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INJECTIVITY OF A CERTAIN CYCLE MAP FOR FINITE DIMENSIONAL
W-ALGEBRAS

CHRISTOPHER DODD

ABSTRACT. We study a certain cycle map defined on finite dimensionalutesdfor the
W-algebra with regular integral central character. Via panson with the theory in postive
characteristic, we show that this map injects into the topeBbloore homology group of
a Springer fibre. This is the first result in a larger prograrndmpletely desribe the finite
dimensional modules for the W algebras.

1. INTRODUCTION

Recently, the subject of the finit&/-algebras has come to the attention of many re-
searchers. Although originally introduced in the physiteséture, they were first defined
in a mathematical context by Premet [P1], who related thetindatudy of (non-restricted)
modular representations of semisimple lie algebras. Thddmental paper of Gan and
Ginzburg [GG] reproved some of Premet’s results, and retbash in the light of non-
commutative algebraic geometry. Since then, many authers made contributions to
their study, c.f., e.g., [P2], [L1], [L2], [BGK],[DK], andhe survey articles [L3] and [W]
have appeared. In particular, the results of [BGK] and [L/&] @oncerned with the finite
dimensional representationsW-algebras. Despite the significant progress made there,
some fundamental questions remain open. For instance) giVimiteW-algebral (g, e)
and an integral central characferit is still not known how to parametrize the simple finite
dimensional (g, e) modules with character. The goal of this paper is to provide the first
step to answering this question. In fact, we will provide saetailed information on the
K-groupKg(mod'4 (U (g,e))).

Our main tool will be the use of a certain characteristic eyohp which takekq (U* (g, €))
to the the homology groupliop(Ze, Q)- this is the top Borel-Moore homology of the
Springer fibre associated to the nilpotent elene(definitions will be recalled below).
The latter group has a natural basis (a3-avector space) indexed by irreducible compo-
nents of the varietye. In addition, it has the structure of a module over the Weglugr
associated tg, W. This is the classical construction of Springer, which fiatlsof the
simpleW-modules in such homology groups.

The groupKg(U”(g,e)) also has a natural structure of¢module, via the action of
reflection functors on the categod/ (g,e) — mod The theory of these functors, which
is parallel to the classical theory of reflection functonstdg) developed by Jantzen, has
been worked out by Losev. We shall recall their basic pragekelow.

With all of this in hand, we can state the basic theorem ofjthiser.

Theorem 1. The cycle map
cc: Kg(mod™% (U? (g,€))) — Hiop(Ze, Q)

is injective and W -equivariant, with respect to the actiohg/ discussed above.
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Let us note right away that the paper [ES] provides a weakesioe of this result;
namely, they prove the numberical bound

dim(Kg(mod"®(U” (g,€)))) < dim(Hop(Ze, Q))

Their proof usedD-module theory in characteristic zero and the theory ofngmi’s
representations.

The main tool of this paper will be the use of reduction mpand a comparison with
the theory ofW-algebras over algebraically closed fields of positive abtaristic. Fol-
lowing the reasoning of [BMR], we shall construct a locdiiaa theory for such algebras,
and compare the resulting geometry with the geometry inaataristic zero. In positive
characteristic, we have extra tools such as the Azumaytisgland the action of the
frobenius morphism. We shall use these to deduce the residufficiently large positive
characteristic, and then we shall transfer to characiersto.

We should also point out that I. Losev and V. Ostrik have aectje about the image
of the mapcc, which has been partially proved by them. To state it, letacslt that to
the nilpotent elemerg, we can also associate a (possibly trivial) eith the Weyl group
W (c.f. [Lu] for a complete introduction to cells and represgions of Weyl groups and
Hecke algebras). To this cell we can then associate

HtO p(%& Q)C

a subW-representation dflop(%e, Q). They conjecture that this is the image of the map
cc. Therefore, combined with the result in this paper, the pofdhis conjecture would
yield a complete description &g (mod'% (U (g,e))).

The author would like to express his gratitude to Ivan Lofmsuggesting the problem,
and to Roman Bezrukavnikov for many helpful conversations.

2. FINITE W-ALGEBRAS

There are a great many references which explain the basgtrootion of the finite
W-algebras. The papers of Premet [P1], Gan-Ginzburg [G&], Brundan-Goodwin-
Kleschev [BGK] all have very complete introductions. Fomnare shall just recall the
very basic outline of what we need.

We let g be a complex semisimple lie algebra, anddet g be a nonzero nilpotent
element. By the Jacobson-Morozov theorem, there dxfst g such that{e, f,h} form
an sl,-triple, and we fix such a triple. We define the Slodowy si®€ g* to be the
affine subspace which corresponds, via the killing isomisrplg=g*, to the affine space
e+ ker(ad(f)). Slodowy’s book [Slo] contains a wealth of information oresle spaces
and their uses in lie theory. Three facts about these spaeesieial for us.

The first, recorded in [G-G] section 3, is that this affine gphas a natural Poisson
structure inherited from the Poisson structuregbn The second, to be found in [G-G],
section 2, is that the spa@admits a naturaC* action defined as follows: our chosen

slp-triple gives a homomorphisi: SL(C) — G, and we defing/(t) = V(é tol), so

thatAd(y(t))e = t?e; so we defing(t) =t~2Ad*(y(t)), aC*-action ong which stabilizes
S and fixesy (the element ofy* corresponding te@ under the killing isomorphism). In
fact, this action contractSto x. So, we get a grading d@(S) and it is easy to see that the
Poisson multiplication respects this grading.

Finally, we wish to recall that the spaBecan be realized as a “Hamiltonian reduction”
of the spacey*. To explain this, we lej € g* be the element associatedd¢ainder the
isomorphismg=g* given by the killing form. We define a skew-symmetric bilinéam on



INJECTIVITY OF A CERTAIN CYCLE MAP FOR FINITE DIMENSIONAL WALGEBRAS 3

g(—1) via < x,y >= x([x,y]), which is easily seen to be nondegenerate. Th(s;1), <
,>) is a symplectic vector space, and we chobseg(—1) a Lagrangian subspace. We
definem; =1 & @;-_,g(i), a nilpotent lie algebra such that., is a character ofy. We
let M; be the unipotent connected algebraic subgroup sfich thatie(M,) = m;. We let
| denote the ideal dbynig) = O(g*) generated bym— x(m)|me w }. Then we have an
isomorphism of algebras
O(5)=(O(g*) /)™

whereM; acts via the adjoint action (c.f. [G-G], lemma 2.1).

Given this, we can recall that the finite W-algebra assoditie € g, denotedJ (g, €),
is a filtered associative algebra whose associated gradssioRalgebra is isomorphic to
O(9). In fact, the algebr&) (g,e) can be defined as the Hamiltonian reduction of the en-
veloping algebrd) (g) in a manner exactly parallel to the formula above. There istaral
mapZ(U (g)) — Z(U(g,€)) which is an isomorphism. So we have the usual description of
central characters indexed by elements of the affine spAtke(whereh is a Cartan sub-
algebra ofg, andW is the Weyl group). Given & € h, we thus get an ideal &(U (g, e))
and then an ideal, of U(g,e), and we defin&? (g,e) :==U(g,e)/J,.

3. THE CYCLE MAP

In the paper [DK], the author and Kobi Kremnizer gave a geoimétterpretation of
certain categories of modules over finite W-algebras. hesiplby the classical Beilinson-
Bernstein localization theorem, we considered the sindRiésson varietpn .4 =S 4,
where.#" denotes the nilpotent cone gf. The variety.#” has a resolution of singulari-
ties, denotequ : .4 — .4/, called the springer resolution (see [CG], chapter 3, foery v
complete treatment). It turns out that the restriction &f thapy : u=1(Sy) — S is also
a resolution of singularities, and the scheme theoretitageu (S 4 ) is denotedS ;.
Further, this variety has a natural symplectic structureetvbxtends the Poisson structure
on the bas& .

Now, theC* action constructed above lifts naturally$o,, and it contracts the smooth
variety S 4 to the singular varietysy = u~1(x), the springer fibre of. This provides
the perfect setting to do geometry.

In particular, given an anti dominant regular weightve constructed a sheaf 6f[h]]-
algebrasDp (A, x)(0) on S, which is a quantization in the sense of [BK], i.e., it is flat
overC|[[h]] and satisfie®n(A, x)(0)/hDy(A, x)(0)=0(S +-). This algebra is related to the
finite W-algebra in the following way:

The algebrdJ? (g, ) is naturally filtered, as recalled above. Thus we can congsite
Rees algebra associated to this filtered algebra (c.f. [BS§€&}ion 2.4) which is naturally
an algebra ove€[h]. If we then complete with respect tp we obtain an algebra which
we callU} (g,€)(0) (One can then formally invett to obtain aC((h))-algebraJ? (g, e),
which is one of the main players in [DK], although it won't bgad here). We then have

3.1) F(Dn(A,X)(0)) = U7 (g.€)(0)

With these ingredients in hand, we can explain our constmaif the cycle of a finite
dimensional modul®! overU” (g,e). Given such, we choose any good filtratiéron M
(c.f., [HTT], appendix D). Then we have the mod&®ee$M; F) and, after completion, the

C[[h]]-moduleRee$M; F). We can then define a localization functor

Loc(M; F)(0) = Dn(A, X)(0) €42 (4 o) Ree$M;F)
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which makes sense because of 3.1. Bec@g#, x)(0) is a quantization of -, we then
get a coherent sheaf @y by letting

CSM;F) :=Loc(M;F)(0)/hLogM;F)(0)
Now we define our main object of study, the cycle map, by
cc(M) :=CC(CSM; F)) € Hiop(Hy,Q)

whereCC stands for the characteristic cycle of a coherent sheaf nAc@mnplete treatment
of characteristic cycles is provided by the book [F], and eal®tails are recalled in section
8 below. For now, we just recall that there is a chern characétp

K(X) = H,(X)

from the K theory to the total Borel-Moore homology of a projective ecte X. The
projection of this map to the top graded piecdHfX) yields the majCC.

The fact that, in our cas€&SM; F) is actually supported o#®y will also be addressed
in section 6 below.

The fact that the constructon ot does not depend on the filtration chosen (while
CSM;F) does) is a standard argument (c.f. [HTT], appendix D).

The main objective of the next few sections will be to reldtis itonstruction to the
positive characteristic machinery of [BMR], where the tiela betweerK groups of rep-
resentations and homology of springer fibres is very stradged.

4. LOCALIZATION MoD P

In this section, we’'ll review the main results of the locatipn theory for enveloping
algebras in characteristjg, which can be found in [BMR 1,11] and [BM]. We recall that
the lie algebrg has an integral formgz, (c.f. [H]), which then has a base extension to any
field k, calledgx. Throughout the rest of the paper, we will ds® denote an algebraically
closed field of positive characteristic. Whehar(k) > h (whereh is the Coxeter number
of g), Bezrukavnikov-Mirkovic-Ruminyin have developed a lbzation theory for the en-
veloping algebradJ (gi). Since this theory is extremely important for us, we shatbte
their basic notations and results in some detail.

4.1. Quantized Twisted Differential Operators. We start with the quantized sheaf of
twisted differential operators oh*%c. We first recall that the original sheaf of twisted
differential operators can be defined using the following steps (c.f. [Mil], Chapter C1
for details):

First, one defines the sheaf of algebtds= O 4 @¢ U (g), where the multiplication is
twisted by the action of an element @fconsidered as a vector field, on a local section of
Og. InsideU®, we have the sub-ideal-shed, which is generated at each poine %
by the subspace € g (thinking of # as the variety of Borel subalgebrasgneach point
gets a Boreby and a corresponding maximal nilpotent subalgebra; thig)is We also,
therefore, have an ideal sheffinsideU®, and containing®.

From here, we define the sheaf of algebibgs= U%/n®. Thus there is a natural map
from the sheaf of lie algebrds® = b%/n® to the sheaDy,, which then induces a map
@:U(h) — I(£,U%n0. For any elemend € h*, we have an idedl C U (h), which,
due to normalization reasons, is the ideal chosen to caynekihe charactet + p (where
p is the half sum of the positive roots, as usual). Thus we havdeall, Dy, and we can
finally putD* = Dy /1, Dy,
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Now, we can quantize each step of this construction in a abtsay. We start by
defining, for an affine cover o, {U;} the sheaves? = Oy, ®cih Un(g), whereUn(g) is
simplyReesU (g)) (with respect to the usual PBW filtration). These are not iyefeeaves
on the varietiesJ;, but, by using ore localization, we can view them as quatiting of
the varietiedJ; x g (we get the structure algebras of these varieties by sdttin@). This
construction glues naturally, and so we get a shabn % x g.

Given this, we still have subsheave’s andn® generated by the same elements, and
so we can consider the quotiedy; , = UQ/n°, with its associated magn(h) — I (Dnp).
Then the elemem € h* still defines an ideal dfl,(h) (defined as the ideal generated by
{v—h(A +p)(v)|ve€ h}) again called,, and we can now defir®} = D, /1) D5, Which
are now sheaves on the spaces. We also note that the shelaf, , can be considered a
sheaf on the spagg- the full Grothendeick alteration (c.f. [CG], chapter 3)

4.2. Differential Operators in Positive Characteristic. Now suppose, in addition to the
assumptions of the above section, that the elethen* is integral. Then every object that
we have used in the above construction; the enveloping edgisy ), the grougG, its Borel
and nilpotent subalgebras, and flag variety, exists @v@terefore, it makes perfect sense
to construct the algebi@} (Z) as a quantization 6f *%(Z), and further, to base change
to an algebraically closed field of positive characterjsditd thus obtain an objeaﬂ (k)
(from now on in this section we shall drop thkeunderstanding that we are working over
a closed field of positive characteristic) . Upon taking thetqentD;\] /(h—1), we obtain
the sheaf of crystalline differential operators as featungd BMR], which we will simply
denoteD? . This sheaf has the feature that there is a “frobenius msnghi

F:o(T*#Y) - D

obtained by using!" iterates of vector fields, c.f. [BMR], section 2.

Inthe case of the sheBf\, we can liftF to a morphisnf : O(T*%® x A1) — D} (sim-
ply by sending the extra variablel. This means thaﬂ);‘] (technically, itsh-completion) is
a “frobenius constant quantization” in the terminologyBK]. Let us recall the definition
there:

Definition 2. Let Oy be a quantization of the Poisson schexhédefined ovelk). Then
Oy is a frobenius constant quantization if the frobenius miplf : OQ — Ox liftsto a
morphismF : O — Z(Oy,) (whereZ is the algebra center).

In this case, the she@}, can be regarded as a locally free coherent sheaf of algebras o
the schem& (M x Speck[[h]]).

In the case of the she&, ,, we can even say a bit more. By the same reasoning, there
is a morphisnt : gf*(l) — Dpy. Butin fact there is also a morphism in any characteristic
(even ovetZ) O(h*) — Dp 5, simply by noting that) () — Dp by construction.

Now, in positive characteristic, both of the scherﬁe@ andh* live over the scheme
h*®. The morphisng*Y — 51 is Grothendieck’s invariants map (c.f. [CG] chapter 3),
and the map* — h*( is the Artin-schreier map fop—lie algebras, which on algebras
of functions is the morphisiBynih¥)) — Synih) which takesh — hP — h[P! (c.f. [BMR],
section 2.3).

Iin fact, these are not quite quantizations as we have deflread above, because these algebras are not
compete with respect tb. However, they arér-free, and theirh-completions, considered below, would be
quantizations in the strict sense.
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By comparing images, we see that we actually arrive at a nimmpﬁf*(l) X (1) h* —
Dn,p, which will play the role of the frobenius morphism for thisesf.

4.3. Localization For Lie Algebras. As in the classical case, localization involves com-
paring modules over a sheaf of differential operators to utexlover the global sections.
Similarly to the classical case, fare by, we have that

r(D*)=U* (gx)

whereU” (g) is the quotient of the algebta(gy) by the ideall, obtained as follows:
the algebras(h)W) occurs as a subalgebra BfU (gx)). As in characteristic zero, this
subalgebrais equal td(gy)Cx, but unlike in characteristic zero, this is not the wholeteen
Still, any point inby defines an ideal o8(h)-), which can then be extended to an ideal

of U (gk).
Then, ifA € b is regular with respect to the dot-actionwf we have [BMR, 3.2]:

Theorem 3. There is an equivalence of categories
RI : D°(modf(D?)) — DP(mod’ 9 (U*))

where mof(D?) denotes the category of coherent modules over the Azumggharal D!
e (1)
onT*B,~.

The “underived” version of this; i.e., simply the funcfordoes not produce an equiva-
lence. This is an essential difference with the charadterero case, where the localiza-
tion theorem is underived.

The next step is to exploit the full center of the algeli(ay). As mentioned above, the
subalgebr&) (g¢)® does not equal the full(U (gi)). The reason for this is the existence of
the so-calleg" iterate mag — gV, denoteck — x/P! (where(1) again denotes frobenius
twist). In the case afl(n), this map is simply th@™™ power of a matrix; and one can define
it in general (for a reductive lie algebra) by using a suiadhbedding — gl(n).

This map allows us to construct new central elements aswselldor anyx € g, the
elemenixP — x[P/ € U (gy) is now central. In fact, the algebra generated by these eieme
called thep-center ofU (gi), denotedZ,, is preciselyS(g(), because the scalar multipli-
cation onxP — P is twisted by thep!" power. Then, one can describe the full center of the
enveloping algebra in positive characteristic (c.f. [BMBfjapter 3) as

2=0(g"™ Xy b /W)

whereW acts via the dot action, and the map froin— h*(1) is the Artin-Schreier map, a
version of thep!" power map, defined, e.g., in [BMR], section 2.3, and [BFGitisa 3.2.

Thus, giveny € g*, we can associate to it an element) € g(V* (c.f. [BFG], section
3.2), and from this we get a maximal ideal 8f3?)), and a central ideal df (gi). Any
irreducible module ovdd (gi) will have a well defined central character, which will restri
to characters of bot, andU (gx)®« (the latter is called the Harish-Chandra center of
U (gk))- If we suppose that the Harish-Chandra character is iateien this implies that
the Z,-character is a nilpotent elementg@f ((BMR], section 6). We will assume that we
are in this situation from now on.

Then the above localization theorem can be modified as felloket A be a regu-
lar, integral central character, and et € g*(M be a nilpotent element. Then we have
u )W = (uW)~L(x™), the frobenius twist of the springer fibre gf which we shalll
usually denote#,. We define the categorrym(f((D") to be the category of coheret



INJECTIVITY OF A CERTAIN CYCLE MAP FOR FINITE DIMENSIONAL WALGEBRAS 7

modules which are set-theoretically supported on the n;a@l). Similarly, we define
mod} % (U%) to be the category d§*-modules which have generalizpetharactey- i.e.,

they are killed by some power of the maximal idealSfyx) associated tgy. Then we
have:

Theorem 4. . The the above localization theorem specializes to an atprice of cate-
gories
R : D°(modf (D*)) — DP(mody % (U*))

Finally, we can say a little more about the structure of tHegmrymo@(D’\). Since
D% is an Azumaya algebra, it is etale locally a matrix algeber 0. ). We recall that
an Azumaya algebr@l on a schemé& is said to besplit if it is in fact isomorphic to a
matrix algebra oveOx. If this happens, then there is the standard Morita equica®f
categoriesnod®(2)>modf(Ox). AlthoughD” is not split, we have the following:

Theorem 5. Under the same assumptions as above, we have that the tiestrid D! to

the formal neighborhood 0313)((l> in T*#W is a split Azumaya algebra. This implies an
equivalence

mO(f((DA )%moq;)((l) (OT*%W)
And therefore an equivalence

D°(modf 1 (Or. xa)))+D(mod *(U*))

Thus we observe a tight relation between representatiamtrend coherent sheaves
in characteristiqp. In the next several sections we relate this theory to therthef W-
algebras.

5. LOCALIZATION FOR MODULAR W-ALGEBRAS

In this section, we would like to construct the “local” objehich corresponds to the
version of thew-algebra in positive characteristic (we shall give a corapkfinition of
this object in section six below). This object will, in padiar, be a sheaf on the scheme
§</1V) (the frobenius twist of the resolution of the springer fibri)will also be necessary
to introduce a version over the extended sché&hex b+(1) b*, which will be completely
parallel to the first version. We'll begin by recalling, Htig the construction of the main
object of the paper [DK], which is a quantization of the sclaéy/‘yc. We shall attempt to
keep this paper as self contained as possible.

5.1. Hamiltonian Reduction. As indicated above, the W-algebra is related to the lie al-
gebra via the procedure of Hamiltonian reduction. Since utexlover lie algebras can
localized toD-modules on the flag varietys, it stands to reason that modules over W-
algebras should localize to modules over a some sort of Hamdin reduction oD 4.
One version of this (ovet) was worked out it [DK]. Here, we wish to construct a modular
version of this localization, based on the ideas of [BMR] #ralrelated paper [BFG].

In particular, we shall take the Hamiltonian reduction dfetiential operatorﬁ);\] with
respect to the action of Premet’'s subgrddp and charactex. In particular, we work
under the assumption thebar(k) is large enough so that the lie algetmga(c.f. section

2 above) exists as ovér and satisfieml[p} = 0 (where[p] is the pi" iterate map induced
from g) (note that this is possible becausgis nilpotent).



INJECTIVITY OF A CERTAIN CYCLE MAP FOR FINITE DIMENSIONAL WALGEBRAS 8

We recall that the action @& on the flag variety” induces a “quantum” moment map
1 :Un(g) — D}, which has a restriction, which we shall also gatiUy(m;) — D}\. In the
positive characteristic case, this map also satisfies sdlié@nal structure, as in:

Definition 6. (c.f. [BK] section 5)

Suppose thaX is a symplectic variety oveg, and letOy, be a Frobenius-constant quan-
tization of X°. Suppose further that there is an algebraic group a¢fionX — X, and a
morphismyu : Un(h) — Op (whereh = Lie(H)), satisfyingu(h) = h.

1) This quantization is said to be “Frobenius H-constantHifacts on the sheaf of
algebrasOy, in a way that preserves the subalgefy@é )V [[h]], such thatH fixes the
parameteh, and such that the induced actionttfon XY agrees with the base change of
the action oH on X.

For& € b, ands € Oy, a local section, lef - s denote the action (obtained by differenti-
ating the action oH).

2) Given the set-up of 1), the magpis said to be a quantum moment map if the re-
striction of u to Up(h)™M = U ()M [[h]] lands inO(X)D[[h]], and we have the “action”
relation: for all € b, and all local sectionse O, u(&)s—su(&) =hé -s.

The last part of definition 2 is the standard definition of arquen moment map in any
characteristic. The fact that (the completion of) our mags a quantum moment map
follows immediately from the definition gfi- the aIgebraD;\] was constructed out of the
enveloping algebra. Further, tip# powers on both sides clearly coincide.

Given this, we can state the version of Hamiltonian reductibich we will use, again
following [BK]. In the rest of this section, we shall work Wwitheh—completed algebras
Un(m;)(0) andDp(A)(0) (we use this notation to match our characteristic zero rootat
from [DK]).

First, we consider the ided} C Un(m;)(0) defined as the ideal generated iy —
x(m)jme my }. Note that this ideal imot homogeneous with respect to the usual grading
onReegU;,)=Up(0).

Next, we define the sheaf of algebi@g(A)(0)/ < p(ly) >. This is naturally a sheaf
over the schem@~1(x)™ x Speck[[h]]). To see why, note that the central subalgebra
Syn’(ml(l>)[[h]] has an ideal generated by the pojit) € m;. Let I)((l> be the ideal in
Un(m;)(0) generated by this central ideal. From the definition of mommeap above,
we see thau(lf(l)) defines the subscheme(x)® insideT*#W. Further,lf(l) =1lyN

Synfm”)|[h]] (recall that we are assuming tha#’ = 0 for allm  m;).
Finally, we look at the pushforwargl (Dn(A)(0)/ < p(ly) >)M. Then this is naturally

a sheaf on the scher’tSIélV> x Speck[[h]]). This is our Hamiltonian reductioBn(A, x)(0).
A slight modification gives the case of the sh&rf,: we note that the moment map

works the same way, and the groMp only acthN*(”.~ Then after Hamiltonian reduction,
we end up with a sheddn;(x)(0) on the schem&Y) Xy b x Speck[[h]]) (where
&Y 5 = is the restriction of the mag-'? — ).

Remark7. Below, we will see how to get rid of the parameteand work with a sheaf

simply defined on the schenﬁl). It would have been possible to do things in the opposite
order, i.e., getrid of the onT*2 by working with the crystalline differential operatdds ,

2As noted before, our objects defined above actually satiehptoperty that thein-completions are quanti-
zations. We shall work with such completions below
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and then take Hamiltonian reduction of this sheaf to get afscheé&ly). This is the approach
used for Hilbert schemes in [BFG], and it is probably the nmadtiral approach in positive
characteristic. However, this approach doesn't reallyehaw analogue in characteristic
zero, because without including the paramétehe sheaD? isn't local onT* 4, and of
course we can'’t pull back to the frobenius twist because ésdd exist. Since the main
theorem of this paper involves comparing a constructiomaracteristic zero and positive
characteristic, we have to include the “unnatural” corettam in positive characteristic as
well.

5.2. Azumaya Property. In this section, we use the results of [BK] (whose set-up we bo
rowed in the previous section) to show that the algebra we batained by Hamiltonian
reductionis a reasonable object. This will be the key paistiowing that the “localization
theorem” holds in our context.

So, let us quote the results from [BK] in the form that we need:

Proposition 8. (c.f. [BK], proposition 5.8) The sheaftbA, x)(0) is a Frobenius constant
guantization of the variet$s ,. Thus it can also be thought of as a coherent sheaf on the

scheméNS(fV) x Speck([h]]). The same is true of i, (x)(0) on S x pe0 b7 x Speck[[h]]).
and

Proposition 9. (c.f. [BK], proposition 3.8) Let @ be a frobenius constant quantization of
a variety X, and let x be a closed point of’X Then, regarding @h—1) as a coherent
sheaf of algebras on % x Speck((h))), the local algebra @h1)y is Azumaya over
k((h)).

From these results we derive immediately an Azumaya prgfarthe sheaby (A, x)(0).
A similar argument shows the Azumaya property of the sBgaf( x)(0) (c.f. [BMR] sec-
tion 2.3). However, we wish to obtain an even stronger priypley getting rid of the
parameteh. To do that, we shall invoke some facts abGuf-equivariant quantizations.

Before doing so, let us note that all of the varieties in thevalsection carry the Gan-
GinzburgGm action onT * %, which we recall is given by

t(g,v) = (y(t)g, p(t)v)

wherey : C* — G was the natural embedding described above in section 2, aedew
we've identified the cotangent space at the pginiith (g/bo)*=no, wherebg is our stan-
dard Borel subalgebra, (which we choose to contain the tipegiart” of ourslo-triple, e
andh), andny is its nilradical, angb(t) = t~2ad(y(t)) as above. We also €ty act onh*
ast-h=t2h.3

We can see also that all of the sheaves considered abovewavaréant with respect to
this action: note that the action extends by definition4pand then tol *4 and Dﬁ by
the usual extension of an action to differential operatasausual, we demarndh = t?h to
make the relations dZDﬁ homogeneous). In addition, the action preserves the iesi®t,
andS , and is respected by the moment map, by its definition. Thal infeHamiltonian
reduction, which was inhomogeneous with respect to thelygading, is homogeneous
with respect to this one. Thus we see tBgfA, x)(0) carries this action as well, and the
same foDp - (X)(0).

3This action exists as long abarkis sufficiently large, c.f [J]. We shall assume tleharkis large enough in
the rest of the paper.
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_ Although this action is poorly behaved 314, it is positive weight and contracting on
S v. So at this point we can invoke a very general lemma, whichnigar to [BK], lemma
3.4, and [L1], proposition 2.1.5:

Lemma 10. 1) Let k be any algebraically closed field, and let X be smoatireety over k,
with a quantization Q. Suppose that X is equipped with a positive weightk)-action,
which extends to an action ofyQvia t-h = t"h for some n> 0. Then the sheaf Qon
X x Speck[[h]]) is the restriction of a sheaf on the variety=XS peck[h]).

2) Now let chatk) > 0 and suppose thatds frobenius constant, and, in addition, that
Fr: O(XM) — O, is Gyequivariant (where we use the induced action on the fraleni
twist of a variety). Then we can say in addition that the cehesheaf @ on XV x
Speck[[h]]) is the restriction of a coherent sheaf oftXx S peck[h]).

Proof. To prove 1), we first consider the case tKds affine, following ([L1], prop. 2.1.5).
In this case, leX = Spec¢A). As ak[[h]]-module, we have tha®,=A[[h]]. We first claim
thatAlh] = A[[h]]g,,— fin (Where(V)g,,—fin denotes the sum of the finite dimensional mod-
ules of theGy,-moduleV). This simply follows from the obvious fact that every eigalue
for theGm-action onA[[h]] is a finite sum of terms of the forir‘a wherea is an eigenvalue
for the Gm-action onA (here we use that the action is positive weight, so that timebeu
of h's must be bounded).

Now, the claim implies, sinc&n, acts onA[[h]] by algebra automorphisms, thath]
is a subalgebra oA[[h]]. So this is 1) for affineX. In general, we note that takin@m-
finite vectors clearly commutes with localization b$a-stable element of, and that any
smooth variety with &Gy-action has an affin&n-equivariant cover (c.f., GIT, section ).
So we can take the sheaf of local section&gqffinite vectors, and this suffices for 1).

To get 2), we note that the image®fX (V) clearly lies iNOn g—fin DY the assumption.
Therefore the extension fer : O(X()[h] — O}, obtained by sending to h has image in
On.cm—fin as well. But this is exactly 2). O

With this in hand, we see right away that in f&t(A | x)(0) is the restriction of a sheaf,
caIIedDﬁ X on §</1V) x A, and by the same reasoning, tiwat, (x)(0) is the restriction of
a sheaf or§Y) x b (D h* x A, By [BK] lemma 3.4, these sheaves are even the unique ones

with this property. Further, we are now free to take the qmltlDﬁ X/(h—1), (respec-

tively Dn(X)(0)/(h—1)) and obtain coherent sheaves on the var@jﬁl (respectively
s X - b7), which we will call DX (respectivelyd(x), following [BMR]).. We can
now state the main result about these objects

Proposition 11. D*X, respectivelyD(x), is an Azumaya algebra on the varié{&}y), re-
spectivelyS) x . ) b.

Proof. This will follow from proposition 9. To see how, let us notelthe first statement,
the second is similar) that it suffices to show that, for anynpe € Sﬁl) with associated
idealmy in O(é,\l)), (D*X)y/my(D*X)4 is a central simple algebra (c.f. [Milne, chapter
4]; we already know that these are locally free sheaves lsedhey are frobenius constant
guantizations).

If I is a nontrivial ideal of this algebra, then we can lift it to antrivial ideall of
(D}X)x/my(D}X)y. Sinceh— 1 is an element of (by definition ofD*X), we see that no
power ofh can be an element of if it were, then somé™ would be inl_(p = char(k)),
but since(h—1) = hP“_1isinl, this contradicts non-triviality.
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Now, this means that the idelatan be extended to a nontrivial ideal of

[Dn(A, x)(0)(h™4)l/my

by first completing and then invertirig But now this is &((h))-central simple algebra by
proposition 9, which is a contradiction. O

5.3. Localization Theorem. With the background of the previous sections, we can now
give a proof of the localization property for the sh&fX. Throughout this section, we
make the following assumption: the cohomology grpo(sS,V,Ogy) andH(§, Og) van-
ish fori > 0. This is true in characteristic zero by the Grauert-Riesslnieder vanishing
theorem, and hence it is true in sufficiently large positikaracteristic. We do not know
an explicit bound.

Now, we recall the general yoga of localization in positivea@acteristic, which is
proposition 2.2 in [BK], and is also presented in chapter BMR]:

Theorem 12. Let X be a smooth algebraic variety with trivial canonicas$, and suppose
that X is proper over an affine scheme S. kétbe an Azumaya algebra over X, and
suppose that R(«7) = I'(«/). Then we have functor

RI : D°(Coh(.«7)) — DP(Mod" 9 (I (7))
Let us further suppose that the functor
Loc: D~ (Mod"%(I'(«7)) — D™ (Coh(.«7))
given by Lo¢M) = M@,EW) M has finite homological dimension, and hence restricts to a
functor
% :D°(Mod"% (I («7)) — D°(Coh(.«7))
Then R and_Z are inverse equivalences of categories.

The requirement tha have trivial canonical class is satisfied by any algebraitsgc-
tic variety. The second requirement will be fulfilled by angebra with finite homological
dimension. Itis not quite obvious that our algebras willgithis condition. But, follow-
ing [BMR], chapter 3, we will get around this by using a sligieneralization for the sheaf
D(X)-

We should also make a few remarks about the proof. The fattlieatwo functors
are adjoint is general nonsense. The homological assumptiche Azumaya algebra
impliesRIM(Loc(«?) = RN (&) = 7. This implies, by using free resolutions, tHaic is
a fully faithful functor. Thus the difficulty is in showing & it is essentially surjective.
This is accomplished by using the assumption on the triyiali the canonical class. This
assumption implies that the Grothendeick-Serre dualynigly given by the shift functor
[dimX]. This means that the essential imagé&o€, which is a triangulated subcategory, is
closed under the action of this functor. This is a very stroaggorical condition, which
can be used to show that in fact the essential imadg@ofs the entire category.

In addition, we would like to have a description of the algebt<?) in our case. We
shall show in the next section that it agrees with the modugasion of thew-algebra
described by Premet. In particular, we have the following

Proposition 13. We have isomorphisms of algebras:
F(D(x))=U(g,e) ®o(p-w O(h")

and
r(D**)=U"(g,e)
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where these algebras are Premet’'s modular W -algebras, elbfaver an algebraically
closed field of positive characteristic. The tensor prodacthe first line makes sense
because Ch*)W=Z,c(U(g)) is a central subalgebra of (4, e).

The reason we need to delay the proof is that these algeleaactrally defined in
terms of reduction mogb of the analogous characteristic zero objects. Thus we lave t
use the discussion of the reduction procedure in the netibee@lthough we do use this
proposition later in this section, the results of the nektisa are completely independent
of this one.

In addition, without describing the multiplication on tleeslgebras explicitly, we can
give the following consequences of this definition:

Lemma 14. The algebrad (D(x)) and I'(D*X) carry natural filtrations, and we have
that g (D(x))) = O(S) @gyw S(b) and gr(I (D} X)) = O(Ss). Further, we have that
r(D(x))=Rr(D(x)) and that™ (D*-X)=Rr (D*X).

Proof. The fa~ct that the algebras are filtered follows by taking glalections of the natural
filtrations onD(x) andD? X, respectively (we recall here that these sheaves of algelea
defined by taking a quantized algebra niod 1; thus they carry filtrations). By definition,
we have that
gr(D*¥)=0(S 1)
and
gr(D(x))=0(S)
The cohomology vanishing assumption at the beginning sfghction now shows the

cohomology vanishing fab? X andf)(x) by a standard spectral sequence argument. Fur-
ther, we then see that the sequences

0T (5y,D}*) =T (8y,DM) = T(54,054)i11) =0

(and the analogous one f&) are exact for ali. This shows the statements about the
associated graded algebras. O

Now we are almost in a position to state and prove the lod&dizaheorems which are
relevant to this paper. The only remaining obstacle is thiee®f the algebras having finite
homological dimension. We shall get around this in the sarag &as [BMR], section 3,
whose notation and proofs we follow very closely.

First we define the localization functor

£ :DP(mod"% (U (g,e)) — D°(mod®(D(x))
as £ (M) = D(X) @{j4¢ M. We note that the above proposition makeg. €) a sub-

algebra of\f\/(x), and further thatl (g, e) is a filtered algebra whose associated graded
is isomorphic toO(S) (the coordinate ring of affine space). Thus this algebra tméte fi
homological dimension. Therefore this definition makessen

Next, we note that there is an action ©fh*) on the sheafZ (M) (via its action on
D(x)), while there is only an action d(h*)W onM. So, forA € h*, we can define the
categorymod/{'g' (U(g,e)) of modules such that the algeb@dh*)V acts by a generalized
central charactex (i.e., the image o in h* /W), and there is a decomposition

ZM= H 24 (M)
HEW-A
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via the action of the generalized character®{h*). We wish to study the functaz’* 7 (M)
whenA is a regular element df*.

If we define the categomnod®'(D(x)) to be the full subcategory ahodh(D(x)) on
objects such thaD(h*) acts with generalized central characlerthen we note that the
image of £~ lands inD?(mod°"(D(x))). We shall denote this functor by

#4: D°(mod] % (U (g, €))) — DP(Mod*"(B(x)))

We note right off the bat that this functor takes makes sens®manded derived categories
since it is defined as a summand of a functor which does the.same
Our other important functor will be the functor

£ : D~ (mod % (U (g,e)*) — D~ (mod(D* X))
defined asz? (M) = DA X ®b(g o M- Our aim s to show that in fact this functor has finite
homological dimension. This will be accomplished once wa/pr

Lemma 15. Supposa is regular. Then we have a compatibility betwegt andﬁ;\; in
other words, if we consider the inclusion€i~ (mod¢ (U (g,e)*) — D~ (mod| % (U (g,e))
andi : D~ (mod®(D* X)) — D~ (mod®(D(x)) then we have

RZER2Y

Obviously, this lemma proves the needed claim t#4t preserves the bounded derived
categories.

Proof. (of the lemma). The key point is to rewrite the functg? in a way that makes it
closer to.Z?. To do that, we first define the sheaf

D(x)" := D(X) ®o(y+) O(h*)*
WhereO(b*);‘ is the completion of the rin@(h*) at the ideal generated by. Then for
anyM e mod/{'g'(U (g,€)), the definitions yield
(5.1) L (MED(X) @y(ge M
On the other hand, we have by definition
DAY = B(X) @o(y+) K

(wherek, is the one dimension&@(h*)-module corresponding to the maximal idégl
Now, sinceA is regular, the projectioh* — h* /W is etale at, and so there is an isomor-
phism

O(h")* ®o(n+ /w) kn =k
and so we deduce

B(x)" ®LLJ(g,e) U(g,e)*= (B(X) ®op+) Ob)*) ®LLJ(g,e) U(g,e* =DM

because of the isomorphisid(g,e)* =U (g, e) ®o(p+/w) Ky - But this equivalence is pre-
cisely the isomorphism of functors that we wanted, aftetimgiout the definitions of the
localization functors, and using the realization 6.1. O

With this out of the way, we can now state our localizationotieen for modulaiV-
algebras:
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Theorem 16. The functors
Rr : D°(mog*"(B(x))) -+ D"(mod|* (U (g, €)))
and
RI : D°(mod®"(D* X)) — DP(mod™% (U (g,e)*))
are equivalences of categories, with the inverse functimsrgby.fj‘ and Z*, respec-
tively.

The proof of this theorem is a direct application of the gah#treory recalled above (in
the case of the second functor), and a slight generalizatithne case of the first functor,
as in [BMRY], chapter 3.

5.4. Restriction to a Springer Fibre. Analogously to [BMR], chapter 4, (c.f. section 4
above) we can consider the above equivalence of categfteesestriction to the springer

fibre (" . In particular, we can define categor'raeqf;g)(ﬁ(x)) and moi;(;}) (D X) for

sheaves which are set theoretically supported on the yméjt). On the representation-
theoretic side, we should restrict to those represen@tionvhich the central subalgebra
O(SY) acts via the generalized characgét. We denote this category lgod (U (g, €)).
Then from the above equivalences of categories we imméylidéeluce the following

Theorem 17. We have the following equivalences of categories:

R : D*(mod® ) (B(x))) ~ D*(mod § (U (g.€)

RM: Db(moq;;’;?)(DA X)) = D°(mod; % (U” (g,€)))

5.5. Azumaya Splitting. Our aim in this section is to give a brief explanation of thest

ture of our Azumaya algebras upon restriction to the sprifigee %&”. The result, which
will follow from the analogous one in [BMR], is the following

Theorem 18. a)For all A € h*, the Azumaya algebr@(x) splits on the formal neighbor-
hood of 5" x . A in &Y x . b".

b) Let I\/g} be the vector bundle appearing in [BMR], theorem 5.1.1, ar}dld?e the
vector bundle appearing in part a). Let i denote the inclngizapS) x b+(1) h* = gx Y
h*. Then there is a vector space V, of rarfkf’~4m%e, such thatiM} ZE} V.

The proof of this theorem relies on an examination of the pafdheorem 5.1.1 in
[BMR]. In particular, the argument there relies on an analg$ the generic structure of
the Azumaya algebr@, which works as follows:

We leth;,,, denote the open subsetlgf consisting of thos& such that for any coroot
o we have eithexk a,A +p >=0or < a,A >¢ F,. These are called the unramified
weights. Then Brown and Gordon [BG] described the struatfité(g) as an algebra over
the schem@unr 1= 6" x ) py biiny s follows:

Proposition 19. The algebra Ug) ®3 3unr is Azumaya oveBynr.

In [BMR], chapter 3, they deduce the following (which is reded there as proposition
5.2.1b))

Proposition 20. U (g) @3 O(g*" X o Binr) 2D - ) .
g ><h»«(l)hunr
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Thus, if the weightA is unramified, the restriction d to the formal neighborhood
{@)((3 X () A, is the pullback of an Azumaya algebra on the formal neighbod of the

point (@ in g*M). Since every Azumaya algebra over the formal neighborhdéadmint
is split, this implies the existence M))‘( in this case. One can deduce the general case from
this one, by noting that there is a functor of “twist by a lineble” which interchanges
different weights.

To see how to deduce the result in our case, we apply Hanmahor@duction to both
sides of proposition 19. We immediately arrive at the isguh@sm

(1) £y~
U e * O Sk * _)D 3
(g, )®§<1)Xh*<1)/wh ( X () Banr) (X)|S‘(l)><h*(1)hﬁnr

Thus we will be able to finish the argument the same way if we steow that the
algebra appearing on the left hand side is Azumaya, at |gast restriction to the formal
neighborhood of the poingY). This is indeed the case, and we can argue as follows:
let U(g,e)y denote the quotient of the algebtkg,e) by the ideal generated by point
x e 81, and letU (g), denote the enveloping algebra at freharacte. Then Premet
in [P1] has given an isomorphism

U (g)x=Mat (e (k) @k U (g,€)x

whered(e) is the numbedim(#) — dim(%.). Thus the restrictiom(g,e)ﬁ‘( (with A un-
ramified) is indeed a matrix algebra overas required. The general theorem (part a)
now follows by the same “twist by a line bundle” argument af8BNR]. Part b) follows
immediately from the above isomorphism.

Finally, combining the last two sections we arrive at théoiwing equivalences:

Theorem 21. There are equivalences of categories, for regular integral

DP(Coh

3. (59 4 07)) 50RO (B(X))) DP(mod § (U (s.))

X

DP(Coh

(1
B,

/(84))D°(modgh (D)) 5D°(mod; # (U (0.9)))

Remark22. In a later version of the preprint, we shall give some apfitices of this
theorem to the representation theory of modular lie algebha particular, we shall use
it to give a new proof of a theorem of Jantzen and Soergel coimgethe endomorphism
algebra of a projective object in the case tigas a regular nilpotent element.

6. REDUCTION MOD P

Since our problem involves relating certain constructiover C with those over fields
of positive characteristic, we shall have to give a consimnof all our objects over a ring
A which is finitely generated oveét. We shall have to follow very closely Premet’s work
[P2] on the modulaw-algebras, since part of our goals involve relating our troicsions
to his.

We begin by recalling the she&f,(A)(0)z, which is a quantization of the scheme
T*%(Z). By base extension, this yields a sh&afA )(0)a for an arbitrary ringA, which
is a quantization oT *Z(A).

At this point, we would like to ape the construction givenli fprevious section, and
define a quantization d&(A) via Hamiltonian reduction of the sheB,(1)(0)a. As it
turns out, we will have to do a little more work then that to geeasonable object.
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As a first approximation to what we want, recall from the poes section that all of
the objects needed to define the finitkalgebra- the enveloping algebra, the nilpotent
subalgebran, its associated groud,, are defined and free over a ridg= Z[S ] where
Sis a finite set of primes which depends on the typgy@nd the choice of nilpotent
element. Then we can define an ideal shedfA )(0)a

| =Dn(A)(0)a <m—x(mM)|me mya>

where an elemenn € m o acts onDy(A)(0)a through the natural action @fa (c.f. the
definition of D (A )(0)a given above). From here, the naive Hamiltonian reductioniza
defined as:

Dn(A, X)(0)a = p-&ndp, (1) (0)a(Dn(A)(0)a/1)
wherep: u=1(x) — & is the morphism of Hamiltonian reduction, as above. WhenC
then this is just the usual reduction of differential operstdefined, e.g., in [KR] and used
in [DK]. Unfortunately, for an arbitrary ring\, this object might not be flat over the variety
N&’A, and hence is unsatisfactory for use in arguments where wetbaeduce mogb.

To get around this problem, we shall use the technique of idgfian A-lattice of the
sheafDy(A, x)¢ (for suitableA) which will be flat by construction. For reasonable rings
A, this construction will agree with the naive one introduaédve.

We start with the “global” case, which is Premet’s constiarct

6.1. Premet’s Construction. In this subsection, we give a slight variant of the construc-
tion of Premet. We start with the finii#&/-algebra ove(C, U (g,e). We know (c.f. section

2 above) thatl (g, e) is a filtered algebra, and it satisfiggU (g,e))=0(S). Let's consider
the Rees algebra &f (g, e) with respect to this filtration, which we shall dendig(g,e)
(this is uncompleted with respectiy. Then we have thdt(g,e)/h=0(S).

So, we choose homogeneous elemésg which generaté, (g, e) as aClh]-module
and whose images mddorm a homogeneous algebraically independent generatirigrs
O(9). The relations for the elementsinvolve finitely many complex numbers. Therefore,
we can choose a ring, finitely generated over,, which contains all constants for these
relations. Thus we define arilu a(g, €), which is a finitely generated gradégh|-algebra
and which satisfie a(g, €) ©a C=Un(g,€)*. Then this ring is clearly a fre&[h]-module
by construction, sincey (g, e) is a freeClh]-module.

By possibly making a finite extension Af we can also demand something more. Recall
that there is an injection of algebr@h*]"V — Up(g, €) via the action of the cent&(U (g))
and the Harish-Chandra isomorphism. We choose theAisg that there is an injection
AW — Unal(g,€), which, when base-changed@ becomes the action of the center.

Next, we define the algebts (g, €)a as the “naive” Hamiltonian reductidip(ga) /1)M A
as in the previous section. Then we have the standard reéatiza

Uh(ga e)AéE nth(gA) (QhaX (A))

where Qp y (A) = Un(ga)/l as a leftUn(ga)-module. ThenQpy(A) is an A-lattice in
Qnhx (C). So, enlargind\if necessary, we may assume that each oikhmeserve;, , (A).
This yields a mapn a(g,€) — Un(g,€)a.

Now, letk be any algebraically closed field of positive charactaristich that there is
a morphismA — k (there are infinitely many characteristics possible siAds finitely
generated over). The we make the

4We should note that this algebra depends on the choice dfX¥Hje which is far from unique. Premet [P]
makes a specific choice. This won't be necessary for us, #lirecelaim below implies that the resulting algebras
are well defined after base-changing to an algebraicallyeddield.
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Claim 23. We havel, a(g,€) ®@ak=Un(g,€)x

Proof. First, we have the natural mafp a(g,€) ®ak — Un(g, €)x obtained by base change
of the map in the previous paragraph. The right hand sidevsan@~robenius-constant)
guantization of the varietys (by the theory of Hamiltonian reduction presented in the
previous section), and hence satisfigég, e)x/h=0(S). But the left hand algebra satisfies
the same relation by construction. So the natural map misén isomorphism, and hence
so is the map itself. O

Now we shall generalize all this to the local case.
To do this, we momentarily work ovef again: we have by section 6.4 above that

the guantizatiorD,(A, x)(0)c was the restriction of a sheaf of aIgebD%’X((C) on the
schemeS , x AL, which of course satisfies

DA ¥(C)/hD)*(C)=0g;,

It is well-known that the schenf® 4 is defined and flat ovex for suitableA (in particular
@[51] whereSis a finite set of primes will suffice) . For a given finite opefired cover of
Sy A, denotedJ;, we can choose, consistently with the cover, generata®g&fa,U;) (as

A-algebras), and then choose (consistently with the coiftsrpf these tdi)f‘1 X(C)(Uy).

Now we proceed exactly as above: we regard these elememgs".risidep*eindDﬁ (Df‘1 /1),
we extendA so that they preserve the subspédg (A)/1a). Becausd{ (A) /1, is finitely
generated ovd]))‘ (A), the resultingA can be chosen to be finitely generated detThen,

we can look at thé\[h] algebra generated by these elements inside lﬁ@ﬂ@ . Be-
cause of the consistency conditions specified above, thesd¢agether to form a sheaf on

S A which will be denoted:)ﬁl’/f. It is clearly a subsheaf dibﬁ X(A). In addition, since

Dﬁ X(C) is a free finitely generate@[h]-algebra, we clearly have thﬁlﬁ,’/f is free and
finitely generated ovei[h]. By the construction we see that

DA X /hDAA=0(8 1)
and
ALX ~~ALX
DhaA ®aC=D; " (C)

Ina completely parallel fashion, we can define the slm,a:f( ) as a sheaf of algebras
on the varietySa. We choosé so that there is an injection of algebrg*] — I (Dpa(X)),
which base changes to the corresponding map Gver

So, we can argue exactly as in the claim above to show

Claim 24. Let k be any algebraically closed field of positive characteristich that there
is a morphismA — k. Then we have an isomorphism

DAA @ak=DL¥ (K
there is also an isomorphism

Dha(X) ®Ak=Dnx(x)
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6.2. Global Sections. In this section, we shall prove the unproved assertionseopthvi-
ous chapter. Above we have defined algehliag(g, e).

Definition 25. The algebrdJ (ga,e) is defined to b&Jy a(g,e)/(h—1). By the discussion
in the previous section, this agrees (for some choice ofpasth the definition given in
[P2].

We wish to compare these algebras to the global sectionseedfdbal” versions that
we also introduced. This is a straightforward matter gilendiscussion above- we sim-
ply chooseA large enough so that there are isomorphi§it3) (A)/1a)=U* (ga)/1a and
I (Dn(A)/1a)=U (ga) ®arpw Alb*]/1a. Then, since everything is defined as operators on
these spaces, we immediately deduce isomorphisms of naivelidnian reductions

[ (Dn(X)(A))=Un(g,€)a @anw Al ]

and
(DR (A)ZUn(8, €)a @y w Ay 1= UR (g,0)a

where byA, we mean the\[h*]"- module corresponding to the maximal ideal generated
by the integral weighh . By choosing appropriate bases, we then get isomorphisimsrof
flat quantizations

[ (Bha(X)ZUna(g,€) ©apw Alb*]
and

F(Dn%)=Una(8.€) @apew Ay == Ufla(:©)
By base-change tk, we see that these isomorphisms yield immediately proposit3

in the previous section.

6.3. Localization over A. In this subsection, we shall describe a localization functo
which lives over the ringA. In particular, the isomorphisms of the previous section al
low us to define
£ :DP(mod"® (Una(g,e)")) = D°(mod*"(Dy X))
via
A _ L

ZaM) =M ®Uh,A(9~,e)
°For the application we have in mind, we will start with Bhe mod" % (U% (g,e)c). We
choose a good filtratioR onM, and using it we arrive at a moduRee$M,) over the ring
UQA(g, e), and hence a complex of sheaves, its localization, whictbige of notation we
denoteZ, (Mp).

From here, we can define the comp@S(Ma) := £2 (Ma)/h, which is a complex of
coherent sheaves @y a. This object will interpolate between the characterisyicle in
characteristic zero and the localization in characterjstiAlthough this sheaf depends on
the choice of a good filtration, the underlying cycles wilt fof. [HTT], appendix D).

. A, .
Let us note a few things about the sheéf = Ma ®bhA(g,e)A Dy A Upon taking the

(derived) base change® and inverting), we arrive at the localization functor of [DK].In
particular, we have a clafS8SMa)] € K(Sa), whose base changefis the clas§CSM)).
We can also take the (derived) base change to any algellyaitazded fieldk (of posi-

tive characteristic), taking the quotient of this by 1 then yields the localization functor

AX
2 Dpa

Sit might not be immediately obvious that this functor landsttie bounded derived category. But we can
argue as in the previous section (reducing to the wholeUing(g, e) to see that it does.
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Zk)‘ (My) discussed above (we note that taking the quotierti byl is actually an equiv-
alence of categories in positive characteristic by [BKintea 3.4). From this we deduce
immediately the following compatibilityCS(#? (M)) = -Z2 (Ma) @4 k/(h) whereCS
denotes the sheaf we get after taking associated gradedesipect to the induced filtra-
tion (as aD*X-module).

We wish to analyze the support of the shéﬁﬁ (Ma) ®ak. To this end, we have the

Proposition 26. The support ofZ; (Ma) ®ak/(h), as a closed subset &, is simply
the image under Fr of the support ¢ (My) in §<1>. In fact, we can even say that
Fr.[CS2 (M) = [ 2 (M) in K(§).°

Proof. This is essentially just a restatement of the fact ¥ is a frobenius constant
quantization. For this tells us th&t: O(é((l)) — D*X becomes the frobenius morphism
after taking the associated graded. On the other handpgudhck undeF is exactly how
we arrive at the support a#? (My) as a sheaf oSﬂl). The refined result follows from the
rational invariance oK-theory. We are comparing the classes of two coherent sheawve
SY). Both are obtained from the sheRée$ 7 (My)) on S x Al the first by restriction
to h =0, the second by restriction to= 1. O

Now, sinceM is a finite dimensional module ovel* (g, e), its support oveBis simply
the pointy. After reduction mod, for p sufficiently large, this implies thaMly is a module

in mod, (U”(g,e))- simply because the mefp(5f<1)) — U(g,e)x becomes the frobenius
morphism after taking gr (as in the proposition).

So, combining this discussion with the theorems in the pievisection, we see that
22 (Ma)/(h) is supported, set theoretically, o - and hence the same is true of the base
changei”(é‘ (M). So now we can state definitively our “base change” lemma:

Lemma 27. The clas§CSMa)] actually lives in KCOhﬁx,A(sA) =K(%ya). Its pullback
to K(%y k) induces the clasicS £ (My))], and the pullback t€ induce§CSM)].

Since the “specialization morphisn(%y c) — K(%y k) (c.f. [BMR], chapter 7) is
an isomorphism (and the same is true of the inducedimag? ) — H.(%y c)), and the
mapK (mod'-4-(U? (g,e)) — K(mod, (U2 (g,e)) is injective, see that we have reduced
the injectivity problem to the following
Theorem 28. The morphism moq( (U (g,€)) — K(By k) — Hiop(By ) is injective.

Remark29. We should comment here that for glsufficiently large, there are isomor-
phisms between the groups. %y «) obtained via the comparison with characteristic zero.

If we choose a ring\ which works simultaneously for all simple finite dimensibdd (g, e)-
modules, then we see that we can choose any algebraicaslgctleld of large positive
characteristic to show injectivity. We make such a choiocefnow on.

The proof of this theorem will occupy the next section.
7. K-THEORY

We shall need to recall a few facts from the algebi&itheory developed in [F] and
[BFM]. In particular, recall that if we have a proper schewieand a closed embedding

BHere we are simply regarding the she#f (My) as a coherent sheaf &Yin the naive way; we are not
invoking any Azumaya splitting.
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Y — X, whereX is smooth, then we have a “localized chern character” map

chy 1 Kg(Y) — Ag(Y)

whereAq(Y) denotes the rational chow ring of algebraic cycles. The rsapbiained
by realizingA(Y) as a ring of cycles oX which are supported o¥i. This map has the
following functorial property: ifZ — W is another inclusion of a proper into a smooth
variety, andf : X — W restricts to a morphism fro to Z, then we have

f*chY = chf f*

There is also the “Riemann-Roch” morphismKq (Y) — Ag(Y); this morphism respects
proper pushforward. The two morphisms are of course quiterdnt, but in both cases
the projection to the “top” piecAgimv)(Y) yields the same algebraic cycle.

As A(Y) is a graded vector space, we shall denotédhy, )i andt; the maps obtained
after projection to the degreeycles.

All of the varieties we will consider below (namely, the spér fibres) have the prop-
erty that their cohomology is spanned by the classes of ediebycles (c.f. the main
results of [DLP]). Thus we have a degree doubling isomorphis

Ag (Y) = Hi(Y)

where we must now consider the etale Borel-Moore homologyr Given this, we shall
mainly work with the group#\(Y) from now on. From this condition on our varieties it
also follows that the morphisnt andt are isomorphisms.

With all this in hand, we can proceed to the proof of theoremF8st of all, we have
a functormod®"(D*X) — mod®*(D*), given by.# — V ® .7 (c.f. section 67 for the

vector spac¥ of dimensionp?(©).
Next, we recall the Azumaya splitting of section six. Let @ndte the coherent sheaf
obtained fromM via this splittingCoh(My). So we have that

Ey ®Coh(M) =22 (M)
and therefore (by section 5.5) that
M} ® Coh(M)=V @ 22 (M)

whereM)’} is the splitting bundle of [BMR] (note here th@abh(My) is scheme theoretically

supported or§ ;). But the class ifK-theory of this bundle has already been studied. If we
make the normalization following [BR], then by [BMR] seati6, we in fact have

My] = [((Fres)-Oz)| 4]

where we are now consideringy as a subvariety o4 (i.e., the class on the right lives in
Ko (M) which is isomorphic td((%&”)). Combining these equalities with push-pull
nov)\(/ yields the following:

Lemma 30. We have the following equalities irl(l@)((l>):

2% (M) = P ((Frs)-02)| o)) [CONM)] = = (Frs)..(Frs) [Con(My)]

where we use the fact that the action of Fr @htakes%), to %&”.
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Now, we would like to combine this information with our eqitafrom the previous
section

Fr.CS2* (M) = £ (My)]

In this equality however, we were considering the frobemiith respect to schemé(j}.
However, the discrepancy is rectified by the following

Claim31. (Frg ).[CS.£* (My)] and(Fr).[CS.£* (My)] agree as classes i(2).

Proof. As CS.Z* (M) is set-theoretically supported o#y, it has a finite filtration by
sheaves which are scheme-theoretically supported théis filration means that we can
write the clas§CS.Z? (My)] as a sum of classéai] of sheaves on the scheng,.
However, the proof for sheaves of this type is simply an exation of the definition of
the frobenius morphism, which makes it clear that the retétn of Frg ~to %y andFr 4
to #y coincide- in fact they are botfr 5, . O

So now we are free to compare the previous inequalities addagethat
(Frg).[CSL* (Mk)] = p~ U (Fras). (Fr)*[Con(My)]

i 2(1)
in K(%y").

To prove the theorem, it remains to study the action of theaipes(Fr z). and(Frz)*
onK-theory. To start, we have

Proposition 32. The map(Frz). : K(%y) — K(%&l)) is injective.

Proof. The mapFr is finite, flat, and bijective on closed points. After apptioa of the
map 1, which commutes with proper pushforward, we see that it @mugh to check our
claim at the level of algebraic cycles. But it is immediatenfrthe aforementioned proper-
ties of the map-r that it takes a set of linearly independent cycles to anothetther, we
know that the chow groups of springer fibres are spanned bystates. O

Combining the proposition with the previous equality, wevaran equality irK (%y ):
[CSL (M)] = p~ @ (Fr )" [Coh(My)]

Now, we must evaluate the operafér »)*. To this end, we shall translate the problem to
A(Hy) via the localized chern charactehgx. We see that we have equalities

% * * 21
(Chéx)i(l:r%) = (Frg) (Ch;;)((l))i

in A (Ay).
Further, we can make an identificatiA(\%X)éA(%&l)) by the isomorphism of abstract
varieties@xéﬂ)((l). Then we have the

Proposition 33. The magFr 4)*| 3 followed by by the identification &%y ) =A (%’;1))

oy
is simply multiplication by ™%
Proof. As above, sincér is finite, flat, and bijective on points, it is clear that thdlfnack

takes a cycle to a multiple of itself. Thus, it suffices to dhdee multiplicity locally, on
an open subset of a cycle (which is equivalent to checkinlgeagieneric point). So, we let

Vv be an algebraic subvariety éf)((l) of dimensioni, andx € V(1)s™its smooth locus.
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We consider the completed local ring at such a paﬁ;Ml)&k[[xf, ...XP]]. Then we can
compute the pullback undér as: '

O2®p . Oy =K, - Xaime]]/ O 1, - XGime)

x,ﬂ(l)
which is Gy -module of rankp®™8-i, The identification’; (Ay ) =A (%)((D) simply sends
the cycleV to V(). This proves the proposition. O

Now, we let[Coh(My)]~Y be the class ik (%) which corresponds t¢Coh(My)]
under the identificationk (% ) =K (%4 )(( ) (we choose the identification of these groups
which is compatible underhgx andchﬁ);; with the identificationA(y ) =A(4\") used
above). Then the proposition combined with our previousaéityuyields
(ch )I[CSZ* (M)] = p~9® ptm#) -1 (chZ )i [Con(My)]~Y) = pTmP) 1 (ch?Z )i [CohMy)] Y

(the last equality is simply becaudée) = dim(#) — dim(ZAy)).

Now we finish the proof of the theorem: foar(k) sufficiently large, the clad€ (.2 (My)]
is independent of (it is defined as the reduction of a class ofgrFurther, the main result
of [BM], chapter 5, asserts that the same is true of the ¢@st(My)]~Y. So we deduce
immediately the equalities

(ch, i[CS2* ()] =0
fori # dim(#y) and

(Ch.gx)dim(%() [CS.2 (M) = (Ch,gx)dim(%() [Coh(My)] Y
So from this we conclude that

(N7, dtimy) [CSL™ (Mi)] = (%, )atim(,) [CONMI)] Y = (ch] ) [Coh(M)) Y
The map on the left is exactly the characteristic cycle mamddition, the map on the
right is the image ifK-theory of the equivalence of categories

D°(mod; ¥ (U (g,€)") — D°(Cohg, (S 1))

and thus is obviously injective. This proves Theorem 27, thing the injectivity in char-
acteristic zero.

8. W-EQUIVARIANCE

This section is devoted to a discussion of the equivariafidkeocharacteristic cycle
with respect to the action of the Weyl growy/. To see the underlying reasoning, let us
recall the following

Theorem 34. ([B], [R]) For any algebraically closed field k of sufficiegtlarge positive
characteristic (or characteristic zero), the varié%yy’k admits a (weak) action of the braid
group B of typgy. This action induces an action of the Weyl group W @/{4&y), where
it is equivalent to Springer’s representation.

Thus, combining this with the result of the previous sectioa see that it suffices to
show that thaV action onK (mod'9 (U*(g,e))), upon reduction mog, agrees with the
above defined action on the category of coherent sheavese Biis already known (c.f.
[R]) that this braid group action agrees with the one commogitfthe translation functors
on U (g)-modules, the problem then boils down to showing that thestedion functor

"This is only a brief sketch of an argument. A more complete@pwall appear in a later version of the paper
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theory forw-algebras is compatible with the one for lie algebras. Thieatially follows
from the definitions.
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