which by abuse of notation we

denoteL λ
A (MA).

From here, we can define the complexCS(MA) := L λ
A (MA)/h, which is a complex of

coherent sheaves oñSN ,A. This object will interpolate between the characteristic cycle in
characteristic zero and the localization in characteristic p. Although this sheaf depends on
the choice of a good filtration, the underlying cycles will not (c.f. [HTT], appendix D).

Let us note a few things about the sheafL λ
A = MA⊗

L
Uh,A(g,e)λ Dλ ,χ

h,A . Upon taking the

(derived) base change toC, and invertingh, we arrive at the localization functor of [DK]. In
particular, we have a class[CS(MA)]∈K(S̃A), whose base change toC is the class[CS(M)].

We can also take the (derived) base change to any algebraically closed fieldk (of posi-
tive characteristic), taking the quotient of this byh−1 then yields the localization functor

5It might not be immediately obvious that this functor lands in the bounded derived category. But we can
argue as in the previous section (reducing to the whole ringUh,A(g,e) to see that it does.
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L λ
k (Mk) discussed above (we note that taking the quotient byh−1 is actually an equiv-

alence of categories in positive characteristic by [BK], lemma 3.4). From this we deduce
immediately the following compatibility:CS(L λ (Mk)) = L λ

A (MA)⊗A k/(h) whereCS
denotes the sheaf we get after taking associated graded withrespect to the induced filtra-
tion (as aDλ ,χ-module).

We wish to analyze the support of the sheafL λ
A (MA)⊗A k. To this end, we have the

Proposition 26. The support ofL λ
A (MA)⊗A k/(h), as a closed subset of̃Sk, is simply

the image under Fr of the support ofL λ (Mk) in S̃(1)k . In fact, we can even say that

Fr∗[CS(L λ (Mk)] = [L λ (Mk)] in K(S̃(1)k ).6

Proof. This is essentially just a restatement of the fact thatDλ ,χ is a frobenius constant

quantization. For this tells us thatF : O(S̃(1)k ) → Dλ ,χ becomes the frobenius morphism
after taking the associated graded. On the other hand, pulling back underF is exactly how

we arrive at the support ofL λ (Mk) as a sheaf oñS(1)k . The refined result follows from the
rational invariance ofK-theory. We are comparing the classes of two coherent sheaves on
S̃(1). Both are obtained from the sheafRees(L λ

k (Mk)) on S̃(1)×A1, the first by restriction
to h= 0, the second by restriction toh= 1. �

Now, sinceM is a finite dimensional module overUλ (g,e), its support overS is simply
the pointχ . After reduction modp, for p sufficiently large, this implies thatMk is a module

in modχ(Uλ (g,e))- simply because the mapO(S(1)k ) → U(g,e)k becomes the frobenius
morphism after taking gr (as in the proposition).

So, combining this discussion with the theorems in the previous section, we see that
L λ

A (MA)/(h) is supported, set theoretically, onBχ - and hence the same is true of the base
changeL λ

C (M). So now we can state definitively our “base change” lemma:

Lemma 27. The class[CS(MA)] actually lives in K(CohBχ,A(S̃A) = K(Bχ ,A). Its pullback

to K(Bχ ,k) induces the class[CS(L λ (Mk))], and the pullback toC induces[CS(M)].

Since the “specialization morphism”K(Bχ ,C) → K(Bχ ,k) (c.f. [BMR], chapter 7) is
an isomorphism (and the same is true of the induced mapH∗(Bχ ,k)→ H∗(Bχ ,C)), and the

mapK(modf .d.(Uλ (g,e)) → K(modf .g.
χ (Uλ (g,e)) is injective, see that we have reduced

the injectivity problem to the following

Theorem 28. The morphism K(modf .g.
χ (Uλ (g,e))→ K(Bχ ,k)→ Htop(Bχ ,k) is injective.

Remark29. We should comment here that for allp sufficiently large, there are isomor-
phisms between the groupsK(Bχ ,k) obtained via the comparison with characteristic zero.
If we choose a ringAwhich works simultaneously for all simple finite dimensional Uλ (g,e)-
modules, then we see that we can choose any algebraically closed field of large positive
characteristic to show injectivity. We make such a choice from now on.

The proof of this theorem will occupy the next section.

7. K-THEORY

We shall need to recall a few facts from the algebraicK-theory developed in [F] and
[BFM]. In particular, recall that if we have a proper schemeY, and a closed embedding

6Here we are simply regarding the sheafL
λ (Mk) as a coherent sheaf oñS(1)in the naive way; we are not

invoking any Azumaya splitting.
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Y → X, whereX is smooth, then we have a “localized chern character” map

chX
Y : KQ(Y)→ AQ(Y)

whereAQ(Y) denotes the rational chow ring of algebraic cycles. The map is obtained
by realizingA(Y) as a ring of cycles onX which are supported onY. This map has the
following functorial property: ifZ → W is another inclusion of a proper into a smooth
variety, andf : X →W restricts to a morphism fromY to Z, then we have

f ∗chW
Z = chX

Y f ∗

There is also the “Riemann-Roch” morphismτ : KQ(Y)→ AQ(Y); this morphism respects
proper pushforward. The two morphisms are of course quite different, but in both cases
the projection to the “top” pieceAdim(Y)(Y) yields the same algebraic cycle.

As A(Y) is a graded vector space, we shall denote by(chY
X)i andτi the maps obtained

after projection to the degreei cycles.
All of the varieties we will consider below (namely, the springer fibres) have the prop-

erty that their cohomology is spanned by the classes of algebraic cycles (c.f. the main
results of [DLP]). Thus we have a degree doubling isomorphism

AQl (Y)→ H∗(Y)

where we must now consider the etale Borel-Moore homology group. Given this, we shall
mainly work with the groupsAQ(Y) from now on. From this condition on our varieties it
also follows that the morphismschX

Y andτ are isomorphisms.
With all this in hand, we can proceed to the proof of theorem 28. First of all, we have

a functormodcoh
χ (Dλ ,χ) → modcoh

χ (Dλ ), given byF → V ⊗F (c.f. section 6.7 for the

vector spaceV of dimensionpd(e)).
Next, we recall the Azumaya splitting of section six. Let us denote the coherent sheaf

obtained fromMk via this splittingCoh(Mk). So we have that

Eλ
χ ⊗Coh(Mk)=̃L

λ (Mk)

and therefore (by section 5.5) that

Mλ
χ ⊗Coh(Mk)=̃V ⊗L

λ (Mk)

whereMλ
χ is the splitting bundle of [BMR] (note here thatCoh(Mk) is scheme theoretically

supported oñSN ). But the class inK-theory of this bundle has already been studied. If we
make the normalization following [BR], then by [BMR] section 6, we in fact have

[Mλ
χ ] = [((FrB)∗OB)|

B
(1)
χ
]

where we are now consideringBχ as a subvariety ofB (i.e., the class on the right lives in

K
B

(1)
χ
(B(1)) which is isomorphic toK(B

(1)
χ )). Combining these equalities with push-pull

now yields the following:

Lemma 30. We have the following equalities in K(B(1)
χ ):

[L λ (Mk)] = p−d(e)[((FrB)∗OB)|
B

(1)
χ
][Coh(Mk)] = p−d(e)(FrB)∗(FrB)∗[Coh(Mk)]

where we use the fact that the action of Fr onB takesBχ to B
(1)
χ .
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Now, we would like to combine this information with our equality from the previous
section

Fr∗[CS(L λ (Mk)] = [L λ (Mk)]

In this equality however, we were considering the frobeniuswith respect to schemẽS(1)
N

.
However, the discrepancy is rectified by the following

Claim31. (FrS̃N
)∗[CS(L λ (Mk)] and(FrB)∗[CS(L λ (Mk)] agree as classes inK(B

(1)
χ ).

Proof. As CS(L λ (Mk) is set-theoretically supported onBχ , it has a finite filtration by
sheaves which are scheme-theoretically supported there. This filtration means that we can
write the class[CS(L λ (Mk)] as a sum of classes[Ai ] of sheaves on the schemeBχ .

However, the proof for sheaves of this type is simply an examination of the definition of
the frobenius morphism, which makes it clear that the restriction of FrS̃N

to Bχ andFrB

to Bχ coincide- in fact they are bothFrBχ . �

So now we are free to compare the previous inequalities and deduce that

(FrB)∗[CS(L λ (Mk)] = p−d(e)(FrB)∗(FrB)∗[Coh(Mk)]

in K(B
(1)
χ ).

To prove the theorem, it remains to study the action of the operators(FrB)∗ and(FrB)∗

onK-theory. To start, we have

Proposition 32. The map(FrB)∗ : K(Bχ)→ K(B
(1)
χ ) is injective.

Proof. The mapFr is finite, flat, and bijective on closed points. After application of the
mapτ, which commutes with proper pushforward, we see that it is enough to check our
claim at the level of algebraic cycles. But it is immediate from the aforementioned proper-
ties of the mapFr that it takes a set of linearly independent cycles to another. Further, we
know that the chow groups of springer fibres are spanned by such cycles. �

Combining the proposition with the previous equality, we arrive an equality inK(Bχ):

[CS(L λ (Mk)] = p−d(e)(FrB)∗[Coh(Mk)]

Now, we must evaluate the operator(FrB)∗. To this end, we shall translate the problem to
A(Bχ) via the localized chern characterchB

Bχ
. We see that we have equalities

(chB
Bχ )i(FrB)∗ = (FrB)∗(chB(1)

B
(1)
χ
)i

in Ai(Bχ).

Further, we can make an identificationA(Bχ)=̃A(B(1)
χ ) by the isomorphism of abstract

varietiesBχ=̃B
(1)
χ . Then we have the

Proposition 33. The map(FrB)∗|
Ai(B

(1)
χ )

followed by by the identification Ai(Bχ)=̃Ai(B
(1)
χ )

is simply multiplication by pdimB−i .

Proof. As above, sinceFr is finite, flat, and bijective on points, it is clear that the pull-back
takes a cycle to a multiple of itself. Thus, it suffices to check the multiplicity locally, on
an open subset of a cycle (which is equivalent to checking at the generic point). So, we let

V(1) be an algebraic subvariety ofB
(1)
χ of dimensioni, andx ∈ V(1),sm its smooth locus.
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We consider the completed local ring at such a point,Ôx,V(1)=̃k[[xp
1, ...,x

p
i ]]. Then we can

compute the pullback underFr as:

Ôx,B ⊗
Ô

x,B(1)
Ôx,V(1)=̃k[[x1, ...xdimB]]/(x

p
i+1, ...,x

p
dimB)

which isÔx,V -module of rankpdimB−i. The identificationAi(Bχ)=̃Ai(B
(1)
χ ) simply sends

the cycleV to V(1). This proves the proposition. �

Now, we let [Coh(Mk)]
(−1) be the class inK(Bχ) which corresponds to[Coh(Mk)]

under the identificationK(Bχ)=̃K(B
(1)
χ ) (we choose the identification of these groups

which is compatible underchB
Bχ

andchB(1)

B
(1)
χ

with the identificationA(Bχ)=̃A(B(1)
χ ) used

above). Then the proposition combined with our previous equality yields

(chB
Bχ )i [CS(L λ (Mk)] = p−d(e)pdim(B)−i(chB

Bχ )i [Coh(Mk)]
(−1) = pdim(Bχ)−i(chB

Bχ )i [Coh(Mk)]
(−1)

(the last equality is simply becaused(e) = dim(B)−dim(Bχ)).
Now we finish the proof of the theorem: forchar(k) sufficiently large, the class[CS(L λ (Mk)]

is independent ofp (it is defined as the reduction of a class overA). Further, the main result
of [BM], chapter 5, asserts that the same is true of the class[Coh(Mk)]

(−1). So we deduce
immediately the equalities

(chB
Bχ )i [CS(L λ (Mk)] = 0

for i 6= dim(Bχ) and

(chB
Bχ )dim(Bχ )[CS(L λ (Mk)] = (chB

Bχ )dim(Bχ )[Coh(Mk)]
(−1)

So from this we conclude that

(chB
Bχ )dim(Bχ )[CS(L λ (Mk)] = (chB

Bχ )dim(Bχ )[Coh(Mk)]
(−1) = (chB

Bχ )[Coh(Mk)]
(−1)

The map on the left is exactly the characteristic cycle map. In addition, the map on the
right is the image inK-theory of the equivalence of categories

Db(modf .g.
χ (U(g,e)λ )→ Db(CohBχ (S̃N ))

and thus is obviously injective. This proves Theorem 27, andthus the injectivity in char-
acteristic zero.

8. W-EQUIVARIANCE

This section is devoted to a discussion of the equivariance of the characteristic cycle
with respect to the action of the Weyl groupW7. To see the underlying reasoning, let us
recall the following

Theorem 34. ([B], [R]) For any algebraically closed field k of sufficiently large positive
characteristic (or characteristic zero), the varietyS̃N ,k admits a (weak) action of the braid
group B of typeg. This action induces an action of the Weyl group W on KQ(Bχ), where
it is equivalent to Springer’s representation.

Thus, combining this with the result of the previous section, we see that it suffices to
show that theW action onK(modf .g.(Uλ (g,e))), upon reduction modp, agrees with the
above defined action on the category of coherent sheaves. Since it is already known (c.f.
[R]) that this braid group action agrees with the one coming from the translation functors
on U(g)-modules, the problem then boils down to showing that the translation functor

7This is only a brief sketch of an argument. A more complete proof will appear in a later version of the paper
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theory forW-algebras is compatible with the one for lie algebras. This essentially follows
from the definitions.
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