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NONPROPER INTERSECTION THEORY AND POSITIVE

CURRENTS I, LOCAL ASPECTS

MATS ANDERSSON & HÅKAN SAMUELSSON
& ELIZABETH WULCAN & ALAIN YGER

Abstract. We introduce a current calculus to deal with (local) non-proper in-
tersection theory, especially construction of local cycles of Stückrad-Vogel type
(Vogel cycles). Given a coherent ideal sheaf J , generated by a tuple of functions
f semiglobally on a reduced analytic space X, we construct a current Mf , ob-
tained as a limit of explicit expressions in f , whose Lelong numbers at each point
of its components of various bidegrees are precisely the Segre numbers associated
to J at the point. The precise statement is a generalization of the classical King
formula. The current Mf can be interpreted, at each point, as a mean value of
various local Vogel cycles. Our current calculus also admits a convenient approach
to Tworzewski’s locally defined invariant intersection theory.

1. Introduction

Let Y be a complex manifold and let Z1, . . . , Zr be (effective) analytic cycles in Y
of pure codimensions pj, j = 1, ..., r, that intersect properly, i.e., the intersection V
of their supports has codimension p1 + · · ·+ pr. There is a well-defined cycle, called
the (proper) intersection of the Zj ,

(1.1) Zr · · ·Z1 =
∑

mjVj,

where Vj are the irreducible components of V and mj are certain positive inte-
gers. One can obtain these numbers mj by defining the intersection number i(x),
algebraically or geometrically, at each fixed point x of V and prove that i(x) is gener-
ically constant on each Vj, see, e.g., [7]. However, by means of currents, (1.1) can be
obtained in a more direct way: Let [Zj ] be the Lelong currents associated with Zj.
One can define the wedge product [Zr]∧ . . .∧[Z1] by an appropriate regularization,
see, e.g., [7, 9], and this current indeed coincides with the Lelong current associated
with Zr · · ·Z1. In particular, if the Zj are (effective) divisors defined by holomorphic
functions hj , then the Lelong current of the intersection can be obtained explicitly
as

(1.2) [Zr · · ·Z1] = lim
ǫ→0

∧
ddc log(|hj |

2 + ǫ).

There are analogous formulas for cycles of higher codimension, see, e.g., Section 9
below. Though less natural at first sight it is often more convenient to use regular-
ization with analytic continuation: Notice that

(1.3) λ 7→
∧

j

∂̄|hj |
2λ∧

dhj
2πihj
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is a well-defined form-valued function for Reλ >> 0. It turns out that it has a
current-valued analytic continuation to a neighborhood of 0 and that the value at
the origin is again [Zr · · ·Z1].

The overall aim of this paper and the forthcoming paper [6] is to develop a similar
current formalism for non-proper intersection theory, i.e., representation of intersec-
tions by currents that are limits of explicit forms. We also introduce generalized
cycles, by means of which we can tie together the local intersection theory in [11]
and [28] (corresponding to the intersection numbers i(x) in the proper case) with the
global constructions of Fulton-MacPherson, [10], and Stückrad-Vogel, [27]. A key
result is a generalized version of the classical King formula, [14, 13]; our formula pro-
vides a representation of the Segre class of a coherent ideal sheaf on an analytic space
by a current (a generalized cycle) whose Lelong numbers at each point are precisely
the so-called Segre numbers of the sheaf, see below. In this paper we focus on the
local and semiglobal aspects and postpone the global results to [6]. The semiglobal
version of our generalized King formula is given in Theorem 1.4 below.

A standard way to define an intersection of Zj ⊂ Y is to form the intersection
of Z1 × · · · × Zr with the diagonal ∆Y in Y × · · · × Y 1. Therefore it is enough to
understand the intersection of a complex manifold A and an analytic variety X of
pure dimension n, both sitting in some larger complex manifold Y . In the global
intersection theories mentioned above, the result only depends on the pullback to X
of the sheaf that defines A.

One is therefore led to find a reasonable definition of the intersection of a coherent
ideal sheaf J on an analytic space X of pure dimension n. To describe the local
intersection, Tworzewski, [28] and Gaffney–Gassler, [11], independently introduced
a list of numbers for each point x that we will call the Segre numbers, following
[11]; Tworzewski uses the term extended index of intersection2. The definition goes
via a local variant of the Stückrad-Vogel construction, [27], introduced in [28, 19],
that we will now describe; a closely related procedure is used in [11]. A sequence
h = (h1, h2, . . . , hn) in the local ideal Jx is called a Vogel sequence of J at x if there
is a neighborhood U ⊂ X of x where the hj are defined, such that

(1.4) codim
[
(U \ Z) ∩ (|H1| ∩ . . . ∩ |Hk|)

]
= k or ∞, k = 1, . . . , n;

here Z is the (reduced) zero set of J and |Hℓ| are the supports of the divisors Hℓ

defined by hℓ. Notice that if f0, . . . , fm generate Jx, any generic sequence of n linear
combinations of the fj is a Vogel sequence at x. Let X0 = X and let XZ

0 denote the

irreducible components of X0 that are contained in Z and let X
X\Z
0 be the remaining

components3, so that

X0 = XZ
0 +X

X\Z
0 .

By the Vogel condition (1.4), H1 intersects X
X\Z
0 properly. Set

X1 = H1 ·X
X\Z
0

1It is readily checked that if Zj intersect properly, then the intersection of Z1 × · · · ×Zr and the
diagonal is proper as well.

2It is not clear to us whether the coincidence of the two definitions has been noticed in the
literature before. In [2], both notions are discussed, and the coincidence follows, but this is not
explicitly stated.

3In [11], XZ
0 is empty by assumption, but for us it is convenient not to exclude the possibility

that J vanishes identically on some irreducible component of X.
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and decompose analogously X1 into the components XZ
1 contained in Z and the

remaining components X
X\Z
1 , so that X1 = XZ

1 +X
X\Z
1 . Define inductively Xk+1 =

Hk+1 ·X
X\Z
k , XZ

k+1, and X
X\Z
k+1 . Then

V h := XZ
0 +XZ

1 + · · · +XZ
n

is the Vogel cycle associated with the Vogel sequence h4. Let V h
k denote the com-

ponents of V h of codimension k, i.e., V h
k = XZ

k . The irreducible components of V h

that appear in any Vogel cycle, associated with a generic Vogel sequence at x, are
called fixed components in [11]. The remaining ones are called moving. It turns out
that the fixed Vogel components of J coincide with the distinguished varieties of J
in the sense of Fulton-MacPherson, see [11] and Section 8.

Recall that the multiplicity of a cycle at a point x is precisely the Lelong number
at x of the associated Lelong current, see, e.g., [7]. It is proved in [11] (and will be

reproved below) that the multiplicities ek(x) = multxV
h
k and mk(x) = multxX

X\Z
k

are independent of h for a generic h, where however “generic” depends on x, cf., Re-
mark 1.5; these numbers are the Segre numbers and polar multiplicities, respectively.
Theorem 7.1 below asserts that for each fixed x,

(1.5) (e0(x), e1(x), . . . , en(x)) = min
lex

(multxV
h
0 ,multxV

h
1 , . . . ,multxV

h
n ),

where the minlex is taken over all Vogel sequences h in Jx. This equality is proved
in [28] in case J is obtained from a smooth analytic set A5.

Remark 1.1. If Jx has support at x, then ek(x) = 0 for k < n and en(x) is the
classical Hilbert-Samuel multiplicity of the ideal Jx. �

Remark 1.2. An algebraic definition of the Segre numbers is given in [2], as gener-
alized Hilbert-Samuel multiplicities (in the sense of [1]) associated to the bigrading
GMx

[GJx(OX,x)] with respect to the ideal Jx in the local ring OX,x with maximal
ideal Mx. �

Remark 1.3. If Jx is generated bym < n functions, then V h
k = 0, k > m, for a generic

Vogel sequence h. If in addition codimZx = m, i.e., Jx is a complete intersection,
then for a generic h, V h = V h

m is the proper intersection of the divisors of the m
generators, and hence em(x) is the only nonzero entry in e(x). This number is the
classical intersection number i(x) of the proper intersection of the divisors of the m
generators of Jx, see, e.g., [7]. �

We introduce a current calculus that is well suited to deal with Vogel sequences.
For example we can express (the Lelong current of) a Vogel cycle V h as a certain
product of currents; in fact, we even get (the Lelong current of) V h

k as the value at
λ = 0, cf., (1.3) above, of

k∧

j=1

∂̄|hj |
2λk+1−j

∧
dhj
2πihj

,

4If J is the pullback to X of the radical sheaf of an analytic set A, this is precisely Tworzewski’s
algorithm, [28]. The notion Vogel cycle was introduced by Massey [18, 19]. For a generic choice
of Vogel sequence the associated Vogel cycle coincides with the Segre cycle introduced by Gaffney-
Gassler, [11], see Lemma 2.2 in [11].

5In fact, Tworzewski takes the right hand side of (1.5) as the definition of his extended index of
intersection.
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see Example 5.5. The different powers of λ are crucial here. Our current calculus is
also useful for concrete computations of Segre numbers, see Section 11.

Now assume that J is generated semi-globally by f = (f0, . . . , fm). Taking mean
values of (the Lelong currents of) the Vogel cycles associated to (almost) all linear
combinations of the fj, it turns out that we get a positive current whose component
of bidegree (k, k) is equal to

(1.6) Mf
k = 1Z(dd

c log |f |2)k := 1Z lim
ǫ→0

(
ddc log(|f |2 + ǫ)

)k
.

Here 1Z means restriction to Z. For practical reasons we will rely on a definition of

Mf
k via analytic continuation, see Section 4; for the coincidence with (1.6), see [4]6.
Recall that the integral closure of J (or Jx) generated by f = (f0, . . . , fm), consists

of all sections φ such that |φ| ≤ C|f | for some C > 0. The following formula in
particular provides a semiglobal representation of the Segre numbers associated to
J , cf., Remark 1.5.

Theorem 1.4 (Generalized King’s formula). Let X be a reduced analytic space of
pure dimension n and let J be a coherent ideal sheaf over X generated by f0, . . . , fm.
Let Z be the variety of J and Zk

j the distinguished varieties of J of codimension k.
Then

(1.7) Mf
k = 1Z(dd

c log |f |2)k =
∑

j

βkj [Z
k
j ] +Nf

k =: Sf
k +Nf

k ,

where the βkj are positive integers and the Nf
k are positive closed currents. The Lelong

numbers nk(x) = ℓx(N
f
k ) are nonnegative integers that only depend on the integral

closure class of J at x, and the set where nk(x) ≥ 1 has codimension at least k + 1.

The Lelong number of Mf
k at x is precisely the Segre number ek(x) of Jx on X.

The fixed Vogel components of J are precisely the Sf
k . Finally, the polar multiplicity

mk(x) coincides with the Lelong number at x of the current 1X\Z(dd
c log |f |2)k.

When k = 0, (ddc log |f |2)k shall be interpreted as 1 and Mf
0 = 1Z is the current

of integration over the components of X that are contained in Z.

Notice that Mf
k = 0 if k < codimZ and that Nf

codimZ = 0, cf., Lemma 2.2. Notice

that (1.7) is the Siu decomposition, [22], ofMf
k . King’s formula in [14, 13] is precisely

the case k = codimZ of (1.7).

Remark 1.5. Assume that x is a point where nk(x) ≥ 1 for some k and let V h be a

generic Vogel cycle such that multxV
h
k = ek(x). Then V h

k = Sf
k +W where W is a

positive cycle of codimension k, such that multxW = nk(x). Since nk(y) ≥ 1 only on

a set of codimension ≥ k+1, at most points y on V h
k we have that ek(y) = multy(S

f
k )

and hence multyV
h
k > ek(y). As soon as there is a moving component at x it is

thus impossible to find a Vogel cycle that realizes the Segre numbers in a whole
neighborhood of x. �

By Siu’s theorem [22], the super level sets Vℓ = {nk(x) ≥ ℓ} are analytic for each
integer ℓ ≥ 1. Since nk(x) is integer valued, it is easy to see, cf., Proposition 2.1 in

[28], that there is a unique cycle T f
k consisting of components of various codimension

> k such that the multiplicity at each point coincides with nk(x). Thus the cycle

6For k ≤ codimZ there are more elementary ways to define (ddc log |f |2)k, see, e.g., [9].
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T (J ) :=
∑

k(S
f
k + T f

k ) has total multiplicity precisely equal to e = e0 + · · · + en at
each point x; in case J is the radical sheaf of a complex manifold A, this is precisely
the intersection cycle of A and X defined in [28]. Note that moving components of
codimension k are represented by lower dimensional cycles.

Following Tworzewski, [28], given analytic cycles Z1, . . . , Zr in Y , the intersection
of Z1×· · ·×Zr and the diagonal ∆Y in Y ×· · ·×Y provides an intersection product
Z1 • · · · • Zr. This elegant construction is locally defined and biholomorphically
invariant. From the global point of view, however, it is in general “too small”. For
instance, the self-intersection in the Tworzewski sense of any smooth manifold is
just the manifold itself; therefore the self-intersection of a smooth algebraic variety
A ⊂ P

N cannot satisfy the Bézout equation unless A is linear. The reason is that, in
general, there are moving components in global Vogel cycles that are not attached
to a fixed point, and therefore are not caught by the Tworzewski intersection. In [6]
we will represent the global intersection of arbitrary cycles Zj in P

N by a positive
current that is invariant, in the sense that it only depends on the standard metric
structure of PN ; though moving components are represented by terms that are not
Lelong currents of any analytic cycle.

The basic current calculus for Vogel cycles is introduced in Section 3 and the
calculus for our currents Mf is developed in the Sections 4 and 5. In Section 6 we
show thatMf can be represented as mean values of (Lelong currents of) Vogel cycles.
We introduce the Segre numbers in Section 7 and prove formula (1.5). Theorem 1.4
is proved in Section 8. In Sections 9 and 10 we show how proper intersections and
the Tworzewski intersections can be represented by our current calculus. Finally we
provide various examples in Section 11.

Acknowledgement: We thank Terry Gaffney for fruitful discussions. This work
was partially carried out while the authors visited the Mittag-Leffler Institute.

2. Preliminaries

Let us fix some notation. Given a tuple f of holomorphic functions on an analytic
space X we will use J (f) to the denote the sheaf it generates. Similarly if A ⊂ X
is a submanifold we will use J (A) to the denote the radical sheaf. We will denote
the local ring of germs of holomorphic functions at x in X by ØX,x. We say that
a sequence g1, . . . gm of functions on an analytic space X is a geometrically regular
sequence if codim {g1 = . . . = gk = 0} = k for 1 ≤ k ≤ m. If X is smooth (or
Cohen-Macaulay) a sequence is geometrically regular if and only if it is regular.

If α(λ) is a current valued function, defined in a neighborhood of the origin, we
let α(λ)|λ=0 to denote the value at λ = 0.

2.1. Positive currents. Let dc = (4πi)−1(∂ − ∂̄) so that ddc = (2πi)−1∂̄∂. We
briefly recall some basic facts about positive currents, referring to [7, 9] for details.
Let µ be a positive (k, k)-current defined in some open set Ω ⊂ C

N . Then µ has
order zero, so that the restriction 1Sµ is well-defined for any Borel set S ⊂ Ω. If in
addition µ is closed and S is analytic, then the Skoda-El Mir Theorem asserts that
1Sµ is closed as well. If µ is closed then one can define inductively

(ddc log |z − x|2)j+1∧µ = ddc
(
log |z − x|2ddc((log |z − x|2)j∧µ)

)
,
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(ddc log |z−x|2)N−k∧µ is a (N,N)-current. Its mass at x is the Lelong number ℓx(µ)
at x of µ, which depends semi-continuously of µ, in the sense that

(2.1) ℓx(µ) ≥ lim sup
j→∞

ℓx(µj)

if µj → µ. It follows that x 7→ ℓx(µ) is upper semi-continuous.

Lemma 2.1. If µ is a closed positive (k, k)-current in Ω ⊂ C
N , then

(2.2) ℓ0(µ)[{0}] = lim
λ→0+

(
∂̄|z|2λ∧

∂|z|2

2πi|z|2
∧(ddc log |z|2)N−k−1∧µ

)
.

If k = N , then the right hand side of (2.2) shall be interpreted as

lim
λ→0+

(
1− |z|2λ

)
µ = 1{0}µ,

so Lemma 2.1 is trivially true in this case.

Sketch of proof. If ξ is a test function, then

(2.3)

∫
(ddc log |z|2)N−k∧µ ξ = lim

λ→0+

∫
|z|2λ − 1

λ
∧(ddc log |z|2)N−k−1µ∧ddcξ.

After an integration by parts, the right-hand side of (2.3) may be rewritten as

lim
λ→0+

∫
∂̄|z|2λ∧

∂|z|2

2πi|z|2
∧(ddc log |z|2)N−k−1∧µ ξ

+ lim
λ→0+

∫
|z|2λ(ddc log |z|2)N−k∧µξ.

The second term is precisely the action of 1CN\{0}(dd
c log |z|2)N−k∧µ on ξ, and

consequently the point mass at 0 of (ddc log |z|2)N−k∧µ is the same as the point
mass at 0 of the first term, which proves (2.2). �

2.2. Currents on an analytic space. Let X be an analytic space of dimension n.
Given a local embedding i : X →֒ C

N , we let EX be the sheaf of smooth forms on
X, obtained from the sheaf of smooth forms in the ambient space, where two forms
are identified if their pullbacks to Xreg coincide; it is well-known that this definition
does not depend on the particular embedding. We say that µ is a current on X of
bidegree (p, q) if it acts on test forms on X of bidegree (n−p, n− q). Such currents µ
are naturally identified with currents τ = i∗µ of bidegree (N−n+p,N−n+q) in the
ambient space such that τ vanish on the kernel of i∗. Observe that the d-operator is
well-defined on currents on X. If W is a subvariety of X of pure codimension p ≥ 0,
then

φ 7→ [W ].φ =

∫

Wreg

φ

is a closed (p, p)-current on X; this is the current of integration over W .
Recall that a current ν is normal if both ν and dν have order zero. The following

lemma follows immediately from the corresponding one in C
N .

Lemma 2.2. Suppose that µ is a normal current of bidegree (p, p) on X that has
support on a subvariety W of codimension k. If k > p then µ = 0. If k = p and
µ is closed, then µ =

∑
j αj [Wj ] for some numbers αj , where Wj are the irreducible

components of W of codimension p.
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It is readily checked that if we have a proper holomorphic mapping ν : X ′ → X
between analytic spaces, then the push-forward ν∗ is well-defined on currents on X ′.

Assume that µ is a positive closed current on the analytic space X. Fix x ∈ X
and let i : X →֒ C

N be a local embedding. We define the Lelong number ℓx(µ) as
ℓx(i∗µ). After a suitable change of coordinates i can be factorized as i = j ◦ i′,
where i′ : X → C

M is a minimal embedding and j is the natural embedding C
M →

C
M × C

N−M . Since the Lelong number is invariant under holomorphic changes
of coordinates, all minimal embeddings are equal up to a holomorphic change of
variables, and ℓxτ = ℓx(j∗), it follows that ℓx(µ) is well-defined. Thus if Z is a
subvariety of an analytic space X and we have an embedding X ⊂ C

N , then the
number ℓx[Z] is indepenent of whether we consider Z as the Lelong current of Z on
X or on C

N .
Recall that if Z is a variety in C

N , then the multiplicity multxZ of Z at x coin-
cides with the Lelong number ℓx([Z]) of the Lelong integration current [Z], see [7,
Prop. 3.15.1.2]; here multxZ is defined as in [7, Ch. 2.11.1]. In particular, the Lelong
number of the function 1, considered as a current on an analytic space X, at x is
precisely multxX.

The classical Siu decomposition, [22], of positive closed currents extends immedi-
ately to currents on our analytic space X. Let µ be a positive closed (p, p)-current
on X; then there is a unique decomposition

µ =
∑

i

βi[Wi] +N,

where Wi are irreducible analytic varieties of codimension p, βi ≥ 0, and, for each
δ > 0, the set where ℓx(N) ≥ δ is analytic and has codimension strictly larger than p.

2.3. Cycles and Lelong currents. Given an analytic cycle Z =
∑
αjWj, where

Wj are varieties, we let [Z] =
∑
αj [Wj ] be the associated Lelong current. We will

sometimes identify analytic cycles with their Lelong currents. We let |Z| denote the
support of Z. Sometimes we will be sloppy and identify |Z| with Z; in particular, we
will write 1Z for 1|Z|. If H is a Cartier divisor defined by (a germ of) a holomorphic
function h, we will (sometimes) use the notation [h] for [H] and 1h for 1|H|. Given an
analytic cycle Z =

∑
αi[Wi] of pure dimension, the multiplicity of Z at x is defined

as
∑
αimultxWi (this definition follows [11, p. 704]). It follows that

multxZ = ℓx[Z].

If Z =
∑n

k=0 Zk, where Zk is an analytic cycle of codimension k we define

(2.4) multxZ := (multxZ0, . . . ,multxZn)

Throughout this paper all analytic cycles are effective, unless otherwise stated.

3. Multiplying a Lelong current by a Cartier divisor

In this section we will describe how the inductive construction of a Vogel cycle V h

can be expediently expressed as certain products of Lelong currents. First, note that
if Z,Z ′ are analytic cycles in some analytic space X, then

(3.1) 1Z′ [Z] = [ZZ′

],

so [Z] 7→ 1Z′ [Z] is a linear operator on Lelong currents. To see (3.1), by linearity,
we can assume that Z is irreducible. If |Z| is contained in |Z ′|, then 1Z′ [Z] = [Z].
Otherwise, |Z| ∩ |Z ′| has higher codimension than |Z|, and thus 1Z′ [Z] vanishes by



8 M. ANDERSSON & H. SAMUELSSON & E. WULCAN & A. YGER

Lemma 2.2. Notice that 1Z := 1Z1 is 1 on the components of X that are contained
in Z and 0 otherwise, i.e., it is the Lelong current of XZ .

If h is a non-vanishing holomorphic function on (each irreducible component of)
the analytic space Z, then log |h|2 is a well-defined (0, 0)-current on Z. This is clear

if Z is smooth and follows in general, e.g., by means of a smooth resolution Z̃ → Z,
cf., the proof below.

Lemma 3.1. Let Z be an analytic cycle in X, h be a holomorphic function, and let
u be a nonvanishing smooth function on X. Then

(3.2) λ 7→ ∂̄|uh|2λ∧
∂ log |uh|2

2πi
∧[Z],

a priori defined when Reλ is large, has an analytic continuation to a half-plane
Reλ > −ǫ, where ǫ > 0. The value at λ = 0 is independent of u.

If h does not vanish identically on any irreducible component of (the support of)
Z, then this value is equal to ddc(log |h|2 [Z]).

Notice that vλ := ∂̄|uh|2λ ∧ ∂ log |uh|2/(2πi) is smooth when Reλ is large so the
product in (3.2) is then well-defined.

Proof. First assume that Z = X = C
N and h is a monomial h = za11 · · · zaNN . Then

(3.2) is equal to

vλ = ∂̄|uza11 · · · zaNN |2λ∧
1

2πi

[ N∑

1

aj
dzj
zj

+
∂|u|2

|u|2

]
.

One can check that the desired analytic continuation exists, and that the value at
λ = 0 is the current

∑N
1 aj[zj ]/(2πi) = ddc log |h|2; in particular, it is independent

of u.
Consider now the general case. By linearity, we may assume that Z is irreducible.

If h vanishes identically on Z and Reλ is large, then vλ ∧ [Z] = 0, and thus it
trivially extends to λ ∈ C. Assume that h does not vanish identically on Z. Let

i : Z →֒ X be an embedding and let π : Z̃ → Z be a smooth modification of Z
such that π∗i∗h is locally a monomial; such a modification exists due to Hironaka’s
theorem on resolution of singularities. After a partition of unity we are back to the
case above. It follows that π∗i∗vλ has an analytic continuation to Reλ > −ǫ for
some ǫ > 0 and thus vλ∧[Z] = i∗π∗(π

∗i∗vλ) has the desired analytic continuation.
The value at λ = 0 is equal to

i∗π∗(dd
c log |π∗i∗h|2)

which proves the second statement, since (log |h|2)[Z] = i∗π∗(log |π
∗i∗h|2). �

Let H denote the Cartier divisor defined by h. We define [H]∧ [Z] as the value of
(3.2) at λ = 0. According to the lemma it does not depend on the particular choice
of h defining H; in fact it is the Lelong current of the proper intersection of H and
the irreducible components of Z that are not contained in H, i.e.,

(3.3) [H]∧[Z] = [H]∧1X\H [Z] = [H · ZX\H ].

If H and Z intersect properly, thus [H]∧[Z] = [H · Z]. In fact, we can take this as
the definition of the proper intersection [H · Z], cf. Section 2.3.



NONPROPER INTERSECTION THEORY AND POSITIVE CURRENTS I 9

Remark 3.2. It is important to emphasize that [H]∧[Z] is not analogous to the
intersection H · Z in [10]. In fact, if Z is irreducible and contained in H, then
[H]∧[Z] = 0, whereas in [10] the product is a cycle in Z of codimension 1, that is
well-defined up to rational equivalence. �

It follows from the definition that

(3.4) [H]∧([Z1] + [Z2]) = [H]∧[Z1] + [H]∧[Z2]

and thus [Z] 7→ [H]∧[Z] is a linear operator on Lelong currents, cf., (3.1).
However, in general it is not true that ([H1] + [H2]) ∧ [Z] = [H1]∧[Z] + [H2]∧[Z]

or [H1] ∧ [H2] = [H2] ∧ [H1].

Example 3.3. Let H1 and H2 be Cartier divisors and let H = H1 + H2. Then
[H1]∧[H] = [H1]∧[H2] but [H]∧[H1] = 0. Moreover [H1] ∧ 1H1 [H] = [H1]∧[H1] = 0
but 1H1 [H1]∧[H] = 1H1 [H1]∧[H2] = [H1]∧[H2]. �

We can construct Vogel cycles by inductively applying operators 1Z and [H]∧.

Proposition 3.4. Let X be an analytic space of dimension n and let h = (h1, . . . , hn)
be a Vogel sequence of an ideal J with variety Z at x ∈ X, with corresponding divisors
H1, . . . ,Hn. Then on X,

(3.5) [X0] = 1, [Xℓ] = [Hℓ]∧ · · · ∧[H1] , ℓ = 1, . . . , n

and

(3.6) [XZ
0 ] = 1Z , [XZ

ℓ ] = 1Z [Hℓ]∧ · · · ∧[H1], ℓ = 1, . . . , n.

In particular,

(3.7) [V h] = 1Z + 1Z [H1] + 1Z [H2]∧[H1] + · · ·+ 1Z [Hn]∧ · · · ∧[H1].

If we consider X as embedded in some larger analytic space Y , then we have
instead

[X0] = [X], [Xℓ] = [Hℓ]∧ · · · ∧[H1]∧[X], ℓ = 1, . . . , n

and
[XZ

0 ] = 1Z [X], [XZ
ℓ ] = 1Z [Hℓ]∧ · · · ∧[H1]∧[X], ℓ = 1, . . . , n

Proof. In view of (3.1), (3.6) follows from (3.5). Using (3.4), we have

[X1] = [H1]∧[X
X\Z
0 ] = [H1]∧([X0]− [XZ

0 ]) = [H1]

since [H1]∧[X
Z
0 ] = [H1]1Z = 0. One obtains (3.5) by induction. �

4. Bochner-Martinelli currents

Let X be an analytic space of pure dimension n, f = (f0, . . . , fm) a tuple of
holomorphic functions on X, J = J (f) the coherent sheaf generated by f , and Z
the zero set of J . For Reλ >> 0, let

Mf,λ
0 := 1− |f |2λ

Mf,λ
k := ∂̄|f |2λ∧

∂ log |f |2

2πi
∧(ddc log |f |2)k−1 if k ≥ 1,

and

(4.1) Mf,λ :=

∞∑

k=0

Mf,λ
k ,
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where |f |2 =
∑m

j=0 |fj|
2. Note that the sum in (4.1) is finite for degree reasons, and

as Reλ >> 0, Mf is locally integrable. We will show that λ 7→Mf,λ
k has an analytic

continuation to Reλ > −ǫ, for some ǫ > 0. We denote the value of Mf,λ
k at λ = 0

by Mf
k and we write Mf :=

∑
kM

f
k . The current Mf and its components Mf

k will
be referred to as Bochner-Martinelli currents, cf., Remark 4.2.

A computation yields that

Mf,λ
k = λ

i

2π

∂|f |2∧∂̄|f |2

|f |4−2λ
∧(ddc log |f |2)k−1

which is positive when λ > 0, and thus Mf
k is a positive current. Note that Mf

0 is
the current of integration over the components of X, on which f ≡ 0. In particular,

if f does not vanish identically on any component of X, then Mf
0 = 0.

Let π : X̃ → X be a normal modification such that the pull-back ideal sheaf J ·O
X̃

is principal; for instance oen can take the normalization of the blow-up of X along

J . Then π∗f = f0f ′ where f0 is a section of the holomorphic line bundle L → X̃

corresponding to the exceptional divisor Df of π : X̃ → X, i.e., the divisor defined
by J ·O

X̃
, and f ′ is a nonvanishing tuple of sections of L−1. Let L be equipped with

the metric defined by |f0|L = |π∗f | = |f0f ′|, and let

(4.2) ωf := ddc log |f ′|2;

here the right hand side is computed locally for any local trivialization of L. Then
−ωf is the first Chern form of (L, | · |L), and clearly ωf ≥ 0.

Since log |π∗f |2 = log |f0|
2 + log |f ′|2 it follows from Lemma 3.1 that

(4.3) ddc log |π∗f |2 = [Df ] + ωf .

In particular, π∗[ddc log |f |2] = ωf outside π−1{f = 0}. Therefore, for Reλ >> 0,

π∗Mf,λ
0 = 1− |f0u|2λ(4.4)

π∗Mf,λ
k = (2πi)−1∂̄|f0f ′|2λ∧∂ log |f0f ′|2∧ωk−1

f , k ≥ 1.(4.5)

Now Lemma 3.1 asserts that λ 7→ π∗Mf,λ
k has an analytic continuation to Reλ > −ǫ

and since Mf,λ
k = π∗π

∗Mf,λ
k for Reλ >> 0, it follows that λ 7→Mf,λ

k has the desired
analytic continuation. Moreover

Mf
0 =Mf,λ

0 |λ=0 = π∗(π
∗Mf,λ

0 |λ=0) = π∗(1Df
) = 1{f=0} .(4.6)

Mf
k =Mf,λ

k |λ=0 = π∗(π
∗Mf,λ

k |λ=0) = π∗([Df ]∧ω
k−1
f ), k ≥ 1.(4.7)

Following for example [4] one can check that for k ≥ 1

(4.8) Mf
k = 1Z(dd

c log |f |2)k

and
1X\Z(dd

c log |f |2)k = π∗(ω
k
f ).

It is not hard to see that in Mf,λ
k is locally integrable for Reλ > 0 and that

Mf,λ
k →Mf

k as measures when λ→ 0+.

Remark 4.1. For further reference, let g be a tuple of holomorphic functions such that

|g| ∼ |f |, i.e., there exists C ∈ R such that 1/C|f | ≤ |g| ≤ C|g|, and let π : X̃ → X
be a normal modification such that both J (f) · Ø

X̃
and J (g) · Ø

X̃
are principal.

Then |f0f ′| ∼ |g0g′| and since f ′ and g′ are non-vanishing it follows that f0 and g0
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define the same divisor on X̃. Therefore the corresponding negative Chern forms
ωf and ωg are ddc-cohomologous, i.e., there is a global smooth function γ such that
ddcγ = ωf − ωg. �

Remark 4.2. The current Mf can be written as a product of Bochner-Martinelli
residue currents and appropriate differentials dfj. More precisely, let e1, . . . , em be a
holomorphic frame for a trivial vector bundle E → X and let e∗j be the dual frame
for E∗. Consider f as the section f = f1e

∗
1+ · · ·+fme

∗
m of E∗ and let σ be the section

(f̄1e1+ · · ·+ f̄mem)/|f |2 of E over X \Z. Then we can define the Bochner-Martinelli

residue current Rf = Rf
0 +Rf

1 + · · ·+Rf
n as the value at λ = 0 of

Rf,λ = 1− |f |2λ +
∑

∂̄|f |2λ∧σ∧(∂̄σ)k−1,

cf., [21] where this current was first introduced, and [3]. It turns out, [4], Proposi-
tion 3.2, that we have the factorization

Mf
k = Rf

k · (df/2πi)k/k!,

where the dot denotes the natural pairing between ΛkE∗ and ΛkE; see [4] for details.
�

5. Products of Bochner-Martinelli currents

Throughout this section let X be an analytic space of pure dimension n. Given
tuples f1, . . . , fr of holomorphic functions in X, we will give meaning to the prod-
uct Mfr∧ · · · ∧Mf1 of Bochner-Martinelli currents. The construction is recursive.
Assume that Mfℓ∧ · · · ∧Mf1 is defined; it follows from the proof of Proposition 5.1
that

(5.1) λ 7→Mfℓ+1,λ∧Mfℓ∧ · · · ∧Mf1

is holomorphic for Reλ > −ǫ, where ǫ > 0. Set

(5.2) Mfℓ+1∧Mfℓ . . .∧Mf1 :=Mfℓ+1,λ∧Mfℓ∧ . . .∧Mf1
∣∣
λ=0

.

We define the products Mfr
kr
∧ · · · ∧Mf1

k1
in the analogous way so that

(5.3) Mfr∧ · · · ∧Mf1 =
∑

kr,...,k1≥0

Mfr
kr
∧ · · · ∧Mf1

k1
.

Proposition 5.1. Let f1, . . . , fr be tuples of holomorphic functions in X, with com-
mon zero set Z = {f1 = . . . = fr = 0}. Then the current Mfr∧ · · · ∧Mf1, defined by
(5.2), is positive and has support on Z.

Let π : X̃ → X be a normal modification such that the sheaves J (fℓ) · ØX̃
are

principal for ℓ = 1, . . . r. As in Section 4, let Dfℓ and ωfℓ be the corresponding
divisors and negative Chern forms, respectively. Then

(5.4) Mfr
kr
∧ . . .∧Mf1

k1
= π∗

(
[Dfr ]∧ · · · ∧[Df1 ]∧ω

kr−1
fr

∧ · · · ∧ωk1−1
f1

)
,

where, if kℓ = 0, the factor [Dfℓ ] shall be replaced by 1Dfj
and the factor ωkℓ−1

fℓ
shall

be removed.
Assume that g1, . . . gr are tuples of holomorphic functions in X such that |gℓ| ∼ |fℓ|

for ℓ = 1, . . . , r. Then there is a normal current T with support on Z such that

(5.5) ddcT =Mfr
kr
∧ · · · ∧Mf1

k1
−Mgr

kr
∧ · · · ∧Mg1

k1
.
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Proof. Iteratively using Lemma 3.1, (4.6), and (4.7) we see that the desired analytic

continuation of (5.1) exists and that (5.4) holds. It follows that Mfr
kr
∧ . . .∧Mf1

k1
has

its support contained in π(|Dfr | ∩ · · · ∩ |Df1 |) = Z. Moreover Mfr
kr
∧ . . .∧Mf1

k1
is the

push-forward of a product of positive (1, 1)-currents and positive forms, and hence
it is positive.

To prove the last part, it suffices to change one of the fℓ to gℓ with |gℓ| ∼ |fℓ|.

First notice that then Mfℓ
0 = 1fℓ = 1gℓ =Mgℓ

0 . Let us then assume that kℓ ≥ 1, and
that the modification π is chosen so that also J (gℓ) ·ØX̃

is principal. By Remark 4.1,

there is a smooth global function γ on X̃ such that ωfℓ − ωgℓ = ddcγ and thus we

can find a smooth global form w such that ddcw = ωkℓ−1
fℓ

− ωkℓ−1
gℓ

. Let

T := π∗
(
τr∧ · · · ∧τℓ+1∧[Dfℓ ]∧w∧τℓ−1∧ · · · ∧τ1),

where τj = 1Dfj
if kj = 0 and τj = [Dfj ] ∧ ω

kj−1
fj

otherwise. Then T satisfies

(5.5). Note that τr∧ · · · ∧τℓ+1∧[Dfℓ ]∧w∧τℓ−1∧ · · · ∧τ1 is normal, and since normality
is preserved under push-forward, so is T . �

We also define products of Bochner-Martinelli currents and Lelong currents. If
f1, . . . , fr are tuples of holomorphic functions in X and Z is an analytic subset of X,
we define recursively Mf1∧[Z] :=Mf1,λ∧[Z]

∣∣
λ=0

, and

Mfk+1∧ · · · ∧Mf1∧[Z] :=Mfk+1,λ∧Mfk∧ · · · ∧Mf1∧[Z]
∣∣
λ=0

.

By arguments as in the proof of Proposition 5.1 we prove that the desired analytic
continuations exist, and thusMfr∧ · · · ∧Mf1∧[Z] is well-defined. It is readily checked
that if i : Z →֒ X, then, for any k1, ..., kr ∈ N,

(5.6) Mfr
kr
∧ · · · ∧Mf1

k1
∧[Z] = i∗[M

i∗fr
kr

∧ · · · ∧M i∗f1
kr

].

For further reference, note that if f is a tuple of holomorphic functions on the
analytic space X then

(5.7) Mf =Mf1X =
∑

j

Mf1Xj
,

where Xj are the irreducible components of X.

Proposition 5.2. Let f1, . . . , fr be tuples of holomorphic functions in X and let ξ
be a tuple of holomorphic functions such that {ξ = 0} = {x}, where x ∈ X. Then

(5.8) M ξ∧Mfr
kr
∧ · · · ∧Mf1

k1
=M ξ

n−k∧M
fr
kr
∧ · · · ∧Mf1

k1
= α[x],

where k = k1 + · · ·+ kr and α is a non-negative integer. If ξ generates the maximal

ideal at x ∈ X, then α = ℓx
(
Mfr

kr
∧ · · · ∧Mf1

k1

)
.

Remark 5.3. It follows from the second part of Proposition 5.1, applied to f1, . . . , fr, ξ,

that the Lelong number at x of Mfr
kr
∧ · · · ∧Mf1

k1
is unchanged if we replace fj by gj

such that |fj| ∼ |gj |, since T , which has bidegree (n − 1, n − 1), must vanish by
Lemma 2.2. �

Proof. By Proposition 5.1, M ξ
n−k∧M

fr
kr
∧ · · · ∧Mf1

k1
is positive and has support at x,

and thus by Lemma 2.2 it is of the form α[x] for some non-negative α. Let π : X̃ → X
be a normal modification such that J (fℓ) ·ØX̃

and J (ξ) ·Ø
X̃

are principal. Let us
use the notation from Section 4. Then, from (5.4), we see that α is an intersection
number and hence an integer.
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Now assume that ξ generates the maximal ideal at x and that i : X →֒ C
N is a

local embedding such that i(x) = 0, so that i∗[x] = [{0}]. By the second part of
Proposition 5.1 we may assume that fj = i∗Fj and ξ = i∗z for some tuples Fj and
the standard coordinate system z = (z1, . . . , zN ) in C

N . Then

(5.9) i∗(M
ξ
n−k∧M

fr
kr
∧ · · · ∧Mf1

k1
) =Mz

n−k∧M
Fr

kr
∧ · · · ∧MF1

k1
∧[X],

cf. (5.6). By Lemma 2.1, the right hand side of (5.9) is precisely the Lelong number

of MFr

kr
∧ · · · ∧MF1

k1
∧[X] at 0 in C

N times [{0}]. �

One can replace all the evaluations in the definition of the product by one single
evaluation in the following way.

Proposition 5.4. Assume that µj are strictly positive integers such that µ1 > µ2 >

. . . > µr. Then λ 7→ Mfr,λ
µr

kr
∧ · · · ∧Mf1,λ

µ1

k1
is holomorphic in a neighborhood of the

half-axis [0,∞) in C and

(5.10) Mfr
kr
∧ · · · ∧Mf1

k1
=Mfr,λ

µr

kr
∧ · · · ∧Mf1,λ

µ1

k1

∣∣
λ=0

.

Example 5.5. If h1, . . . , hn is a Vogel sequence of some ideal at some point x, then,
cf., Theorem 7.3 below, the Lelong current of the associated Vogel cycle is given as
the value at λ = 0 of the function

n∧

k=1

Mhk,λ
µk =

n∧

k=1

(
1− |hk|

2λµk + ∂̄|hk|
2λµk∧∂ log |hk|

2/2πi
)

�

Proof. By Hironaka’s theorem we can choose a smooth modification π : X̃ → X
such that π∗fj = f0j f

′
j, j = 1, . . . , r, where f ′j 6= 0 and each f0j is a monomial

xαj = x
αj1

1 · · · x
αjn
n in local coordinates on X̃ . Then locally on X̃, by (4.4) and (4.5),

π∗M
fj ,λj

0 = 1− |ujx
αj |λj , π∗M

fj ,λj

k =
∂̄|ujx

αj |2λj

xαj
∧ ϑkj for k ≥ 1,

where uj are smooth non-vanishing functions and the ϑkj are smooth forms. The
proposition now follows from Lemma 5.6. �

Lemma 5.6. Let uℓ be smooth non-vanishing functions defined in some neighbor-
hood U of the origin in C

n, with coordinates x1, . . . xn. For λ = (λ1, . . . , λr) ∈ C
r,

Reλk >> 0 and α1, . . . , αr ∈ N
n, let

Γ(λ) :=
|urx

αr |2λr · · · |up+1x
αp+1 |2λp+1 ∂̄|upx

αp |2λp ∧ · · · ∧ ∂̄|u1x
α1 |2λ1

xαp · · · xα1
;

here xαℓ = x
αℓ,1

1 · · · x
αℓ,n
n if αℓ = (αℓ,1, . . . , αℓ,n). If σ is a permutation of {1, . . . , r},

write Γσ(λ1, . . . , λr) := Γ(λσ(1), . . . , λσ(r)) .
Let µ1, . . . , µr be positive integers. Then Γσ(κµ1 , . . . , κµr ) has an analytic contin-

uation to a neighborhood of the half-axis [0,∞) in C, and if µ1 > . . . > µr

(5.11) Γσ(κµ1 , . . . , κµr ) |κ=0= Γσ(λ1, . . . , λr) |λ1=0 · · · |λr=0 .

Proof. To begin with let us assume that all uj = 1. A straightforward computation
shows that

Γ(λ) = λ1 · · ·λp

∏r
j=1 |x

αj |2λj

x
∑p

j=1 αj

′∑

I

AI

dx̄i1 ∧ · · · ∧ dx̄ip
x̄i1 · · · x̄ip

=: λ1 · · · λp

′∑

I

ΓI ,
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where the sum is over all increasing multi-indices I = {i1, . . . , ip} ⊂ {1, . . . , n} and
AI is the determinant of the matrix (αℓ,ij)1≤ℓ≤p,1≤j≤p.

Pick a non-vanishing summand ΓI ; without loss of generality, assume that I =
{1, . . . , p} and AI = 1. With the notation bk(λ) :=

∑r
ℓ=1 λℓαℓ,k for 1 ≤ k ≤ n,

ΓI =

∏n
k=1 |xk|

2bk(λ)

x
∑p

j=1 αj

dx̄1 ∧ · · · ∧ dx̄p
x̄1 · · · x̄p

=

1

b1(λ) · · · bp(λ)

∧p
k=1 ∂̄|xk|

2bk(λ)
∏n

k=p+1 |xk|
2bk(λ)

x
∑p

j=1 αj
.

Now the current valued function

Γ̃ : (λ1, . . . , λr) 7→

∧p
1 ∂̄|xj|

2bj (λ)
∏n

p+1 |xj |
2bj(λ)

x
∑r

j=1 αj

has an analytic continuation to a neighborhood of the origin in C
r; in fact, it is a ten-

sor product of one-variable currents. In particular, Γ̃(κµ1 , . . . , κµr ) |κ=0= Γ̃(λ) |λ1=0

· · · |λr=0 . Let

γ(λ) =
λ1 · · ·λp

b1(λ) · · · bp(λ)

and γσ = γ(λσ(1), . . . , λσ(r)). We claim that, since AI = 1 6= 0 and µ1 > . . . > µr we
have

γσ(λ) |λ1=0 · · · |λr=0= γσ(κµ1 , . . . , κµr )|κ=0,

where it is a part of the claim that both sides make sense.
Let us prove the claim. Since AI 6= 0, reordering the factors b1, . . . bp and multi-

plying γ(λ) by a non-zero constant, we may assume that αkk = 1, k = 1, . . . p, so
that

γ(λ) =
λ1

λ1 + α21λ2 + · · ·+ αr1λr
· · ·

λp
αp1λ1 + · · ·+ λp + · · ·+ αrpλr

.

For j < r set τj := λj/λj+1 and γ̃σ(τ1, . . . , τr−1) := γσ(λ); notice that γσ is 0-
homogeneous, so that γ̃σ is well-defined. Then λj = τj · · · τr−1λr, and therefore γ̃σ

consists of p factors of the form

(5.12)
τk · · · τr−1

b1τ1 · · · τr−1 + · · ·+ τk · · · τr−1 + · · ·+ br−1τr−1 + br

where bj are among the αjk. Observe that (5.12) is holomorphic in τ in some neigh-
borhood of the origin. Indeed, if br 6= 0, then (5.12) is clearly holomorphic, whereas
if br = 0 we can factor out τr−1 from the denominator and numerator. In the latter
case (5.12) is clearly holomorphic if br−1 6= 0 etc. It follows that γσ(κµ1 , . . . , κµr ) =
γ̃σ(κµ1−µ2 , . . . , κµr−1−µr) is holomorphic in a neighborhood of [0,∞) and moreover
that γσ(λ1, . . . , λr) is holomorphic in ∆ = {|λ1/λ2| < ǫ, . . . , |λr−1/λr| < ǫ}. Let us
now fix λ2 6= 0, . . . , λr 6= 0 in ∆. Then γσ(λ) is holomorphic in λ1 in a neighborhood
of the origin. Next, for λ3 6= 0, . . . , λr 6= 0 fixed in ∆, γσ(λ)|λ1=0 is holomorphic in
λ2 in a neighborhood of the origin, etc. It follows that

γσ(λ)|λ1 · · · |λr=0 = γ̃σ(τ)|τ=0 = γσ(κµ1 , . . . , κµr )|κ=0,

which proves the claim. Thus (5.10) follows in the case uj = 1.
Now, consider the general case. By arguments as in the proof of Lemma 3.1

one can show that the right hand side of (5.11) is independent of uj. To see that
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also the left hand side is independent of uj, start by replacing each u
2λj

j by u
2ωj

j in

Γ(λ). Then, by arguments as above, the function (κ, ω1, . . . , ωr) 7→ Γσ(κµ1 , . . . , κµr )
is holomorphic in a neighborhood of the origin in Cκ×C

r
ω since it is analytic in each

variable. In particular, Γ(κµ1 , . . . , κµr ) |κ=0 is obtained by first setting each ωj = 0,
which corresponds to setting uj = 1 and thus brings us back to the special case
treated above. This completes the proof of the lemma. �

One can just as well let the tuples fk be sections of arbitrary Hermitian holomor-
phic vector bundles Ek → X and define (products of) Bochner-Martinelli currents
in precisely the same way, just interpreting |fk| as the norm of the section fk. Then
the statements in this section remain true, except for that the currents then will not
necessarily be positive, and follow with only minor modifications of the proofs.

Remark 5.7. In a completely analogous way one can define products Rfr∧ . . .∧Rf1

of Bochner-Martinelli currents, cf., Remark 4.2, and the analogue of Proposition 5.4
holds; it follows directly from the proof of Proposition 5.4. �

6. Mean values of products

Let X be an analytic space of pure dimension n. For a tuple f0, . . . , fm of functions
and β = [β0 : . . . : βm] ∈ P

m we write β · f := β0f0 + · · · + βmfm. Note that Mβ·f

only depends on β ∈ P
m and not on the choice of homogeneous coordinates.

Theorem 6.1. Assume that f = (f0, . . . , fm) is a tuple of holomorphic functions on
X and that ν ≥ min(m+ 1, n + 1). Then

(6.1)

∫

α=(α1,...,αν)∈(Pm)ν
Mαν ·f∧ · · · ∧Mα1·f =Mf .

Moreover

(6.2) Mf
k = 1Z

∫

α∈(Pm)k
[αk · f ]∧ · · · ∧[α1 · f ],

where Z = {f = 0}, and (6.2) is interpreted as 1Z for k = 0.

For the proof we will use the following lemma,

Lemma 6.2. If φ is a non-vanishing holomorphic (m+ 1)-tuple on X, then, in the
sense of currents, ∫

α∈Pm

[α · φ]dσ(α) = ddc log |φ|2,

where dσ is the normalized Fubini-Study metric.

This is a simple variant of Crofton’s formula that should be well-known, but for the
reader’s convenience we include a proof. The lemma is true for an arbitrary tuple; a
formal iterated application implies that the integral in (6.2) is equal to (ddc log |f |2)k,
so that (6.2) follows.

Proof. For a test form ζ 7→ ξ(ζ), we have by the Poincaré-Lelong formula
∫

α∈Pm

∫

ζ

[α · φ] ∧ ξ dσ(α) =

∫

α∈Pm

∫

ζ

log(|α · φ|2/|α|2) ddcξ dσ(α),



16 M. ANDERSSON & H. SAMUELSSON & E. WULCAN & A. YGER

and, since log(|α · φ(ζ)|2/|α|2) is integrable in α for each fixed ζ, with uniformly
bounded norms, we can apply Fubini’s theorem. Write κ :=

∫
α∈Pn log(|α0|

2/|α|2)dσ(α).
Then ∫

ζ

(log |φ|2 + κ)ddcξ =

∫

ζ

ddc log |φ|2∧ξ,

as wanted. �

Proof of Theorem 6.1. Let π : X̃ → X be a normal modification such that J (f) ·Ø
X̃

is principal, and use the notation from Section 4. We claim that for a generic choice

of α ∈ P
m, α1 · f

′, . . . , αk · f
′ is a geometrically regular sequence on X̃ as well as on

each component of |Df |.
In fact, if α1 ·f, . . . , αj ·f is a geometrically regular sequence, then α1 ·f, . . . , αj+1 ·f

is geometrically regular for αj+1 chosen outside a hypersurface in P
m. It follows by

induction that α1 · f
′, . . . , αk · f

′ is geometrically regular on an (Zariski) open dense
subset Ak ⊂ (Pm)k, which proves the claim.

Now consider α = (α1, . . . , αν) ∈ Aν . Since π∗(αℓ · f) = f0 αℓ · f
′, we have that

[αℓ · f ] = π∗
(
[Df ] + [αℓ · f

′]
)
, and thus, in light of (3.3),

[α2 · f ]∧[α1 · f ] = π∗
(
[Df ]∧[α1 · f

′] + [α2 · f
′]∧[α1 · f

′]
)
.

By induction,

(6.3) [αk · f ]∧ · · · ∧[α1 · f ] =

π∗
(
[Df ]∧[αk−1 · f

′]∧ · · · ∧[α1 · f
′] + [αk · f

′]∧ · · · ∧[α1 · f
′]
)
,

and so

(6.4) 1Z [αk · f ]∧ · · · ∧[α1 · f ] = π∗
(
[Df ]∧[αk−1 · f

′]∧ · · · ∧[α1 · f
′]
)
.

Here we have used that 1Df
[αk · f

′]∧ · · · ∧[α1 · f
′] vanishes by Lemma 2.2, and also

that

(6.5) 1Z (π∗τ) = π∗(1Df
τ).

For k = 1, (6.4) should be interpreted as π∗([Df ]).
In view of Lemma 6.2 and (4.2), we have that

(6.6)

∫

α∈Pm

[α · f ′]dσ(α) = ωf .

Since all currents involved are positive, we can apply Fubini’s theorem and get (6.2)
from (6.4) by repeated use of Lemma 6.2, cf., (4.7).

We now prove (6.1). By (4.6) and (4.7),

Mαℓ·f =Mαℓ·f
0 +Mαℓ·f

1 = 1αℓ·f + [αℓ · f ].

Using (5.4), (6.5) and (6.4), we get

Mαν ·f∧ · · · ∧Mα1·f =

π∗

( ν−1∑

k=0

1Df
[Df ] ∧ [αk · f

′]∧ · · · ∧[α1 · f
′] + [αν · f

′]∧ · · · ∧[α1 · f
′]
)
=

ν−1∑

k=0

1Z [αk · f ]∧ · · · ∧[α1 · f ] + π∗
(
[αν · f

′]∧ · · · ∧[α1 · f
′]
)
;

all other terms vanish by (3.3) or by Lemma 2.2.
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Finally, using (6.2) and Lemma 6.2, we conclude that

∫

α=(α1,...,αν)∈(Pm)ν
Mαν ·f∧ · · · ∧Mα1·f = Mf + π∗(dd

c log |f ′|2)ν = Mf ;

indeed, (ddc log |f ′|2)ν = 0 since ν ≥ min(m+ 1, n+ 1). �

It also follows from the proof of Theorem 6.1 that

(6.7) 1X\Z

∫

α∈(Pm)k
[αk · f ]∧ · · · ∧[α1 · f ] = 1X\Z(dd

c log |f |2)k.

As an immediate consequence of (the proof of) Theorem 6.1, ℓx(M
f
k ) =

∫
α
ℓx(1Z [αk·

f ]∧ · · · ∧[α1 · f ]). In fact, we even have

Theorem 6.3. Let f = (f0, ..., fm) be a tuple of holomorphic functions in X, pick
x ∈ X, and let Z = {f = 0}. Then for k ≥ 0, and a generic choice of α =
(α1, . . . , αk) ∈ (Pm)k,

(6.8) ℓx
(
1Z [αk · f ]∧ · · · ∧[α1 · f ]

)
= ℓx(M

f
k ) .

Here the current on the left hand side of (6.8) should be interpreted as 1Z if k = 0.

Proof. Choose a normal modification π : X̃ → X such that J (f) · Ø
X̃

is principal;
we will use the notation from Section 4. Assume moreover that the pullback of the
maximal ideal at x is principal, and let Dξ and ωξ be the corresponding divisor and
(negative) Chern form, obtained from a tuple ξ that defines the maximal ideal at x.

By arguments as in the proof of Theorem 6.1 one shows that for a generic choice
of α ∈ (Pm)n we have that α1 · f

′, . . . , αn · f ′ is a geometrically regular sequence on

X̃, |Df |, |Dξ |, and on the support of [Dξ ]∧[Df ]. Choose such an α. For k = 0, 1,
Theorem 6.3 follows from (4.6), (4.7) and (6.3); in fact, the currents in (6.8) coincide
in these cases.

Let us now assume that k ≥ 2. We claim that there is a normal current Ak such
that

(6.9) ddcAk = [Dξ]∧ω
n−k−1
ξ ∧[Df ]∧

(
ωk−1
f − [αk−1 · f

′]∧ · · · ∧[α1 · f
′]
)
.

For ℓ = 1, · · · , k, log |αℓ · f
′|2 defines a singular metric on L−1 with first Chern form

[αℓ · f
′], cf., (4.2), and thus [αℓ · f

′] is ddc-cohomologous to ωf . More precisely,

cℓ := log(|f ′|2/|αℓ · f
′|2) is a global current on X̃ and ωf − [αℓ · f

′] = ddccℓ. Now, let

Ak := [Dξ]∧ω
n−k−1
ξ ∧[Df ]∧

k−1∑

ℓ=1

ωk−ℓ−1
f ∧cℓ∧[αℓ−1 · f

′]∧ · · · ∧[α1 · f
′] .

Then Ak is normal. Since aℓ ·f does not vanish identically on any irreducible compo-
nent of (the support of) [Dξ]∧[Df ]∧[αℓ−1 ·f

′]∧ · · · ∧[α1 ·f
′] it follows from Lemma 3.1

that (6.9) holds.
(The proof of) Proposition 5.2 implies that

(6.10) ddcπ∗(Ak) =
(
ℓx(M

f
k )− ℓx(1Z [αk · f ]∧ · · · ∧[α1 · f ])

)
[x] ;

here we have used (6.3). On the other hand, π∗Ak is a normal (n− 1, n− 1)-current
with support at x, and so it vanishes according to Lemma 2.2. �
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7. Segre numbers

Throughout this section, let X be an analytic space of pure dimension n. Given

a tuple f of (germs of) holomorphic functions at x ∈ X, let ek(x) := ℓx(M
f
k ).

Theorem 6.3 and Proposition 3.4 assert that ek(x) = multxV
h
k for a generic Vogel

cycle Vk of J (f); this means that ek(x) is the kth Segre number of J (f) as defined
by Gaffney-Gassler, [11]. In fact, ek(x) only depends on the integral closure of J (f),
cf., Proposition 5.1.

Let e(x) := (e0(x), e1(x), . . . , en(x)). We will see that if J (f) is the pull-back of the
radical ideal of a smooth manifold A in some ambient space, then e(x) coincides with
Tworzewski’s, [28], extended index of intersection. Recall that the lexicographical
order on R

N is a total order, defined by (x1, . . . , xN ) ≤lex (y1, . . . , yN ) if there is
an 1 ≤ ℓ ≤ N such that xi = yi for i ≤ ℓ and xℓ < yℓ. We let minlex denote the
minimum with respect to the lexicographical order.

Given a tuple of functions f0, . . . , fm and α = (α1, . . . , αn) ∈ (Pm)n, we will write
α · f for the sequence α1 · f, . . . , αn · f . Recall (from the introduction) that for a
generic choice of α, α · f is a Vogel sequence of the ideal generated by f0, . . . , fm.

Theorem 7.1. Let I be a given ideal in OX,x and let e(x) be the associated Segre
numbers. Then

e(x) = min
lex

multxV
h,

where the minlex is taken over all Vogel sequences h of ideals with the same integral
closure as I.

Moreover, if f is a tuple of generators of I (or any ideal J such that J has the
same integral clousure as I) then it suffices to take the minlex over all Vogel sequences
of the form α · f , where α ∈ (Pm)n.

For the proof we will need the following result; if Z is smooth this is Theorem 3.4
in [28].

Proposition 7.2. Assume that (Wj)j∈N and W are subvarieties of X of pure di-
mension such that limj→∞[Wj ] = [W ] as currents on X. Let Z be a fixed subvariety
of X, let x be a fixed point in Z, and assume that

(7.1) ℓx(1Z [W ]) ≤ ℓx(1Z [Wj ]).

for all j. Then there is a neighborhood U of x in X, in which limj→∞(1Z [Wj ]) =
1Z [W ] and limj→∞(1X\Z [Wj ]) = 1X\Z [W ].

Proof. Since the currents [Wj ] are positive and locally uniformly bounded, so are
the currents 1Z [Wj ]. Thus, there is a subsequence of (1Z [Wj])j∈N converging to
a positive closed current with support on W ∩ Z. By Lemma 2.2 this current is
the integration current [V ] for some cycle V . Since [Wj ] − 1Z [Wj ] is positive, so is
[W ]− [V ] = lim([Wj ]− 1Z [Wj ]), and since |V | ⊂ |Z|, it follows that

(7.2) [V ] = 1Z [V ] ≤ 1Z [W ].

By (7.1) and semicontinuity, (2.1), we have that

ℓx(1Z [W ]) ≤ lim sup(ℓx(1Z [Wj])) ≤ ℓx([V ]) ≤ ℓx(1Z [W ]).

Thus ℓx(1Z [W ]) = ℓx([V ]), and combined with (7.2) and the fact that V and W are
effective cycles, it follows that [V ] = 1Z [W ] in some neighborhood of x.
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Since each subsequence of (1Z [Wj ])j∈N has a subsequence that tends to 1Z [W ], it
follows that limj→∞(1Z [Wj ]) = 1Z [W ]. The last statement follows by complemen-
tarity. �

Proof of Theorem 7.1. Since each Vogel sequence h can be realized as α · f for some
choice of f and α, it is easy to check that the first statement follows from the second
one. Let f be a tuple of generators of I. By Theorem 6.3, e(x) = multxV

α·f for
almost all α, and thus it is enough to prove that e(x) ≤lex minlexmultxV

α·f if α is a
Vogel sequence.

Suppose that e(x) 6≤lex minlexmultxV
α·f . Then there is an r and a Vogel sequence

α · f such that ek(x) = multxV
α·f
k for k ≤ r − 1 but multxV

α·f
r < er(x). Since α · f

is a Vogel sequence of I for a generic choice of α, we can choose (αj)j∈N in (Pm)n

such that (αj)j∈N → α and such that αj · f is a Vogel sequence of I for each j, and

moreover, by Theorem 6.3, such that multxV
αj ·f = e(x). It then follows that, for j

large enough and k ≤ r,

(7.3) ℓx(1Z [αk · f ]∧ · · · ∧[α1 · f ]) ≤ ek(x) = ℓx(1Z [α
j
k · f ]∧ · · · ∧[αj

1 · f ]),

We claim that

(7.4) lim
j→∞

[αj
k · f ]∧ · · · ∧[αj

1 · f ] = [αk · f ]∧ · · · ∧[α1 · f ]

for k ≤ r. Clearly (7.4) holds for k = 1. Assume now that it holds for k < r. Then
by (7.3) and Proposition 7.2,

(7.5) lim
j→∞

(1X\Z [α
j
k · f ]∧ · · · ∧[αj

1 · f ]) = 1X\Z [αk · f ]∧ · · · ∧[α1 · f ].

Since αj · f and α · f are Vogel sequences, the currents in (7.5) intersects properly

with [αj
k+1 · f ] and [α · f ], respectively. In light of [7, Chapter 2, Corollary 12.3.4] or

[28, Theorem 3.6], (7.4) holds for k + 1, and the claim follows by induction.
Proposition 7.2 and (7.3) imply that

(7.6) lim
j→∞

(1Z [α
j
r · f ]∧ · · · ∧[αj

1 · f ]) = 1Z [αr · f ]∧ · · · ∧[α1 · f ].

By semicontinuity, (2.1), the Lelong number of the left hand side of (7.6), i.e.,

multxV
α·f
r , must be larger than or equal to er(x), which gives a contradiction. Hence

minlexmultxV
α·f = e(x). �

Given a positive closed current v, we define ℓx(v) := (ℓx0, ..., ℓxn), where ℓxk de-
notes the Lelong number at x of the component of v of bidegree (k, k). If v and w
positive and closed, we let v ≤x w mean that ℓx(v) ≤lex ℓx(w), and v =x w means
that ℓx(v) = ℓx(w). Observe that if h is a Vogel sequence of an ideal Jx, then the
zero sets of h and Jx coincide.

Theorem 7.3. Let f1, . . . , fs be a sequence of elements in OX,x and let f = (f1, . . . , fs).
Then

(7.7) Mf ≤x M
fs∧ . . .∧Mf1 .

If s = n and f1, . . . , fs is a Vogel sequence of an ideal in ØX,x, then the right hand
side of (7.7) is the corresponding Vogel cycle.
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Proof. Let Z := {f = 0}. In order to prove (7.7), we proceed by induction on the
number s of functions. Clearly (7.7) holds for s = 1, so assume that it holds for s−1

instead of s. Let f̃ := (f2, . . . , fs). By (5.7) we may assume that X is irreducible

and that f1 does not vanish identically on X, so that Mf1 = Mf1
1 = [f1]; otherwise

Mf1 =M0 = 1X and Mf =M f̃ and we are back in the case s− 1.
Let [W ] := [f1], and let iWj

: Wj →֒ X be the irreducible components of WX\Z .

Theorem 6.3 asserts that for a generic choice of α ∈ (Ps−2)n−1, α · f̃ is a Vo-

gel sequence of J (i∗Wj
f̃) and Mαn−1·f̃∧ · · · ∧Mα1·f̃ =x M f̃ on each Wj, so that

Mαn−1·f̃∧ · · · ∧Mα1·f̃∧[WX\Z ] =x M
f̃∧[WX\Z ]. By the induction hypothesis

M f̃∧[WX\Z ] ≤x M
fs∧ · · · ∧Mf2∧[WX\Z ].

Since f̃ vanishes on Z, by (3.3), we get

(7.8) Mαn−1·f̃∧ · · · ∧Mα1·f̃∧Mf1 ≤x M
fs∧ · · · ∧Mf2∧Mf1 .

For a generic choice of α, the sequence f1, α1 · f̃ , . . . , αn−1 · f̃ is a Vogel sequence of
J (f). Thus, by Theorem 7.1,

(7.9) Mf ≤x M
αn−1·f̃∧ · · · ∧Mα1·f̃∧Mf1 .

Combining (7.8) and (7.9), we get (7.7).

Note that the right hand side of (7.7) is a sum of products of currents M
fj
0 = 1fj

and M
fj
1 = [fj]. To prove the second statement, assume that f1, . . . , fn is a Vogel

sequence of some ideal. Then, in light of Lemma 2.2, 1fℓ · · · 1fk+1
[fk]∧ · · · ∧[f1] =

1Z [fk]∧ · · · ∧[f1], and thus, by (3.3), [fℓ+1]∧1fℓ · · · 1fk+1
[fk]∧ · · · ∧[f1] = 0. Hence

(7.10) Mfs∧ · · · ∧Mf1 =

n∑

k=0

1fn · · · 1fk+1
[fk]∧ · · · ∧[f1] =

n∑

k=0

1Z [fk]∧ · · · ∧[f1];

here we have used that [fn]∧ · · · ∧[f1] has support on Z. Now, Proposition 3.4 asserts
that the right hand side of (7.10) is equal to [V f ]. �

8. Proof of the generalized King formula (Theorem 1.4)

Let X and J be as in Theorem 1.4 and let Z be the variety of J . The (Fulton-
MacPherson) distinguished varieties associated with J are defined in the following
way, cf., [10]: Let ν : X+ → X be the normalization of the blow-up of X along J and
let E be the exceptional divisor of ν. Then Zj ⊂ X is a distinguished variety if it

is the image under ν of an irreducible component of E. Let Zk
j be the distinguished

varieties of codimension k. Also, we define the irreducible components ofX contained
in Z to be distinguished varieties (of codimension 0).

Let us first consider the case k = 0. By (5.7) we may assume that X is irreducible.

Then either J = (0) or Z is a proper subvariety of X. In the first case Mf
0 =

M0
0 = 1X and if h is a Vogel sequence of J , then necessarily h = (0, . . . , 0) and so

V h = V h
0 = X. In the second case Mf

0 = 0 and if h is a Vogel sequence of J , then
V h
0 = XZ

0 = 0, since X 6⊂ Z. It follows that Theorem 1.4 holds for k = 0.

Next, consider the case k ≥ 1. Let π : X̃ → X be a normal modification such that

J · O
X̃

principal. We use the notation from Section 4, so that Mf
k = π∗([D]∧ωk−1

f ),
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where D = Df . Moreover, we let Dk denote the components of D that are mapped
to sets of codimension k in X. Note that D = Dp + . . . +Dn, if p = codimZ.

If ℓ > k, then π∗([D
ℓ]∧ωk−1

f ) is a positive closed (k, k)-current with support on a

variety of codimension ℓ > k, and hence it must vanish in view of Lemma 2.2. Thus

(8.1) Mf
k = Sf

k +Nf
k ,

where

(8.2) Sf
k = π∗

(
[Dk]∧ωk−1

f

)
, Nf

k = π∗

(∑

ℓ<k

(
[Dℓ]∧ωk−1

f

))
.

Note that Mf
k = 0 for k < p and Nf

p = 0. We claim that (8.1) is the Siu decompo-

sition of Mf
k , cf., Section 2.2. By Lemma 2.2, Sf

k is the Lelong current of a cycle of

codimension k, so it is enough to show that Nf
k does not carry any mass on varieties

of codimension k. Let W ⊂ X be such a variety. By (6.5),

(8.3) 1Wπ∗([D
ℓ]∧ωk−1

f ) =
∑

j

π∗(1π−1W [Dℓ
j ]∧ω

k−1
f ),

where Dℓ
j are the irreducible components of Dℓ. Then π−1(W ) does not contain any

component Dℓ
j , thus each term in the right hand side of (8.3) vanishes, and thus the

claim follows.
Since (8.1) is the Siu decomposition of Mf

k , it follows that Sf
k is independent of

π : X̃ → X. If we take π to be the normalization of the blow-up of J , we see that
the Zk

j in (1.7) has to be among the distinguished varieties of J . By Proposition 5.2

(for r = 1), the Lelong number of Mf
k is an integer at each point, and since the

Lelong number of Nf
k generically vanishes on each Zk

j , we conclude that the βkj and

nk(x) are integers. That nk(x) is an integer can also be seen directly by copying the
proof of Proposition 5.2. Moreover, cf., Remark 5.3, βkj and nk(x) only depend on
the integral closure of J at x.

We shall now see that the coefficients βkj of the distinguished varieties are, in fact,

≥ 1, following the proof of Corollary 5.4.19, in [17]. The blow-up πJ : BlJX → X
of X along J can be seen as the subvariety of X × P

m
t defined by the equations

tjfk− tkfj = 0, where 0 ≤ j < k ≤ m. Moreover, the line bundle associated with the
exceptional divisor is the pullback of OPm

t
(−1) from P

m to BlJX, so ωt = ddc log |t|2

represents minus its first Chern class. This form is strictly positive on the fibers
of πJ , and since the normalization X+ → BlJX is a finite map, the pullback ω of
ωt to X

+ remains strictly positive on the fibers of ν : X+ → X as well. Let Ej be
one of the irreducible component of the exceptional divisor of ν. We conclude that
ν∗([Ej ]∧ω

k−1) is a positive integer times [Zk
j ], where Z

k
j := ν(Ej). On the other

hand, this current is unaffected if we replace ω by ωf since these two forms are first

Chern forms of the same line bundle. It follows that βkj ≥ 1.

We saw in (the beginning of) Section 7 that ℓx(M
f
k ) is equal to the k:th Segre

number of J at x. Next, we show that the fixed Vogel components of J are precisely

the Sf
k . Fix a point x ∈ X. As in proof of Theorem 6.3 we can construct, for k ≥ 1

and a generic α ∈ (Pm)n, a normal current Ak with support on |Dk| such that

ddcAk = [Dk]∧([αk−1 · f
′]∧ · · · ∧[α1 · f

′]− ωk−1
f ).
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Now π∗Ak is a normal (k − 1, k − 1)-current with support on
⋃

j Z
k
j , and thus it

vanishes by Lemma 2.2. It follows that π∗
(
[Dk]∧[αk−1 · f

′]∧ · · · ∧[α1 · f
′]) = Sf

k and

hence Sf
k occurs in a generic Vogel cycle at x, meaning that Sf

k is a fixed Vogel cycle.
On the other hand, the cycles

(8.4) π∗(
∑

ℓ<k

[Dℓ]∧[αk−1 · f
′]∧ · · · ∧[α1 · f

′])

must be moving. Indeed, by (the proof of) Theorem 6.1, taking mean values of (8.4)

over all α ∈ (Pm)k, we get the current Nf
k , which carries no mass on any variety of

codimension k, as seen above.
By arguments as in the proof of Theorem 6.3 one shows that for a generic choice

of α ∈ (Pm)k,

(8.5) ℓx(1X\Z [αk · f ]∧ · · · ∧[α1 · f ]) = ℓx(1X\Z(dd
c log |f |2)k)

cf. (6.7). However, the left hand side of (8.5) is by Proposition 3.4 equal to mk(x).
This concludes the proof of Theorem 1.4.

Remark 8.1. One can see more directly that only the distinguished varieties occur

in Sf
k if Sf

k is defined by (8.2) from an arbitrary normal modification π : X̃ → X. To

begin with, π factors over ν, i.e., there exists a modification ν̃ : X̃ → X+ such that
π = ν ◦ ν̃. If ω+ is the form associated with J · OX+ in X+, then ν̃∗ω+ = ωf .

Let Dk
j be an irreducible component of the divisor Dk. Since |Dk

j | ⊂ π−1(Z),

it follows that ν̃(|Dk
j |) is contained in one of the components Ej of E in X+. If

ν̃(|Dk
j |) has codimension ≥ 1 in Ej , then ν̃∗([D

k
j ]∧ω

k−1
f ) = (ν̃∗[D

k
j ])∧ω

k−1
+ vanishes by

Lemma 2.2. Hence π∗([D
k
j ]∧ω

k−1) = ν∗ν̃∗([D
k
j ]∧ω

k−1) vanishes unless ν̃(|Dk
j |) = Ej ,

in which case π(|Dk
j |) is a distinguished variety. �

9. Proper intersections

In Section 3 we defined the proper intersection of a Cartier divisor H and a pure
dimensional cycle Z as the current [H]∧[Z]. We will now sketch how (the Lelong
current of) a general proper intersection can be defined as a limit of “explicit” regular
forms.

Assume that Y is a smooth manifold of dimension n, and that Z1, . . . , Zr are ana-
lytic cycles in Y of pure codimensions p1, . . . , pr, respectively, that intersect properly,
i.e., the set-theoretical intersection V :=

⋂
j |Zj | has codimension p := p1 + . . .+ pr.

Choose holomorphic tuples fj such that M
fj
pj = [Zj ]. This is always possible semi-

globally; for example, if each component of Zj has multiplicity one, then just take
fj as generators of the radical of Zj. Then, by Section 5,

(9.1) [Zr · · ·Z1] := Mfr
pr ∧ · · · ∧Mf1

p1

is a closed positive current of bidegree (p, p) with support on V , so it is the Lelong
current of a cycle with support on V ; we define this cycle, which we denote by
Zr · · ·Z1, to be the intersection cycle of Z1, . . . , Zr. Notice that, by Proposition 5.2,
Zr · · ·Z1 has integer coefficients. We claim that [Zr · · ·Z1] is independent of the
choices of fj and that it is commutative and associative regarded as a product, i.e.,
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[Z3 ·(Z2 ·Z1)] = [(Z3 ·Z2) ·Z1] provided that all the involved intersections are proper7.
In fact, since (the right hand side of) (9.1) is defined recursively from the right and

Mf1
p1 = [Z1], it is clearly independent of the choice of f1. The claim then follows if

we can show that (9.1) is not affected if we interchange the first and last factor.
Given a tuple of holomorphic functions g, let

Ag,λ
k := (2πi)−1|g|2λ∂ log |g|2∧(ddc log |g|2)k−1,

so that dAg,λ
k = ∂̄Ag,λ

k =Mg,λ
k . One can show that Ag,λ

k has an analytic continuation

as a current to Reλ > −ǫ, cf. Section 4. Set Ag
k := Ag,λ

k |λ=0. Then dA
g
k = ∂̄Ag

k =Mg
k .

Following section 5 we can define

(9.2) Ω := Afm
pm

∧Mfm−1
pm−1

∧ · · · ∧Mf1
p1

−Mf1
p1
∧Mfm−1

pm−1
∧ · · · ∧Mf2

p2
∧Afm

pm
.

The support of Ω is clearly contained in
⋂m−1

1 |Zj | and since Afm
pm is a smooth form

outside |Zm|, actually suppΩ ⊂ V . Now Ω is a pseudomeromorphic current in the
sense of [5], and thus, since it has bidegree (∗, p − 1) and support on a variety of
codimension p, it vanishes, see [5, Corollary 2.4]. One can check that the formal
Leibniz rule holds for products of the form (9.2). Hence applying ∂̄ to (9.2) we get

Mfm
pm∧ · · · ∧Mf1

p1 = Mf1
p1∧M

fm−1
pm−1∧ · · · ∧Mf2

p2∧M
fm
pm , which concludes the proof of the

claim.

Remark 9.1. If Z1, . . . , Zr intersect properly, one can show that the current valued
funtion

(λ1, ..., λr) 7→Mfr,λr
pr ∧ · · · ∧Mf1,λ1

p1
,

a priori defined when Reλj are large, can be analytically continued to where λj > −ǫ,
for some ǫ > 0, cf. [25]. This gives an alternative proof of that (9.1) is commutative.

�

Proposition 9.2. Assume that Z1, ..., Zr are analytic cycles in Y of pure dimensions
that intersect properly. Then Zr · · ·Z1 coincides with the (proper) intersection of the
product cycle Zr × · · · × Z1 and the diagonal ∆Y in Y × · · · × Y .

For the proof we will need the following lemmas, which are of independent interest.

Lemma 9.3. Let x ∈ Y . Let h1, . . . , hm be a regular sequence in OY,x. Then

(9.3) Mh =Mhm∧ · · · ∧Mh1 = [hm]∧ · · · ∧[h1].

Remark 9.4. Lemma 9.3 follows with the same proof if Y is an analytic space and
h1, . . . , hm is a geometrically regular sequence. This version of the lemma implies
that if f1, . . . , fm are tuples fj = fj,1, . . . , fj,rj of holomorphic functions on Y such
that f1,1, . . . , f1,r1 , . . . , fm,1, . . . , fm,rm is a geometrically regular sequence, then

Mf =Mfm∧ · · · ∧Mf1 =Mfm
rm ∧ · · · ∧Mf1

r1
,

see [29] and [16] for similar results for residue currents. �

Sketch of proof of Lemma 9.3. For generic choices of αj, αm ·h is equal to a non-zero

constant times h1 on ∩m−1
j=1 {αj · h = 0}. If γ = [αm−1 · h]∧ . . .∧[α1 · h] we thus have

that [αm · h]∧γ = Mαm·h
1 ∧γ = Mh1

1 ∧γ = [h1]∧γ. Since the proper intersection is
commutative, this is in fact equal to γ∧[h1]. By induction, [αm · h] ∧ · · · ∧ [α1 · h] =
[hm]∧ · · · ∧[h1] for generic αk. Now, (9.3) follows from Theorem 6.1. �

7Notice that the assumption that Z1, . . . , Zr intersect properly, does not imply that the members
of a arbitrary subfamily intersect properly.
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Lemma 9.5. Let f be a tuple of holomorphic functions on an analytic space X and

let i : X →֒ X × Cw be the trivial embedding. Then M
(f,w)
0 = 0 and

(9.4) M
(f,w)
k+1 = i∗M

f
k , k ≥ 0.

Moreover, if W ⊂ X is an analytic variety,

(9.5) Mf⊗1
k ∧[W × {0}] = i∗(M

f
k ∧[W ]).

If we consider X as embedded in some larger analytic space X ′ and i : X ′ →
X ′ × Cw, then (9.4) reads

M
(f,w)
k+1 ∧[X × Cw] = i∗(M

f
k ∧[X]).

In particular, if f = 0,

(9.6) Mw
1 ∧[X × Cw] = i∗[X] = [X × {0}].

Proof. Let z be local coordinates on X. Since (z, w) 7→ (f(z), w) does not vanish

identically on X × Cw, it follows that M
(f,w)
0 = 0.

Let us now prove (9.4). First consider the case when k = 0. By (5.7) we may
assume that X is irreducible. Then either f ≡ 0 on X or the zero set of f has at
least codimension 1 in X. In the first case

M
(f,w)
1 =Mw

1 = [w] = i∗1 = i∗M
0
0 = i∗M

f
0 .

In the latter case the zero set of (f,w) has at least codimension 2 on X × Cw, and
and so both sides of (9.4) vanish by Lemma 2.2. Thus (9.4) holds for k = 0.

Next let π : X̃ → X be a smooth modification such that J · O
X̃

is principal and

moreover f0 is locally a monomial; use the notation from Section 4. Observe that

then π⊗ idw : X̃×Cw → X×Cw is a smooth modification with the same properties.
It follows that it is enough to prove (9.4) in case X is smooth, J = (f0) is principal
and f0 is (in local coordinates) a monomial.

In light of Section 4 we thus have to show that

(9.7) (2πi)−1∂̄(|f |2 + |w|2)λ∧∂ log(|f |2 + |w|2)∧(ddc log(|f |2 + |w|2))k

is equal to [f0]∧(ddc log |f ′|)k−1∧[w] = Mf
k when λ = 0. Indeed, at λ = 0, (9.7)

is equal to M
(f,w)
k+1 . Note that (9.7) is locally integrable for Reλ > 0. Moreover,

if Reλ < 1, it is integrable in the w-direction and thus acts on forms that are just

bounded in the w-direction. SinceM
(f,w)
k+1 is of order zero and suppM

(f,w)
k+1 ⊂ {w = 0},

it follows that to check the action of M
(f,w)
k+1 on test form, it is enough to consider

forms ξ(z, w) = ξ̃(z), where ξ̃(z) is any test form inX. However, after the (generically
1−1) change of variables f0ω = w, so that |f |2+ |w|2 = |f0|2(|f ′|2+ |ω|2), the action
of (9.7) on ξ is equal to

(2πi)−1

∫

z,ω

∂̄|f0|2λ(|f ′|2 + |ω|2)λ∧∂ log |f0|
2∧(ddc log(|f ′|2 + |ω|2))k∧ξ̃(z).

Taking λ = 0, we get

(9.8)

∫

z

[f0]∧ξ̃(z)∧

∫

ω

(ddc log(|f ′|2 + |ω|2))k.
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One can check that the inner integral in (9.8) is equal to (ddc log |f ′|2)k−1, which
proves (9.4). Finally we prove (9.5). Let j : W →֒ X. Then, using (5.6),

Mf⊗1∧[W × {0}] = i∗j∗M
j∗i∗f⊗1 = i∗j∗M

j∗f = i∗M
f∧[W ].

�

Proof of Proposition 9.2. With no loss of generality we may assume that Y = C
n.

Pick coordinates (z1, . . . , zr) on Y r = C
rn. That the Zj intersect properly implies

that ∆Cn and Zr×· · ·×Z1 intersect properly in C
rn. It follows that z2−z1, . . . , zr−z1,

is a geometrically regular sequence on Zr × · · · ×Z1; indeed, note that ∆Cn = {z2 −
z1, . . . , zr − z1}.

Let pj := codimZj, and let fj be holomorphic tuples in C
n such that M

fj
pj = [Zj ].

Then [Zr × · · · × Z1] =M
fr(zr)
pr ∧ · · · ∧M

f1(z1)
p1 , so that

(9.9) [∆Cn · Zr × · · · × Z1] =M
(z2−z1,...,zr−z1)
(r−1)n ∧Mfr(zr)

pr ∧ · · · ∧Mf1(z1)
p1

.

Introducing new sets of variables w := z1, η2 := z2 − z1, . . . , ηr := zr − z1, the right
hand side of (9.9) is equal to

(9.10) M
(η2,...ηr)
(r−1)n ∧Mfr(w+ηr)

pr ∧ · · · ∧Mf2(w+η2)
p2

∧Mf1(w)
p1

.

Note that the factors in (9.10) correspond to cycles

(9.11) ∆Cn , C(r−1)n
z1,...,zr−1

× Zr, . . . , C
n
z1

× Z2 × C
(r−2)n
z3,...,zr

, Z1 × C
(r−1)n
z2,...,zr

,

respectively. Since the Zj intersect properly, the cycles (9.11) intersect properly in
C
rn, and thus we are free to move the left hand factor in (9.10) to the right. After

that we can replace fj(w + ηj) with fj(w), since they coincide when η = 0. After
moving back the factor Mη2,...ηr

(r−1)n , (9.10) is equal to

M
(η2,...ηr)
(r−1)n ∧Mfr(w)

pr ∧ · · · ∧Mf1(w)
p1

= M
(η2,...ηr)
(r−1)n ∧[Z × C

(r−1)n
η2,...,ηr

] = [Z × {0}],

where Z = Zr · · ·Z1. Here we have used Lemma 9.3 and (9.6) for the last equality. �

Remark 9.6. Observe that by Lemma 9.3,

[∆Cn · Zr × · · · × Z1] =

(r−1)n∧

j=1

[hj ]∧[Zr × · · · × Z1],

where hj are appropriate hyperplanes. Thus general proper intersections of cycles
can be reduced to the proper intersections of cycles and smooth divisors. �

Let us remark that several results in this paper for Bochner-Martinelli currents
and their products follow from corresponding results for the residue current, cf.,
Remarks 4.2, 9.1, and 9.4.

10. The Tworzewski product

We now turn our attention to nonproper intersections. The aim of this section is
to reconstruct Tworzewski’s intersection cycles of arbitrary analytic cycles by means
of currents. Throughout this section Y is a manifold of dimension n. We first define
the intersection A ◦ Z of a smooth manifold A ⊂ Y , or, more generally, a coherent
ideal sheaf J on Y , and an analytic cycle Z in Y .

As in the introduction we may assume that J is a sheaf on the analytic space Z.
If the generic Vogel cycle has no moving components at any point, then, assuming
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that f generates J , Nf = 0, we have a well-defined intersection cycle (whose Lelong
current is) Mf = Sf , in view of Theorem 1.4. If there are moving components,
the situation is more complicated. It is tempting to define the intersection as the
positive current Mf , although Mf is not in general the Lelong current of a cycle
and it depends on the choice of generators f of J . This viewpoint will be further
exploited in [6].

Tworzewski’s idea is that one can anyway associate a cycle, as described in the
introduction: We define A ◦ X as the unique cycle whose total multiplicity at x is

equal to
∑
eA,Z
k (x), where eA,Z

k (x) is the Segre numbers of the sheaf J (A) on Z. It
is not clear to us that A ◦ Z is always an effective cycle, although we believe it is
true.

Note that A ◦Z = A ·Z if A and Z intersect properly. Moreover, if |Z| ⊂ A, then
A ◦ Z = Z. If A is a divisor, then [A ◦ Z] = 1A[Z] + [A]∧[Z], i.e., A ◦ Z consists
of the irreducible components of Z contained in A plus the proper intersection of A
and the remaining components of Z.

Proposition 10.1. Let A be a submanifold of Y and Z an analytic cycle in Y . Then

(10.1) (A× Cw) ◦ (Z × {0}) = (A ◦ Z)× {0}

and

(10.2) (A× {0}) ◦ (Z × Cw) = (A ◦ Z)× {0}.

Proof. Let f be a tuple that defines the ideal sheaf J (A) in Y . Then f ⊗ 1 defines
J (A× Cw) in Y × Cw and

e
A×Cw,Z×{0}
k (x) = ℓx(M

f⊗1
k ∧[Z × {0}]) = ℓx(M

f
k ∧[Z]) = eA,Z

k (x),

where we have used (9.5) for the second equality. This proves (10.1).
Next, note that f,w defines J (A × {0}) in Y × Cw. Thus, using (5.6) and (9.4)

we have

e
A×{0},Z×Cw

k+1 (x) = ℓx(M
(f,w)
k+1 ∧[Z × Cw]) = ℓx(M

f
k ∧[Z]) = eA,Z

k (x),

which proves (10.2); the shift k+1 to k is because the index k in the expression eA,Z
k

refers to the codimension on Z. �

Now, let us consider intersections of general analytic cycles. If Z is an analytic
cycle in Y , let i∆Y

Z denote its image in the diagonal ∆Y ⊂ Y × · · · × Y under

i∆Y
: Y →֒ Y × · · · × Y, x 7→ (x, . . . , x).

Given analytic cycles Z1, . . . , Zr in Y , following Tworzewski [28], we define the
Tworzewski product, Z1 • · · · • Zr, by

i∆Y

(
Z1 • · · · • Zr

)
:= ∆Y ◦ (Z1 × · · · × Zr).

This product is clearly commutative in each entry and locally defined.
If Z1, . . . , Zr are cycles in Y ⊂ Y ′, where Y is a submanifold of the manifold Y ′,

then the definition of Z1 • · · · • Zr does not depend on whether we consider the Zj

as sitting in Y or in Y ′. Let ∆Y be the diagonal in Y × · · · × Y and let ∆Y ′ be the
diagonal in Y ′×· · ·×Y ′. Then one just has to show that the pullbacks to Z1×· · ·×Zr

of J (∆Y ′) and J (∆Y ) coincide. In fact, since the definition is local, we can reduce
to the case when Y = C

n and Y ′ = Y × Cw = C
n × Cw. Then what we claim is

straightforward.
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Finally, consider analytic cycles Z1, . . . , Zr in an analytic (not necessarily smooth)
space X. A local minimal embedding i : X →֒ C

N is unique up to a (local) biholo-
morphism on C

N , and any embedding is like (i, 0): X →֒ Y = C
n×C

m
w . Hence there

is a well-defined product Z1 • · · · • Zr.
Assume that Z1, . . . , Zr are of pure dimensions. Then it is natural to consider the

tuple

(Z1 • · · · • Zr)k(x) := e∆,Z1×···×Zr∑
dimZi−k

(x);

here the entry corresponding to k corresponds to the Segre number for the “dimen-
sion” k. It is clear that (Z1, ..., Zr) 7→ (Z1 • · · · • Zr)k(x) is monotonous in each
Zj-entry. In the same way we introduce, for any smooth submanifold A ⊂ Y and

any cycle Z in Y , the tuple (A ◦ Z)k(x) := eA,Z
dimZ−k(x).

If Z1, . . . , Zr intersect properly, then Z1 • · · · • Zr coincides with the classical
proper intersection Z1 · · ·Zr as defined in Section 9; this follows immediately from
Proposition 9.2.

Proposition 10.2. Assume that A is a smooth submanifold of Y and that Z is an
analytic cycle in Y . Then A • Z = A ◦ Z.

Proof. Assume without loss of generality that Y = C
n. Choose local coordinates

z = (z′, z′′) on C
n so that A = {z′ = 0}, and local coordinates (z, w) on C

n × C
n.

We will show that

(10.3) (A • Z)j(x) = e∆,Z×A
dimA+dimZ−j(x) = ℓx(M

z−w
dimA+dimZ−j∧[Z ×A])

coincides with

(10.4) (A ◦ Z)j(x) = eA,Z
dimZ−j(x) = ℓx(M

z′

dimZ−j∧[Z]).

Note that Mz−w
k ∧[Z × A] = M

(z′,z′′−w′′)
k ∧[Z × {w′ = 0}]. Let z′, z′′, w′, η′′ :=

z′′−w′′ be new coordinates on C
n×C

n. Then (9.4) implies thatM
(z′,η′′)
k+dimA∧[Z×{w′ =

0}] = i∗M
z′

k ∧[Z × {w′ = 0}], where i : C2n−dimA
z′,z′′,w′ →֒ C

2n
z′,z′′,w′,η′′ . Moreover, by (9.5),

Mz′

k ∧[Z × {w′ = 0}] = j∗M
z′

k ∧[Z], where j : Cn
z′,z′′ →֒ C

2n−dimA
z′,z′′,w′ . Hence

Mz−w
dimA+dimZ−j∧[Z ×A] = i∗j∗M

z′

dimZ−j∧[Z]

and thus (10.3) is equal to (10.4). �

Corollary 10.3. Assume that A and B are smooth analytic subsets in Y . Then
(i) A ◦B = A •B = B ◦ A.
(ii) If A ⊂ B, then A •B = A.

The first statement follows since Z1 • · · · • Zr is commutative. For the second
statement we have used that A ◦ Z = Z if |Z| ⊂ A.

Corollary 10.4. For any point a ∈ Y , {a} • Z = multa(Z){a}.

Indeed if a is a point, then {a} • Z = {a} ◦ Z = ℓa[Z]{a} = multa(Z){a}.
Most of the results in this section, or similar statements, can be found in either

[28] or [23], but with other proofs. However, we have not found Proposition 10.2 in
the literature.
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11. Examples

The following simple lemma is useful for computations.

Lemma 11.1. Let X and X ′ be two analytic spaces, let τ : X ′ → X be a holomorphic
map, and let f be a tuple of holomorphic functions on X. Assume that τ is proper,
surjective, and generically r to 1. Then

(11.1) rMf
k = τ∗M

τ∗f
k .

Moreover, if ξ is a tuple that defines the maximal ideal at x ∈ X, then the Segre
numbers at x associated with J = J (f) on X are given by

(11.2) ek(x) =
1

r

∫

X′

M τ∗ξ
n−k∧M

τ∗f
k ,

where n = dimX.

Proof. Since τ∗Mf,λ
k =M τ∗f,λ

k if Reλ >> 0, we have that then
∫

X

Mf,λ
k ∧ψ =

1

r

∫

X′

M τ∗f,λ
k ∧τ∗ψ

for test forms ψ. Taking analytic continuations to λ = 0, we get (11.1). In view of
Proposition 5.4, we have

ek(x) = ℓxM
f
k =

∫

X

M ξ,λ
n−k∧M

f,λ2

k

∣∣
λ=0

=

1

r

∫

X′

M τ∗ξ,λ
n−k ∧M τ∗f,λ2

k

∣∣
λ=0

=
1

r

∫

X′

M τ∗ξ
n−k∧M

τ∗f
k .

�

In particular,

(11.3) multxX =

∫

X

M ξ
n =

1

r

∫

X′

M τ∗ξ
n .

Example 11.2. Let r, s be relatively prime and consider the cusp Z = {zr1 − zs2 = 0}
in C

2
z. Since we have the parametrization τ : t 7→ (ts, tr) of Z, using (11.3) we get

mult0Z =

∫

Z

M
(z1,z2)
1 =

∫

Ct

M
(ts ,tr)
1 =

∫

Ct

M tmin(s,r)

1 = min(s, r).

�

Example 11.3. Let Z = {x2x
m
1 − x23 = 0} ⊂ C

3
x, where m ≥ 1, and let A = {x2 =

x3 = 0}. Since A is smooth and contained in Z, and Z is smooth outside the origin
in C

3, we must have that A • Z = A outside the origin, cf., Corollary 10.3. Thus
A • Z = A+ a{0}.

To determine a let us consider a generic Vogel sequence of J (A) on Z at the origin
and let us compute the corresponding Vogel cycle. Let H1 be a generic hyperplane
that contains A, defined by h1 = αx2 − x3. Then Z1 = H1 · Z is the curve {x2x

m
1 −

(αx2)
2 = 0, αx2 − x3 = 0}. It follows that ZA

1 is equal to A, whereas Z
Z\A
1 is the

curve {xm1 −α2x2 = 0, αx2−x3 = 0}. Next, let h2 = βx2−x3. Then Z2 = H2 ·Z
Z\A
1

is the cycle {x3 = x2 = 0, xm1 = 0}. Since its support is contained in A, it is equal
to ZA

2 and it has order m at the origin. We conclude that [V h] = [A] +m[{0}]. In
particular a = m.
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We can also compute a, which is the second Segre number eA,Z
2 (0) of J (A) on Z, as

the Lelong number of a certain Bochner-Martinelli current. Notice that τ : (t1, t2) 7→
(t21, t

2
2, t

m
1 t2) is a surjective, generically 2− 1, mapping C

2
t → Z. If i : Z →֒ C

3 is the
identity map we have by Lemma 11.1 that

eA,Z
2 (0) = ℓx(M

(x2,x3)
2 ∧[Z]) =

∫

C3

M
(x1,x2,x3)
0 ∧M

(x2,x3)
2 ∧[x2x

m
1 − x23] =

∫

Z

M
(i∗x1,i

∗x2,i
∗x3)

0 ∧M
(i∗x2,i

∗x3)
2 =

1

2

∫

C2
t1,t2

M
(t21,t

2
2,t

m
1 t2)

0 ∧M
(t22,t

m
1 t2)

2 .

According to Theorem 6.1, M
(t22,t

m
1 t2)

2 is the mean value of all

[(βt2 − tm1 )t2]∧[(αt2 − tm1 )t2]

for generic choices of α, β ∈ C. For generic α, β, using the new variables v1 = t1, v2 =
αt2 − tm1 , we get

[βt2 − tm1 ]∧[αt2 − tm1 ] = [β′v2 − α′vm1 ]∧[v2] = [vm1 ]∧[v2] = m[{0}]

for some α′, β′ ∈ C. Since [(αt2 − tm1 )t2] = [t2] + [αt2 − tm1 ], by (3.4) and (3.3), we
thus have that

[(βt2 − tm1 )t2]∧[(αt2 − tm1 )t2] =
(
[βt2 − tm1 ] + [t2]

)
∧[αt2 − tm1 ] = 2m[{0}].

Now, M
(t21,t

2
2,t

m
1 t2)

0 = 1(0,0), so e
A,Z
2 (0) = m as expected. �

The next example shows that the Tworzewski product is not associative in general.

Example 11.4. Let A and Z be as in Example 11.3. According to Corollaries 10.3
and 10.4, ({0} •A) •Z = {0} •Z = 2{0}, since mult0Z = 2, which can be seen using
(11.3). However, by Corollary 10.3 and Example 11.3,

{0} • (A • Z) = {0} • (A+m{0}) = (m+ 1){0},

so that ({0} • A) • Z 6= {0} • (A • Z) unless m = 1. Notice that m + 1 is the total
degree of A • Z at 0.

Let us also compute {0} • A • Z. Since {0} ×A× Z ⊂ (C3)3x,y,z has dimension 3,
{0} • A • Z = α{0}, where α is the Lelong number of

M
(y−x,z−x)
3 ∧[{0} ×A× Z] =M

(y−x,z−x)
3 ∧[{x = 0, y2 = y3 = 0} × Z]

=M
(y1,z1,z2,z3)
3 ∧[Cy1 × Z(z)] =Mz

2∧[Z];

here we have used Lemma 9.5 for the last two equalities. Now, by Corollary 10.4,
Mz

2∧[Z] = (mult0Z)[{0}] = 2[{0}], so that α = 2. �

Example 11.5. Consider the tuple f = t3(t1, t2, t3) = t3t in X = C
3
t , with zero

set Z = {t3 = 0}. Let h be a Vogel sequence of J (f) at 0 of the form h1 =
α1 · f, . . . , h3 = α3 · f . Let us compute the corresponding Vogel cycle V h. First note

that X
X\Z
0 = X0 = X. Thus, by Proposition 3.4,

[X1] =M
t(α1·t)
1 = [t3] + [α1 · t] =: [XZ

1 ] + [X
X\Z
1 ].

Furthermore, using (3.4) and (3.3), we obtain

[X2] =M
t3(α2·t)
1 ∧M

t3(α1·t)
1 = [t3]∧[α1 · t] + [α2 · t]∧[α1 · t] =: [XZ

2 ] + [X
X\Z
2 ].
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and

[X3] =M
t3(α3·t)
1 ∧M

t3(α2·t)
1 ∧M

t(α1·t)
1 = ([t3]+ [α3 · t])∧[α2 · t]∧[α1 · t] = 2[{0}] =: [XZ

3 ],

for a generic αj. Hence

[V h] = [V h
1 ] + [V h

2 ] + [V h
3 ] = [t3] + [t3]∧[α1 · t] + 2[{0}]

and, in particular, e0(0) = 0, e1(0) = 1 e2(0) = 1, and e3(0) = 2. Observe that V h
1

and V h
3 are fixed, whereas V h

2 is moving. A computation, using Theorem 6.1 and
Lemma 6.2, yields

Mf
0 = 0, Mf

1 = [t3], M
f
2 = [t3]∧dd

c log(|t1|
2 + |t2|

2), Mf
3 = 2[{0}].

�

Example 11.6. The mapping γ : C3
t → C

6
z defined by

(t1, t2, t3) 7→ γ(t) = (t1, t2, t3t1, t3t2, t
2
3, t

3
3)

is proper and injective, so that Z := γ(C3) is a subvariety of C6. Let A = {z3 = z4 =
z5 = z6 = 0}. Then A is smooth and contained in Z and, since Z is smooth outside

0, it follows from Corollary 10.3 that A •Z = A+α{0}. Here α = eA,Z
2 (0) + eA,Z

3 (0)

since eA,Z
0 (0) = 0 and eA,Z

1 (0) is precisely the multiplicity of A at 0. By Lemma 11.1,

eA,Z
k (0) =

∫

C3
t

Mγ∗z
3−k∧M

γ∗(z3,z4,z5,z6)
k =

∫

C3
t

M
(t1,t2,t23)
3−k ∧M

t3(t1,t2,t3)
k ,

where we have used that the ideal γ∗z is generated by t1, t2, t
2
3, that the ideal γ

∗J (A)

is generated by t3(t1, t2, t3), and that eA,Z
k (0) only depends on the ideals.

Thus in light of Example 11.5,

eA,Z
2 (0) =

∫

C3
t

M
(t1,t2,t23)
1 ∧[t3]∧dd

c log |t|2 =

∫

C3
t

M
(t1,t2)
1 ∧[t3]∧dd

c log |t|2

=

∫

C2
(t1,t2)

M t1,t2
1 ∧ddc log |t′|2 = ℓ0(dd

c log |t′|2) = 1,

where t′ = (t1, t2). To see the last equality, by Theorem 6.3, one can replace
ddc log |t|2 with a generic hyperplane [α · t]. In a similar way one concludes that

eA,Z
3 (0) = 2. Hence A • Z = A+ 3{0}. �
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[9] Demailly, J. P., Courants positifs et théorie de l’intersection Gaz. Math. 53, (1992) 131–159
[10] Fulton, W., Intersection theory, second edition , (1998) Springer-Verlag, Berlin-Heidelberg
[11] Gaffney, T. & Gassler, R., Segre numbers and hypersurface singularities J. Algebraic Geom.

8, (1999) 695–736
[12] van Gastel, L. J., Excess intersections and a correspondence principle Invent. Math. 103,

(1991) 197–222
[13] Griffiths, Phillip; King, James, Nevanlinna theory and holomorphic mappings between alge-

braic varieties Acta Math. 130, (1973) 145–220
[14] King, J. R., A residue formula for complex subvarieties Proc. Carolina conf. on holomoprhic

mappings and minimal surfaces, Univ. of North Carolina, Chapel Hill , (1970) 43–56
[15] Kollár, J., Effective Nullstellensatz for arbitrary ideals J. Eur. Math. Soc. (JEMS) 1, (1999)

313–337
[16] Lärkäng, R., Residue currents associated with weakly holomorphic functions Arkiv mat. , (to

appear) available at arXiv:0910.3589
[17] Lazarsfeld, R., Positivity in Algebraic Geometry I. Classical setting: line bundles and linear

series Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern
Surveys in Mathematics 48, Springer-Verlag, Berlin 2004
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