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NONPROPER INTERSECTION THEORY AND POSITIVE
CURRENTS I, LOCAL ASPECTS

MATS ANDERSSON & HAKAN SAMUELSSON
& ELIZABETH WULCAN & ALAIN YGER

ABSTRACT. We introduce a current calculus to deal with (local) non-proper in-
tersection theory, especially construction of local cycles of Stiickrad-Vogel type
(Vogel cycles). Given a coherent ideal sheaf 7, generated by a tuple of functions
f semiglobally on a reduced analytic space X, we construct a current M7, ob-
tained as a limit of explicit expressions in f, whose Lelong numbers at each point
of its components of various bidegrees are precisely the Segre numbers associated
to J at the point. The precise statement is a generalization of the classical King
formula. The current MY can be interpreted, at each point, as a mean value of
various local Vogel cycles. Our current calculus also admits a convenient approach
to Tworzewski’s locally defined invariant intersection theory.

1. INTRODUCTION

Let Y be a complex manifold and let Z1, ..., Z, be (effective) analytic cycles in Y
of pure codimensions p;, j = 1,...,r, that intersect properly, i.e., the intersection V'
of their supports has codimension py + - - - 4+ p,-. There is a well-defined cycle, called
the (proper) intersection of the Z;,

(1.1) Ty 74 :ijvj,

where V; are the irreducible components of V' and m; are certain positive inte-
gers. One can obtain these numbers m; by defining the intersection number i(z),
algebraically or geometrically, at each fixed point 2 of V' and prove that i(x) is gener-
ically constant on each Vj, see, e.g., [7]. However, by means of currents, (II]) can be
obtained in a more direct way: Let [Z;] be the Lelong currents associated with Z;.
One can define the wedge product [Z,|A...A[Z;1] by an appropriate regularization,
see, e.g., [7, 9], and this current indeed coincides with the Lelong current associated
with Z, - -- Z;. In particular, if the Z; are (effective) divisors defined by holomorphic
functions hj, then the Lelong current of the intersection can be obtained explicitly
as

e —_— 3 c 2
(1.2) (Z, - Z4] 113%/\&1 log(|h;|* + €).

There are analogous formulas for cycles of higher codimension, see, e.g., Section
below. Though less natural at first sight it is often more convenient to use regular-
ization with analytic continuation: Notice that
- dh;
1.3 A N\ Olh; PN
(13) NP
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is a well-defined form-valued function for ReA >> 0. It turns out that it has a
current-valued analytic continuation to a neighborhood of 0 and that the value at
the origin is again [Z, - - Z].

The overall aim of this paper and the forthcoming paper [6] is to develop a similar
current formalism for non-proper intersection theory, i.e., representation of intersec-
tions by currents that are limits of explicit forms. We also introduce generalized
cycles, by means of which we can tie together the local intersection theory in [11]
and [28] (corresponding to the intersection numbers () in the proper case) with the
global constructions of Fulton-MacPherson, [10], and Stiickrad-Vogel, [27]. A key
result is a generalized version of the classical King formula, [I4] [13]; our formula pro-
vides a representation of the Segre class of a coherent ideal sheaf on an analytic space
by a current (a generalized cycle) whose Lelong numbers at each point are precisely
the so-called Segre numbers of the sheaf, see below. In this paper we focus on the
local and semiglobal aspects and postpone the global results to [6]. The semiglobal
version of our generalized King formula is given in Theorem [[.4] below.

A standard way to define an intersection of Z; C Y is to form the intersection
of Zy x -+ x Z,. with the diagonal Ay in Y x --- x Y [. Therefore it is enough to
understand the intersection of a complex manifold A and an analytic variety X of
pure dimension n, both sitting in some larger complex manifold Y. In the global
intersection theories mentioned above, the result only depends on the pullback to X
of the sheaf that defines A.

One is therefore led to find a reasonable definition of the intersection of a coherent
ideal sheaf J on an analytic space X of pure dimension n. To describe the local
intersection, Tworzewski, [28] and Gaffney—Gassler, [I1], independently introduced
a list of numbers for each point x that we will call the Segre numbers, following
[11]; Tworzewski uses the term extended index of intersectiorll. The definition goes
via a local variant of the Stiickrad-Vogel construction, [27], introduced in [28] [19],
that we will now describe; a closely related procedure is used in [II]. A sequence
h = (h1,ha,...,hy) in the local ideal J, is called a Vogel sequence of J at z if there
is a neighborhood U C X of x where the h; are defined, such that

(1.4) codim [(U\ Z) N (|Hi|N...N|Hg|)] =k or oo, k=1,...,n;

here Z is the (reduced) zero set of J and |Hy| are the supports of the divisors Hy
defined by hy. Notice that if fy,..., f;n generate 7., any generic sequence of n linear
combinations of the f; is a Vogel sequence at x. Let Xy = X and let XOZ denote the
irreducible components of X that are contained in Z and let X(‘)X ‘2 be the remaining
componentsﬁ, so that

Xo=Xx¢ + x5V
By the Vogel condition (I4]), H; intersects X(‘)X \2 properly. Set
Xy =H - XV

It is readily checked that if Z; intersect properly, then the intersection of Z; x --- x Z, and the
diagonal is proper as well.

2It is not clear to us whether the coincidence of the two definitions has been noticed in the
literature before. In [2], both notions are discussed, and the coincidence follows, but this is not
explicitly stated.

3In [, XZ is empty by assumption, but for us it is convenient not to exclude the possibility
that J vanishes identically on some irreducible component of X.
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and decompose analogously X; into the components X1 contained in Z and the

remaining components XiX\Z, so that X; = Xl +XX\Z

Hyr - XV, X7, 1, and X7, Then

V= X+ XE 4+ X7

is the Vogel cycle associated with the Vogel sequence M. Let th denote the com-
ponents of V" of codimension k, i.e., th =X kZ . The irreducible components of V"
that appear in any Vogel cycle, associated with a generic Vogel sequence at z, are
called fized components in [11]. The remaining ones are called moving. It turns out
that the fixed Vogel components of J coincide with the distinguished varieties of J
in the sense of Fulton-MacPherson, see [11] and Section [§

Recall that the multiplicity of a cycle at a point x is precisely the Lelong number

at = of the associated Lelong current, see, e.g., [7]. It is proved in [II] (and will be
X\Z

Define inductively Xy41 =

reproved below) that the multiplicities ey (z) = mult, V" and my(z) = mult, X
are independent of h for a generic h, where however “generic” depends on x, cf., Re—
mark [[L5} these numbers are the Segre numbers and polar multiplicities, respectively.
Theorem [.1] below asserts that for each fixed =z,

1.5 eo(z),e1(z), ..., en(z)) = min(mult, VP, mult, V..., mult, V"),
I 0 1 n

where the miny., is taken over all Vogel sequences h in J,. This equality is proved
in [28] in case J is obtained from a smooth analytic set

Remark 1.1. If J, has support at z, then ex(z) = 0 for k& < n and e,(x) is the
classical Hilbert-Samuel multiplicity of the ideal 7. O

Remark 1.2. An algebraic definition of the Segre numbers is given in [2], as gener-
alized Hilbert-Samuel multiplicities (in the sense of [I]) associated to the bigrading
Gon, |Gz, (Ox 5)] with respect to the ideal 7, in the local ring Ox , with maximal
ideal 901,. O

Remark 1.3. If 7, is generated by m < n functions, then th =0, k > m, for a generic
Vogel sequence h. If in addition codim Z, = m, i.e., J, is a complete intersection,
then for a generic h, V" = th is the proper intersection of the divisors of the m
generators, and hence e,,(x) is the only nonzero entry in e(z). This number is the
classical intersection number i(z) of the proper intersection of the divisors of the m
generators of J,, see, e.g., [7]. O

We introduce a current calculus that is well suited to deal with Vogel sequences.
For example we can express (the Lelong current of) a Vogel cycle V" as a certain

product of currents; in fact, we even get (the Lelong current of) th as the value at
A =0, cf., (L3) above, of

|2>\k:+1 7 dh]
27T’ihj ’

||>w

41f 7 is the pullback to X of the radical sheaf of an analytic set A, this is precisely Tworzewski’s
algorithm, [28]. The notion Vogel cycle was introduced by Massey [18, [19]. For a generic choice
of Vogel sequence the associated Vogel cycle coincides with the Segre cycle introduced by Gaffney-
Gassler, [11], see Lemma 2.2 in [I1].

5In fact, Tworzewski takes the right hand side of (TX) as the definition of his extended index of
intersection.
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see Example The different powers of A are crucial here. Our current calculus is
also useful for concrete computations of Segre numbers, see Section [Tl

Now assume that J is generated semi-globally by f = (fo,..., fm). Taking mean
values of (the Lelong currents of) the Vogel cycles associated to (almost) all linear
combinations of the f;, it turns out that we get a positive current whose component
of bidegree (k, k) is equal to

(1.6) M = 15(dd"log | %)} = 17 lim (dd*log(|fI* + €))".

Here 17 means restriction to Z. For practical reasons we will rely on a definition of
M l{ via analytic continuation, see Section @ for the coincidence with (L6)), see [A[d.

Recall that the integral closure of J (or J,,) generated by f = (fo,..., fm), consists
of all sections ¢ such that |¢| < C|f]| for some C > 0. The following formula in
particular provides a semiglobal representation of the Segre numbers associated to
J, cf., Remark

Theorem 1.4 (Generalized King’s formula). Let X be a reduced analytic space of
pure dimension n and let J be a coherent ideal sheaf over X generated by fo, ..., fm.
Let Z be the variety of J and ZJI? the distinguished varieties of J of codimension k.
Then

(1.7) M =15(ddlog |f1)* =" B2 + N = S{ + N/,
J

where the ﬁf are positive integers and the N ,f are positive closed currents. The Lelong
numbers ng(x) = Em(N,f) are nonnegative integers that only depend on the integral
closure class of J at x, and the set where ni(x) > 1 has codimension at least k + 1.
The Lelong number of Ml{ at x is precisely the Segre number eg(x) of J, on X.
The fixed Vogel components of J are precisely the S]{ . Finally, the polar multiplicity
my(w) coincides with the Lelong number at x of the current 1x\ z(dd® log If1)E.

When k = 0, (dd°log |f|?)* shall be interpreted as 1 and Mg = 17 is the current
of integration over the components of X that are contained in Z.

Notice that M,{ = 0if k < codim Z and that Ng:)dimz =0, cf., Lemma 22l Notice
that (7)) is the Siu decomposition, [22], of M ,{ . King’s formula in [I4] T3] is precisely
the case k = codim Z of ([L.7)).

Remark 1.5. Assume that z is a point where ng(z) > 1 for some k and let V" be a
generic Vogel cycle such that multhkh = eg(z). Then th = S]f + W where W is a
positive cycle of codimension k, such that mult, W = ng(x). Since ng(y) > 1 only on
a set of codimension > k+ 1, at most points y on V}* we have that ey (y) = multy(S,{)
and hence mult, V)" > ex(y). As soon as there is a moving component at z it is

thus impossible to find a Vogel cycle that realizes the Segre numbers in a whole
neighborhood of z. U

By Siu’s theorem [22], the super level sets Vy; = {ny(z) > ¢} are analytic for each
integer ¢ > 1. Since ng(z) is integer valued, it is easy to see, cf., Proposition 2.1 in

[28], that there is a unique cycle T,f consisting of components of various codimension
> k such that the multiplicity at each point coincides with ny(z). Thus the cycle

OFor k < codim Z there are more elementary ways to define (dd®log |f|*)*, see, e.g., [9].
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T(T) :=>, k(S{: + T, g ) has total multiplicity precisely equal to e = eg + -+ + €, at
each point z; in case J is the radical sheaf of a complex manifold A, this is precisely
the intersection cycle of A and X defined in [28]. Note that moving components of
codimension k are represented by lower dimensional cycles.

Following Tworzewski, [28], given analytic cycles Z1, ..., Z, in Y, the intersection
of Z1 x ---x Z, and the diagonal Ay in Y x --- x Y provides an intersection product
Zye---e 7. This elegant construction is locally defined and biholomorphically
invariant. From the global point of view, however, it is in general “too small”. For
instance, the self-intersection in the Tworzewski sense of any smooth manifold is
just the manifold itself; therefore the self-intersection of a smooth algebraic variety
A C PN cannot satisfy the Bézout equation unless A is linear. The reason is that, in
general, there are moving components in global Vogel cycles that are not attached
to a fixed point, and therefore are not caught by the Tworzewski intersection. In [6]
we will represent the global intersection of arbitrary cycles Z; in PN by a positive
current that is invariant, in the sense that it only depends on the standard metric
structure of PYV; though moving components are represented by terms that are not
Lelong currents of any analytic cycle.

The basic current calculus for Vogel cycles is introduced in Section B] and the
calculus for our currents M/ is developed in the Sections @l and Bl In Section [6] we
show that M/ can be represented as mean values of (Lelong currents of ) Vogel cycles.
We introduce the Segre numbers in Section [7] and prove formula (L5]). Theorem [I4]
is proved in Section B In Sections [0 and [0 we show how proper intersections and
the Tworzewski intersections can be represented by our current calculus. Finally we
provide various examples in Section [IT1

Acknowledgement: We thank Terry Gaffney for fruitful discussions. This work
was partially carried out while the authors visited the Mittag-Leffler Institute.

2. PRELIMINARIES

Let us fix some notation. Given a tuple f of holomorphic functions on an analytic
space X we will use J(f) to the denote the sheaf it generates. Similarly if A C X
is a submanifold we will use J(A) to the denote the radical sheaf. We will denote
the local ring of germs of holomorphic functions at « in X by Ox ,. We say that
a sequence ¢, ... g, of functions on an analytic space X is a geometrically reqular
sequence if codim{g; = ... = g = 0} = k for 1 < k < m. If X is smooth (or
Cohen-Macaulay) a sequence is geometrically regular if and only if it is regular.

If a()\) is a current valued function, defined in a neighborhood of the origin, we
let a(\)|x=o to denote the value at A = 0.

2.1. Positive currents. Let d° = (47i)~1(0 — 0) so that dd® = (2mi)~100. We
briefly recall some basic facts about positive currents, referring to [7, [9] for details.
Let p be a positive (k, k)-current defined in some open set @ C CV. Then u has
order zero, so that the restriction 1gu is well-defined for any Borel set S C €. If in
addition pu is closed and S is analytic, then the Skoda-El Mir Theorem asserts that
1gp is closed as well. If p is closed then one can define inductively

(dd°log |z — z|?) T Ap = dd*(log |z — z2dd((log |z — z|*) A)),
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(dd°log |z —z|>)NFAp is a (N, N)-current. Its mass at z is the Lelong number £,(p)
at x of u, which depends semi-continuously of u, in the sense that

(2.1) €y (1) > limsup £ (p;)

j—o0
if pj — p. It follows that « + ¢, (p) is upper semi-continuous.
Lemma 2.1. If u is a closed positive (k,k)-current in Q C CV, then
0)z|*

2mi|z|?

(22) {0} = lim (3P Ag A og 2PN ).

If Kk = N, then the right hand side of (2.2)) shall be interpreted as
: ),
Jim (1 |2 ) 1= leoyp,

so Lemma 2] is trivially true in this case.

Sketch of proof. If £ is a test function, then

2N
(2.3) /(ddclog|z| Wkapé = lim /' i A(dd® log |z|H) N F=unddee.

After an integration by parts, the right-hand side of (23) may be rewritten as

lim /a| 22N 8' piEE A(dd®log |z|)N T tap g

li 22(dd®log |2*)N FApg.
+ Jim [ 2@ bog ) ng

The second term is precisely the action of 1gw oy (dd® log |2|)N =% Au on ¢, and

consequently the point mass at 0 of (dd®log|z|?)N~*Ap is the same as the point
mass at 0 of the first term, which proves (2.2)). d

2.2. Currents on an analytic space. Let X be an analytic space of dimension n.
Given a local embedding i: X — CV, we let Ex be the sheaf of smooth forms on
X, obtained from the sheaf of smooth forms in the ambient space, where two forms
are identified if their pullbacks to X,.4 coincide; it is well-known that this definition
does not depend on the particular embedding. We say that u is a current on X of
bidegree (p, q) if it acts on test forms on X of bidegree (n — p,n —¢). Such currents u
are naturally identified with currents 7 = 4,4 of bidegree (N —n+p, N —n+¢q) in the
ambient space such that 7 vanish on the kernel of i*. Observe that the d-operator is
well-defined on currents on X. If W is a subvariety of X of pure codimension p > 0,
then
¢ [Wlo = ¢
Wreg

is a closed (p,p)-current on X; this is the current of integration over W.

Recall that a current v is normal if both v and dv have order zero. The following
lemma follows immediately from the corresponding one in C¥.

Lemma 2.2. Suppose that p is a normal current of bidegree (p,p) on X that has
support on a subvariety W of codimension k. If k > p then un = 0. If k = p and
p is closed, then p =3, a;[W;] for some numbers o, where W; are the irreducible
components of W of codimension p.
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It is readily checked that if we have a proper holomorphic mapping v: X' — X
between analytic spaces, then the push-forward v, is well-defined on currents on X’.

Assume that p is a positive closed current on the analytic space X. Fix z € X
and let i: X < CV be a local embedding. We define the Lelong number £, (u) as
O, (ixp). After a suitable change of coordinates ¢ can be factorized as i = j o ¢/,
where 7/: X — CM is a minimal embedding and j is the natural embedding CM —
CM x CN-M_ Since the Lelong number is invariant under holomorphic changes
of coordinates, all minimal embeddings are equal up to a holomorphic change of
variables, and f,7 = /(,(j«), it follows that ¢, (u) is well-defined. Thus if Z is a
subvariety of an analytic space X and we have an embedding X c CV, then the
number ¢,[Z] is indepenent of whether we consider Z as the Lelong current of Z on
X or on CV.

Recall that if Z is a variety in CV, then the multiplicity mult,Z of Z at z coin-
cides with the Lelong number ¢;([Z]) of the Lelong integration current [Z], see [T,
Prop. 3.15.1.2]; here mult, Z is defined as in [7, Ch. 2.11.1]. In particular, the Lelong
number of the function 1, considered as a current on an analytic space X, at x is
precisely mult, X.

The classical Siu decomposition, [22], of positive closed currents extends immedi-
ately to currents on our analytic space X. Let u be a positive closed (p,p)-current
on X; then there is a unique decomposition

p=> BiWil+N,

where W, are irreducible analytic varieties of codimension p, 8; > 0, and, for each
9 > 0, the set where ¢,,(N) > ¢ is analytic and has codimension strictly larger than p.

2.3. Cycles and Lelong currents. Given an analytic cycle Z = > a;W;, where
W; are varieties, we let [Z] = > a;[W;] be the associated Lelong current. We will
sometimes identify analytic cycles with their Lelong currents. We let |Z]| denote the
support of Z. Sometimes we will be sloppy and identify |Z| with Z; in particular, we
will write 17 for 1. If H is a Cartier divisor defined by (a germ of) a holomorphic
function h, we will (sometimes) use the notation [h] for [H] and 1j for 1|f|. Given an
analytic cycle Z = Y «;[W;] of pure dimension, the multiplicity of Z at x is defined
as y_ a;mult, W; (this definition follows [11, p. 704]). It follows that

mult, Z = (,[Z].
If Z =3"}_y Zx, where Zj, is an analytic cycle of codimension k we define
(2.4) mult,; Z = (mult, Zy, ..., mult, Z,)

Throughout this paper all analytic cycles are effective, unless otherwise stated.

3. MULTIPLYING A LELONG CURRENT BY A CARTIER DIVISOR

In this section we will describe how the inductive construction of a Vogel cycle V"
can be expediently expressed as certain products of Lelong currents. First, note that
if Z,Z' are analytic cycles in some analytic space X, then

(3.1) 1,/(2) = (27,
so [Z] — 14/[Z] is a linear operator on Lelong currents. To see (3.I]), by linearity,
we can assume that Z is irreducible. If |Z] is contained in |Z'|, then 14/[Z] = [Z].

Otherwise, |Z| N |Z’| has higher codimension than |Z|, and thus 1;/[Z] vanishes by
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Lemma Notice that 15 := 121 is 1 on the components of X that are contained
in Z and 0 otherwise, i.e., it is the Lelong current of X%.

If h is a non-vanishing holomorphic function on (each irreducible component of)
the analytic space Z, then log |h|? is a well-defined (0,0)-current on Z. This is clear
if Z is smooth and follows in general, e.g., by means of a smooth resolution Z7Z ,
cf., the proof below.

Lemma 3.1. Let Z be an analytic cycle in X, h be a holomorphic function, and let
u be a nonvanishing smooth function on X. Then

2
(3.2) A 5|uh|2A/\MA

[Z],
a priori defined when Re\ is large, has an analytic continuation to a half-plane
Re )\ > —e¢, where € > 0. The value at A = 0 is independent of u.

If h does not vanish identically on any irreducible component of (the support of)
Z, then this value is equal to dd°(log |h|* [Z]).

21

Notice that v* := d|uh|** A dlog |uh|?/(27i) is smooth when Re X is large so the
product in ([3.2)) is then well-defined.

Proof. First assume that Z = X = CV and h is a monomial h = 2{t - 23V, Then

(32)) is equal to

N
~ 1 dzj  Olul?
A ay an |2\ J
v =0lut -2 /\—[E a;— + ]
Juz N 2mi - J 2 |u|?

One can check that the desired analytic continuation exists, and that the value at
A = 0 is the current Y7 a;[z;]/(27i) = dd°log |h|?; in particular, it is independent
of u.

Consider now the general case. By linearity, we may assume that Z is irreducible.
If h vanishes identically on Z and Re X is large, then v* A [Z] = 0, and thus it
trivially extends to A € C. Assume that h does not vanish identically on Z. Let
i: Z — X be an embedding and let 7: Z — Z be a smooth modification of Z
such that 7*i*h is locally a monomial; such a modification exists due to Hironaka’s
theorem on resolution of singularities. After a partition of unity we are back to the
case above. It follows that 7*i*v* has an analytic continuation to Re A > —e for
some € > 0 and thus v A[Z] = i,m,(7*i*v*) has the desired analytic continuation.
The value at A = 0 is equal to

i1y (ddC log |7*i* h|?)
which proves the second statement, since (log |h|?)[Z] = i.m.(log |7*i*h|?). O

Let H denote the Cartier divisor defined by h. We define [H| A [Z] as the value of
B2) at A = 0. According to the lemma it does not depend on the particular choice
of h defining H; in fact it is the Lelong current of the proper intersection of H and
the irreducible components of Z that are not contained in H, i.e.,

(3.3) [HIA[Z] = [HINx\g|Z] = [H - Z¥\).

If H and Z intersect properly, thus [H|A[Z] = [H - Z]. In fact, we can take this as
the definition of the proper intersection [H - Z], cf. Section 23]
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Remark 3.2. Tt is important to emphasize that [H|A[Z] is not analogous to the
intersection H - Z in [10]. In fact, if Z is irreducible and contained in H, then
[HIA[Z] = 0, whereas in [10] the product is a cycle in Z of codimension 1, that is
well-defined up to rational equivalence. O

It follows from the definition that
(34) [HIN([Z1] + [22]) = [HIN[Z1] + [H]A\[Z2]
and thus [Z] — [H]A[Z] is a linear operator on Lelong currents, cf., (31)).

However, in general it is not true that ([Hi] + [H2]) A [Z] = [H1]A[Z] + [H2]A[Z]
or [Hl] A [Hg] = [Hg] VAN [Hl]
Ezample 3.3. Let H; and Hs be Cartier divisors and let H = H; + Hy. Then
[Hl]/\[H] = [Hl]/\[HQ] but [H]/\[Hl] = (0. Moreover [Hl] A 1H1[H] = [Hl]/\[Hl] =0
but 1g, [Hl]/\[H] =1p, [Hl]/\[HQ] = [Hl]/\[Hg]. O

We can construct Vogel cycles by inductively applying operators 1z and [H]A.

Proposition 3.4. Let X be an analytic space of dimensionn and let h = (hy, ..., hy)
be a Vogel sequence of an ideal J with variety Z at x € X, with corresponding divisors
Hy,...,H,. Then on X,

(3.5) (Xo] =1, [X¢]=[HN---AH], £=1,...,n

and

(36) [X(]Z]le, [XZZ]le[Hg]/\"'/\[Hl], (=1,....n.

In particular,

(3.7) [V = 17 + 15[Hi] + 1z[Ho)A[H1] + - - + 1z[Ho]A- - - A[Hi].

If we consider X as embedded in some larger analytic space Y, then we have
instead
[XO] :[X]v [XZ] = [HZ]/\"'/\[HI]/\[X]’ t=1,....n
and
[XOZ] = 1Z[X]7 [XZZ] = 1Z[Hé]/\ Tt /\[Hl]/\[X]v t=1,....,n

Proof. In view of ([B.1]), (8.:6]) follows from (3.5]). Using (34]), we have

[X1] = [HALG ] = (A0 — (X)) = [H)]
since [H1]A[XZ] = [H1]1z = 0. One obtains (3.5) by induction. O

4. BOCHNER-MARTINELLI CURRENTS

Let X be an analytic space of pure dimension n, f = (fo,..., fm) a tuple of
holomorphic functions on X, J = J(f) the coherent sheaf generated by f, and Z
the zero set of J. For Re A >> 0, let

Mg =1 [
_ 1 2
M = 8|f|2’\/\%/\(ddc log | fI2)F~Lif k > 1,
Y[
and

7)‘ -— 7)\
(4.1) MIA ="M,
k=0
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where |f|? = > ol f;|?. Note that the sum in (&) is finite for degree reasons, and
as Re X >> 0, M7 is locally integrable. We will show that \ — M ,{ A has an analytic
continuation to Re A > —e, for some ¢ > 0. We denote the value of M,{”\ at A =0
by M,{ and we write M7/ = 3", M,{ . The current M/ and its components Mkf will

be referred to as Bochner-Martinelli currents, cf., Remark
A computation yields that

fa_ 1 OUIPATISP
M = T

which is positive when A > 0, and thus M ,f is a positive current. Note that M({ is
the current of integration over the components of X, on which f = 0. In particular,
if f does not vanish identically on any component of X, then MOf = 0.

Let 7: X — X be a normal modification such that the pull-back ideal sheaf 7 -O =
is principal; for instance oen can take the normalization of the blow-up of X along
J. Then 7*f = fOf" where f° is a section of the holomorphic line bundle L — X
corresponding to the exceptional divisor Dy of m: X 5 X , i.e., the divisor defined
by J-Og, and f' is a nonvanishing tuple of sections of L™!. Let L be equipped with
the metric defined by |f°|r = |7* f| = | f°f'|, and let

(4.2) wy = dd* log | f'|*;

here the right hand side is computed locally for any local trivialization of L. Then
—wy is the first Chern form of (L, |- |r), and clearly wy > 0.
Since log |7* f|?> = log | fo|? + log | f/|? it follows from Lemma B.] that

(4.3) ddlog |7* f|* = [Df] + wy.

In particular, 7*[dd®log | f|?] = wy outside 7~1{f = 0}. Therefore, for Re A >> 0,
(4.4) M =1 — | fOuA

(4.5) M = (2mi) OO f PP Nd log | FOf PAwh T, k> 1.

A(dd¢log | f|?)k!

Now Lemma B.1] asserts that A\ — 7* M, l{ A has an analytic continuation to Re A > —e

and since M]{”\ = F*F*Mg’)\ for Re A >> 0, it follows that \ — M]{”\ has the desired
analytic continuation. Moreover

(4.6) M = M sz = m (7" M{ P r20) = T«(1p,) = =0} -

(4.7) M = M} |\o = m (7" M x20) = m (DA, k> 1.
Following for example [4] one can check that for k > 1

(4.8) M = 15(dd" log |f|*)*

and

1x\z(ddlog | f*)* = m.(wf).
It is not hard to see that in M,f’)‘ is locally integrable for ReA > 0 and that
M,{’A — M,{ as measures when A — 0.

Remark 4.1. For further reference, let g be a tuple of holomorphic functions such that
lg| ~ |f|, i.e., there exists C' € R such that 1/C|f| < |g| < C|g|, and let 7: X — X

be a normal modification such that both J(f) - Q¢ and J(g) - @5 are principal.

Then |fOf'| ~ |g%'| and since f’ and ¢’ are non-vanishing it follows that f° and ¢°
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define the same divisor on X. Therefore the corresponding negative Chern forms
wy and wy are dd°-cohomologous, i.e., there is a global smooth function « such that
ddy = wp — wy. O

Remark 4.2. The current MY can be written as a product of Bochner-Martinelli
residue currents and appropriate differentials df;. More precisely, let eq,..., e, be a
holomorphic frame for a trivial vector bundle £ — X and let €} be the dual frame
for £*. Consider f as the section f = fie]+-- -+ e, of E* and let o be the section
(fie1 +- -+ fmem)/|f|? of E over X \ Z. Then we can define the Bochner-Martinelli
residue current R/ = R{; + R{ 4 Rg as the value at A =0 of

RIA =1 |fP 4 ) 0If P Aan(do),

cf., [21] where this current was first introduced, and [3]. It turns out, [4], Proposi-
tion 3.2, that we have the factorization

M = R (df j2mi)* /K,

where the dot denotes the natural pairing between A¥E* and AFE; see [4] for details.
O

5. ProbucTS OF BOCHNER-MARTINELLI CURRENTS

Throughout this section let X be an analytic space of pure dimension n. Given
tuples f1,..., fr of holomorphic functions in X, we will give meaning to the prod-
uct MFrA--- AMS of Bochner-Martinelli currents. The construction is recursive.
Assume that MTeA - AM7T is defined; it follows from the proof of Proposition [5.1]
that

(5.1) X = MI+t AN Ten o AT
is holomorphic for Re A > —e¢, where € > 0. Set
(5:2) MIAMIE L AMT = MIANMIN o AMPY

We define the products M, ,{: A+ AM ,{11 in the analogous way so that

(5.3) MIncAMP = N M AT
Er,...k1>0

Proposition 5.1. Let fy,..., f. be tuples of holomorphic functions in X, with com-
mon zero set Z = {fy = ... = f. = 0}. Then the current MfrA--- AM7T, defined by
(B2)), is positive and has support on Z.

Let 7: X — X be a normal modification such that the sheaves J(f;) - Q5 are
principal for £ = 1,...r. As in Section [, let Dy, and wy, be the corresponding
divisors and negative Chern forms, respectively. Then

(5.4) Ml{:/\/\Mlﬁ = W*([Dfr]/\"‘/\[Dfl]/\wk”"_l/\---/\wkl_l)j

fr fl

where, if kg = 0, the factor [Dy,] shall be replaced by 1ij and the factor wl;f_l shall
be removed.

Assume that g1, . .. g, are tuples of holomorphic functions in X such that |ge| ~ | f
for £ =1,...,r. Then there is a normal current T' with support on Z such that

(5.5) dd°T = M{"A--- AM{* — M A- AMP
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Proof. Tteratively using Lemma 3.1 (£.6), and ([4.7) we see that the desired analytic
continuation of (5.I]) exists and that (5.4]) holds. It follows that M ,f:/\ e /\Mgl1 has

its support contained in 7(|Dy.| N ---N|Dy,|) = Z. Moreover M,{:/\ e /\M,{l1 is the
push-forward of a product of positive (1,1)-currents and positive forms, and hence
it is positive.

To prove the last part, it suffices to change one of the f; to g, with |g¢| ~ |fel.
First notice that then M({Z =1y, =1, = M§*. Let us then assume that k; > 1, and
that the modification 7 is chosen so that also J(g¢)-@ 5 is principal. By Remark .1}
there is a smooth global function + on X such that wf, — Wy, = dd°y and thus we

can find a smooth global form w such that dd‘w = wljf‘ ! w]g“l{_l. Let

T := (7oA AT A[D g, JAWAT_ A -+ - AT1),

where 7; = 1p ; if kj = 0 and 7; = [Dy] A wl;; ~ otherwise. Then T satisfies
(5.5). Note that 7,A - - AT 1 A[Dy,|JAWAT,_1 A - - - ATq is normal, and since normality
is preserved under push-forward, so is 7T'. O

We also define products of Bochner-Martinelli currents and Lelong currents. If
fi,..., fr are tuples of holomorphic functions in X and Z is an analytic subset of X,
we define recursively M1 A[Z] := Mfl”\/\[ZH)\:O, and

M n - AMPN[Z) o= M ANMIEN - AMPAZ]| -
By arguments as in the proof of Proposition 5.1l we prove that the desired analytic
continuations exist, and thus M7/ A --- AM/1A[Z] is well-defined. Tt is readily checked
that if ¢: Z — X, then, for any ky,..., k- € N,
(5.6) MITA- AMIAZ) = i [ M T A .

For further reference, note that if f is a tuple of holomorphic functions on the
analytic space X then

(5.7) MF =M1y =) My,
J
where X; are the irreducible components of X.

Proposition 5.2. Let fi,..., f, be tuples of holomorphic functions in X and let &
be a tuple of holomorphic functions such that {{ =0} = {z}, where x € X. Then

(5.8) MEAMTA - AM{Y = M5 AMTA - AMF = ala],

where k = k1 + -+ + k, and « is a non-negative integer. If & generates the maximal
ideal at x € X, then a = KI(M,Q"/\ e /\M,fll)

Remark 5.3. It follows from the second part of Proposition 5.1l applied to f1,..., fr,&,

that the Lelong number at = of M I -AM;, f ! is unchanged if we replace f; by g;

such that |f;| ~ |g;|, since T, Wthh has bldegree (n —1,n — 1), must vanish by
Lemma 221 O

Proof. By Proposition [5.1] Mfl_k/\MIf:/\ e /\Mgl1 is positive and has support at z,
and thus by Lemma [2.2]it is of the form a[z]| for some non-negative . Let 7 : XX
be a normal modification such that J(f;) - O and J(§) - @ are principal. Let us

use the notation from Section @ Then, from (5.4]), we see that « is an intersection
number and hence an integer.
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Now assume that & generates the maximal ideal at = and that i: X — CV is a
local embedding such that i(x) = 0, so that i.[xr] = [{0}]. By the second part of
Proposition 5.1l we may assume that f; = i*F; and £ = i*z for some tuples F; and

the standard coordinate system z = (21,...,zy) in CV. Then

(5.9) i (ME_ AMITA - AMY) = ME_ AME A AMPA[X],

cf. (5.0). By Lemma 2] the right hand side of (5.9)) is precisely the Lelong number
ofM,if/\---/\M,f;l/\[X] at 0 in CV times [{0}]. O

One can replace all the evaluations in the definition of the product by one single
evaluation in the following way.

Proposition 5.4. Assume that ji; are strictly positive integers such that pi > po >
coo > pp. Then A — M,f:)‘w/\ e /\Mgll”w1 is holomorphic in a neighborhood of the
half-azis [0,00) in C and

(5.10) M{TA- AMT = M A AT

AR1
‘)\:0 :

Example 5.5. If hy,..., h, is a Vogel sequence of some ideal at some point x, then,
cf., Theorem [Z.3] below, the Lelong current of the associated Vogel cycle is given as

the value at A = 0 of the function

N M = (1= [P+ 8PN A og |2 /2i)
k=1 k=1
O

Proof. By Hironaka’s theorem we can choose a smooth modification : X > X
such that 7*f; = f]o 7 J = 1,...,7, where fi # 0 and each f]o is a monomial
2% =z’ - 2’ in local coordinates on X. Then locally on X, by @A) and (@3),
N Y B éu-xaj 2X;
ﬂ_*MOfJ,)‘J =1 ‘ujxaj‘)\]7 F*M]{J7)\] — ’ J — ’ /\ﬁk] for k > 17
i
where u; are smooth non-vanishing functions and the ¥;; are smooth forms. The
proposition now follows from Lemma O

Lemma 5.6. Let uy be smooth non-vanishing functions defined in some neighbor-
hood U of the origin in C™, with coordinates xi,...x,. For X = (A,...,\,) € C,
ReAp >> 0 and aq,...,a, € N?, et

L0 |urx0lr-|2)w- ce |Up+133ap+1 |2)\p+15|upxap|2)\p A A 5|u1$061 |2)\1 .
()_ % ... pQ1 ’
here x* = :E‘lxe’l coexp " if oy = (g, 0un). If o is a permutation of {1,...,1},
write FJ()\l, cen 7)\7‘) = F()‘J(l)v ceey )\J(r)) .

Let py, ..., ur be positive integers. Then T'7(k#1, ... kH") has an analytic contin-
uation to a neighborhood of the half-axis [0,00) in C, and if p1 > ... > p,
(5.11) ToO(k*M 0 k) |k=0=T7 (A1, o, A) [n=0 "+ |a.=o0 -

Proof. 'To begin with let us assume that all u; = 1. A straightforward computation
shows that

T x| dz; A -+ A dT; !
F()\):)\l...)\pMZAI Tia xPZ:M---A,,ZF;,
I

p ) . .. .
ij:1 aj Tiy Tj,
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where the sum is over all increasing multi-indices I = {i1,...,ip} C {1,...,n} and
A is the determinant of the matrix (ay,;;)1<e<p1<j<p-

Pick a non-vanishing summand I'7; without loss of generality, assume that [ =
{1,...,p} and A; = 1. With the notation by(\) := > ;_; Apayy for 1 <k <mn,

r | |xk| Ndzy A« A dz,
= T J ez xl...xp

1 hy Ol |26 | f— g, [20 ()
bl()\) cee bp()\) $Z§:1 A '

Now the current valued function
AL O[T [

f:()\l,...,/\r)i—)

xeei=1%
has an analytic continuation to a neighborhood of the origin in C'; in fact, it is a ten-
sor product of one-variable currents. In particular, D(k#1, ... k") |eeo=T'(A) | A1 =0
=0 - Let
AL A

TN M
and 77 = v(Ay(1)s - - - » Ao(r)). We claim that, since Ay =1#0 and pg > ... > p, we
have
Y7 (A) [a=0 -+ ae=0= Y7 (K", ..., K] 5=0,
where it is a part of the claim that both sides make sense.
Let us prove the claim. Since A; # 0, reordering the factors by,...b, and multi-

plying 7(A) by a non-zero constant, we may assume that apr = 1, k = 1,...p, so
that

) = 4 x:

T T N Fazha t - Famh aph bt A F o
For j < r set 7; := Xj/Ajqy1 and A7(71,...,7p—1) := 77(X); notice that v7 is 0-
homogeneous, so that 77 is well-defined. Then \; = 7 ---7._1A,, and therefore 77
consists of p factors of the form

Tk---TT_l
1T Troq 4+ T Tpog o+ Op1T—1 + by

where b; are among the o;,. Observe that (5.12]) is holomorphic in 7 in some neigh-
borhood of the origin. Indeed, if b, # 0, then (5.12)) is clearly holomorphic, whereas
if b, = 0 we can factor out 7,_1 from the denominator and numerator. In the latter
case (0.12) is clearly holomorphic if b,_1 # 0 etc. It follows that 47 (kH 1, ... kHr) =
N (kHrH2 L gMr=17Hr) is holomorphic in a neighborhood of [0,00) and moreover
that 47 (A1,...,Ar) is holomorphic in A = {|A1/Xe| < €,...,|\r—1/Ar| < €}. Let us
now fix Ag #0,..., A # 0in A. Then 77 (\) is holomorphic in Ay in a neighborhood
of the origin. Next, for A3 # 0,..., A\, # 0 fixed in A, ¥7(\)|x,=0 is holomorphic in
A2 in a neighborhood of the origin, etc. It follows that

(5.12)

VN Iav=0 =37 (T)lr=0 = 27 (K", .. K7 k=0,

which proves the claim. Thus (5.I0) follows in the case u; = 1.
Now, consider the general case. By arguments as in the proof of Lemma [B.1]
one can show that the right hand side of (5.I1]) is independent of u;. To see that
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7 in
I'(A). Then, by arguments as above, the function (k,ws,...,w,) — T7(kH, ... KkH")
is holomorphic in a neighborhood of the origin in C,, x C[; since it is analytic in each
variable. In particular, I'(x#!, ..., k") |.—o is obtained by first setting each w; = 0,
which corresponds to setting u; = 1 and thus brings us back to the special case
treated above. This completes the proof of the lemma. O

also the left hand side is independent of u;, start by replacing each ui)‘j by uiw

One can just as well let the tuples fi be sections of arbitrary Hermitian holomor-
phic vector bundles E; — X and define (products of) Bochner-Martinelli currents
in precisely the same way, just interpreting |fx| as the norm of the section fx. Then
the statements in this section remain true, except for that the currents then will not
necessarily be positive, and follow with only minor modifications of the proofs.

Remark 5.7. In a completely analogous way one can define products R"A ... ART!
of Bochner-Martinelli currents, cf., Remark 2] and the analogue of Proposition [£.4]
holds; it follows directly from the proof of Proposition (.41 O

6. MEAN VALUES OF PRODUCTS

Let X be an analytic space of pure dimension n. For a tuple fy, ..., fi, of functions
and = [Bo:...: fBm] € P™ we write - f := Bofo + -+ + Bmfm. Note that MB3f
only depends on 8 € P™ and not on the choice of homogeneous coordinates.

Theorem 6.1. Assume that f = (fo,..., fm) is a tuple of holomorphic functions on
X and that v > min(m + 1,n +1). Then

(6.1) / MO AT = M
:(Ocl,...,au)e(ﬂ)m)
Moreover
62) M{=1z [ sl nla )
ae(ﬂmm)k

where Z = {f =0}, and ([©.2)) is interpreted as 1z for k = 0.
For the proof we will use the following lemma,

Lemma 6.2. If ¢ is a non-vanishing holomorphic (m + 1)-tuple on X, then, in the
sense of currents,

[l dldote) = datog o
OCE]P)"”
where do is the normalized Fubini-Study metric.

This is a simple variant of Crofton’s formula that should be well-known, but for the
reader’s convenience we include a proof. The lemma is true for an arbitrary tuple; a
formal iterated application implies that the integral in (6.2)) is equal to (dd®log |f|?)F,
so that (6.2) follows.

Proof. For a test form ¢ — &£(¢), we have by the Poincaré-Lelong formula

/aepm/g[a'@wdcf(a) - / N /< log(Jar - $[/|af?) dd°¢ dor(a),
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and, since log(|a - ¢(¢)|?/|a|?) is integrable in «a for each fixed ¢, with uniformly
bounded norms, we can apply Fubini’s theorem. Write & := [ _p. log(lao|?/|e|?)do(a).
Then

/ (log [B[2 + r)dd°¢ = / dde log [6[2A¢,
¢ ¢
as wanted. O

Proof of Theorem 6. Let m: X — X be a normal modification such that J(f)- D5
is principal, and use the notation from Section 4 We claim that for a generic choice

of a € P™, ay - f',...,«ap - f' is a geometrically regular sequence on X as well as on
each component of |Dy|.

In fact, if a1+ f, ..., a;- f is a geometrically regular sequence, then aq-f, ..., a1+ f
is geometrically regular for a; 1 chosen outside a hypersurface in P". It follows by
induction that aq - f/,..., a - f' is geometrically regular on an (Zariski) open dense
subset AF C (P™)*, which proves the claim.

Now consider a = (o, ..., ) € AY. Since 7*(ay - f) = fOay - f', we have that

[ag - f] = m([Df] + [ow - f]), and thus, in light of B.3),
laz - fIA[aa - f] = me([Ds]Aar - f] 4 [az - F]A[aa - f1]).
By induction,
(63) [ak . f]/\ cee /\[041 . f] =
T ([DplAleg—1 - FIA-- Al - f] + [au - fIN - Alea - £1]),
and so
(6.4) 12[0% . f]/\ .. /\[al . f] = m([Df]/\[ak_l . f/]/\ cee /\[al . f/]) .

Here we have used that 1p [ag - f']A--- Alag - f'] vanishes by Lemma 22 and also
that

(6.5) 1z (me7) = me(1p, 7).

For k =1, (6.4]) should be interpreted as m.([Dy]).
In view of Lemma [6.21 and (£2)), we have that

(6.6) /e]Pm - fldo(a) = wy.

Since all currents involved are positive, we can apply Fubini’s theorem and get (6.2])
from (6.4]) by repeated use of Lemma [6.2] cf., (4.7).
We now prove (6.1). By (4.6) and (47,

MeeT = M(()l[f + Mf[[f = Lopf + [0 - f].
Using (5.4), (6.5) and (6.4]), we get
MO TN MO =

v—1
w10, D Alow - FIN -+ Alar - £+ o - F1A - A - 1) =
k=0

v—1
S 1gfon - fINAlon - ]+ (low - FIA - Ao - £]) 5
k=0

all other terms vanish by ([B.3]) or by Lemma
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Finally, using (6.2) and Lemma [6.2] we conclude that
/ MO‘V'f/\---/\Mal'f — Mf + W*(ddclog|f'|2)" — Mf;
a=(a1,...,o )E(P™)

indeed, (dd®log|f’|?)” = 0 since v > min(m + 1,n + 1). O

It also follows from the proof of Theorem that
(6.7) 1X\Z/ . )k[ak “fIN- Aag - f] = 1x\ z(dd log f1%)F
ae m

As an immediate consequence of (the proof of ) Theorem[6.1] £, (M. ,f ) = [, Le(Lz]ay
fIN---Alag - f]). In fact, we even have

Theorem 6.3. Let f = (fo,..., fm) be a tuple of holomorphic functions in X, pick
x € X, and let Z = {f = 0}. Then for k > 0, and a generic choice of o =
(041,. .- 70%) € (Pm)ka

(6.8) Ce(1zlo - FIN--- Ao - ) = Lo(M]) .
Here the current on the left hand side of (6.8]) should be interpreted as 17 if k = 0.

Proof. Choose a normal modification 7: X — X such that J (f) - @ is principal;
we will use the notation from Section [l Assume moreover that the pullback of the
maximal ideal at x is principal, and let D¢ and we be the corresponding divisor and
(negative) Chern form, obtained from a tuple £ that defines the maximal ideal at x.

By arguments as in the proof of Theorem one shows that for a generic choice
of « € (P"™)™ we have that oy - f/,... ,ay - f' is a geometrically regular sequence on
X, |D¢|, |D¢|, and on the support of [D¢]A[Dy]. Choose such an . For k = 0,1,
Theorem [6.3] follows from ([€.6)), (A7) and (6.3)); in fact, the currents in (6.8]) coincide
in these cases.

Let us now assume that &k > 2. We claim that there is a normal current A such
that

(6:9)  dd° Ay = [De]rwy ™ TAIDAN W =[x - FA- Alar - f1]).

For £ =1,--- ,k, log|ay - f'|? defines a singular metric on L~! with first Chern form
[ag - f'], cf., @2), and thus [oy - f] is dd°-cohomologous to wy. More precisely,

co == log(|f'|2/|ow - f'|2) is a global current on X and wr — lag - f'] = dd°c;. Now, let

Ead

-1
Ay = [DJAw™ T IADAA Y W™ Ao - fA - Ao - f].
1

~
Il

Then Ay, is normal. Since ay- f does not vanish identically on any irreducible compo-
nent of (the support of) [D¢]A[Df]A[ap—1- f']A -+ Alaq - f] it follows from Lemma 3]
that (€3] holds.

(The proof of) Proposition implies that

(6.10) dd°r (Ag) = (L(M]) = 0 (A z[a - fIA--- Alaa - f]))[2];

here we have used (6.3]). On the other hand, 7, Ay is a normal (n — 1,n — 1)-current
with support at =, and so it vanishes according to Lemma O
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7. SEGRE NUMBERS

Throughout this section, let X be an analytic space of pure dimension n. Given
a tuple f of (germs of) holomorphic functions at z € X, let eg(z) := Ex(Mkf)
Theorem [6.3] and Proposition 3.4 assert that eg(z) = mult, V" for a generic Vogel
cycle Vi of J(f); this means that eg(z) is the kth Segre number of J(f) as defined
by Gaffney-Gassler, [11]. In fact, ex(x) only depends on the integral closure of J(f),
cf., Proposition 5.1

Let e(x) := (eg(x),e1(x), ..., en(x)). We will see that if J(f) is the pull-back of the
radical ideal of a smooth manifold A in some ambient space, then e(z) coincides with
Tworzewski’s, [28], extended index of intersection. Recall that the lexicographical
order on RY is a total order, defined by (z1,...,2n8) <iex (Y1,...,yn) if there is
an 1 < /¢ < N such that x; = y; for ¢ < £ and zy < y,. We let minj, denote the
minimum with respect to the lexicographical order.

Given a tuple of functions fy,..., fr, and o = (a1,...,ay,) € (P™)", we will write
a - f for the sequence «g - f,...,a, - f. Recall (from the introduction) that for a
generic choice of «, a - f is a Vogel sequence of the ideal generated by fo, ..., fm-

Theorem 7.1. Let I be a given ideal in Ox , and let e(x) be the associated Segre
numbers. Then

e(x) = min mult, V",
lex

where the ming., is taken over all Vogel sequences h of ideals with the same integral
closure as 1.

Moreover, if f is a tuple of generators of I (or any ideal J such that J has the
same integral clousure as I) then it suffices to take the mine, over all Vogel sequences
of the form « - f, where a € (P"™)™.

For the proof we will need the following result; if Z is smooth this is Theorem 3.4
in [28].

Proposition 7.2. Assume that (W;)jen and W are subvarieties of X of pure di-
mension such that im;_,oo[W;] = [W] as currents on X. Let Z be a fized subvariety
of X, let x be a fized point in Z, and assume that

(7.1) Lx(12[W]) < ex(lz[wj])-

for all j. Then there is a neighborhood U of x in X, in which lim;_,(12[W;]) =

Proof. Since the currents [W;] are positive and locally uniformly bounded, so are
the currents 1z[W;]. Thus, there is a subsequence of (1z[W;])jen converging to
a positive closed current with support on W N Z. By Lemma this current is
the integration current [V] for some cycle V. Since [W;]| — 12[W;] is positive, so is
(W] — [V] = lim([W;] — 12[W;]), and since |V| C |Z|, it follows that
(7.2) [Vl=1z[V] < 12[W].
By (1)) and semicontinuity, (2.I), we have that

lx(12[W]) < limsup(Ce(12[Wj])) < Le([V]) < L(12[W]).

Thus £,(1z[W]) = £;([V]), and combined with (.2]) and the fact that V and W are
effective cycles, it follows that [V] = 1z[W] in some neighborhood of x.
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Since each subsequence of (1z[W;]),en has a subsequence that tends to 1,[W], it
follows that lim;_,oo(12[W;]) = 1z[W]. The last statement follows by complemen-
tarity. O

Proof of Theorem [7.1l Since each Vogel sequence h can be realized as a - f for some
choice of f and «, it is easy to check that the first statement follows from the second
one. Let f be a tuple of generators of I. By Theorem B3] e(z) = mult,V*/ for
almost all a, and thus it is enough to prove that e(z) <je, minge, mult, Vel if o is a
Vogel sequence.

Suppose that e(z) €je, minge, mult, V/. Then there is an r and a Vogel sequence
a - f such that ex(x) = multhka'f for k < r — 1 but mult, V;*/ < er(x). Since a - f
is a Vogel sequence of I for a generic choice of a, we can choose (/);ey in (P™)"
such that (a’)jeny — a and such that o - f is a Vogel sequence of I for each j, and
moreover, by Theorem 6.3} such that mult,V®"f = e(z). Tt then follows that, for j
large enough and k& < r,

(7.3) L(izlo - fIN-Aoa - f]) < en(@) = L(lglag - fIA--Ala] - f),
We claim that

(74) Jim [od - f]A- - Aod - ] = [ f]A- Al - ]

for k < r. Clearly (7.4]) holds for kK = 1. Assume now that it holds for k£ < r. Then

by (73]) and Proposition [7.2]

(7.5) jh_)rgo(lX\Z[ai FIN - A[o] - f]) = Ly zlak - fIA - Ao - f]-

Since oﬂ_' - f and « - f are Vogel sequences, the currents in (7.0)) intersects properly

with [og ;- f] and [« - f], respectively. In light of [7, Chapter 2, Corollary 12.3.4] or

[28, Theorem 3.6], (4] holds for k + 1, and the claim follows by induction.
Proposition and (7.3) imply that

(7.6) tim (1zla] - A+ Afod - 1) = 1zlay - flA -+ Ale -]

By semicontinuity, (2.I), the Lelong number of the left hand side of (7.0, i.e.,

multxwa'f , must be larger than or equal to e, (x), which gives a contradiction. Hence
ming, mult, Ve = e(x). O

Given a positive closed current v, we define £, (v) := (ly0, ..., lzn), Where £y de-
notes the Lelong number at = of the component of v of bidegree (k, k). If v and w
positive and closed, we let v <, w mean that £,(v) <je, £;(w), and v =, w means
that ¢;(v) = £z(w). Observe that if h is a Vogel sequence of an ideal 7, then the
zero sets of h and J, coincide.

Theorem 7.3. Let fi,..., fs be a sequence of elements in Ox 5 and let f = (f1,..., fs).
Then

(7.7) M) <, MPsn.. . AMT,

If s=mn and fi,..., fs is a Vogel sequence of an ideal in QOx ,, then the right hand
side of (L) is the corresponding Vogel cycle.
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Proof. Let Z := {f = 0}. In order to prove (7)), we proceed by induction on the
number s of functions. Clearly (7.7 holds for s = 1, so assume that it holds for s —1

instead of s. Let f := (f2,..., fs). By (BX) we may assume that X is irreducible
and that f; does not vanish identically on X, so that M/t = le ' = [f1]; otherwise
M7 = MO =1x and M7 = el and we are back in the case s — 1.

Let [W] := [f1], and let 4y, : W; < X be the irreducible components of WX\2,
Theorem [6.3] asserts that for a generic choice of o € (IP’S:Q)"_l, « - f is a Vo-
gel sequence of j(zW f) and Mon—1Fp. . AMerT = + M7 on each Wj, so that

Mon=vFp - AMe f/\[WX\Z] Mf/\[WX\Z] By the induction hypothesis
MINWXNZ] <, MFsA - AMPAWXNZ],

Since f vanishes on Z, by B3), we get

(7.8) Mo I p L AMOTAMPY <) M- AMTAMT

For a generic choice of «, the sequence f1, oy - f, e, Q1 fis a Vogel sequence of
J(f). Thus, by Theorem [T.1]

(7.9) M <, Maan/\ .. /\Marf/\Mﬁ_

Combining (7.8) and ([C9), we get (7).
Note that the right hand side of (7.7)) is a sum of products of currents ng =1y

and lej = [fj]. To prove the second statement, assume that fi,..., f, is a Vogel
sequence of some ideal. Then, in light of Lemma 2.2, 1y, --- 1y, [fi]A---Alf1] =

1z[fe]A -+ Alf1], and thus, by @3), [fer1]ALy, -~ Lp  [fe]A-- - Alfi] = 0. Hence
(7.10)  MPsA-- AMN = Zlfn Ly [fr]A le [felA - Alfl;

here we have used that [ fn]/\ -+ A[f1] has support on Z. Now, Proposition B.4] asserts
that the right hand side of (ZI0) is equal to [V/]. O

8. PROOF OF THE GENERALIZED KING FORMULA (THEOREM [L4])

Let X and J be as in Theorem [[.4] and let Z be the variety of J. The (Fulton-
MacPherson) distinguished varieties associated with J are defined in the following
way, cf., [I0]: Let v: XT — X be the normalization of the blow-up of X along J and
let £/ be the exceptional divisor of v. Then Z; C X is a distinguished variety if it
is the image under v of an irreducible component of E. Let Z]"-f be the distinguished
varieties of codimension k. Also, we define the irreducible components of X contained
in Z to be distinguished varieties (of codimension 0).

Let us first consider the case k = 0. By (B.7)) we may assume that X is irreducible.
Then either J = (0) or Z is a proper subvariety of X. In the first case MOf =
Mg = 1x and if h is a Vogel sequence of 7, then necessarily h = (0,...,0) and so
Vh = Voh = X. In the second case M({ = 0 and if h is a Vogel sequence of 7, then
Voh = XOZ =0, since X ¢ Z. It follows that Theorem [[.4 holds for k = 0.

Next, consider the case k > 1. Let m: X — X be a normal modification such that

J - O principal. We use the notation from Section [ so that le = W*([D]/\w’;_l),



NONPROPER INTERSECTION THEORY AND POSITIVE CURRENTS I 21

where D = Dy. Moreover, we let DF denote the components of D that are mapped
to sets of codimension k in X. Note that D = DP 4+ ... + D", if p = codim Z.

If ¢ > k, then ﬂ*([DZ]/\wljﬁ_l) is a positive closed (k, k)-current with support on a
variety of codimension ¢ > k, and hence it must vanish in view of Lemma Thus

(8.1) M} =] + N/,

where

(82 S{=m (D), N =m (3 (00 ).
o<k

Note that M kf =0 for k < p and Ng = 0. We claim that (81)) is the Siu decompo-
sition of M. ,{ , cf., Section By Lemma 2.2] S,]: is the Lelong current of a cycle of

codimension k, so it is enough to show that IV kf does not carry any mass on varieties
of codimension k. Let W C X be such a variety. By (6.3,

(8.3) Ly m([DAwy™) = D m(Lp-sw [Df A ™),
j

where Df are the irreducible components of Df. Then 7~ (W) does not contain any
component Df , thus each term in the right hand side of (83]) vanishes, and thus the
claim follows.

Since (1)) is the Siu decomposition of M. / , it follows that S,]; is independent of
7: X — X. If we take 7 to be the normalization of the blow-up of 7, we see that
the Z]'? in (I7)) has to be among the distinguished varieties of 7. By Proposition
(for r = 1), the Lelong number of Ml{ is an integer at each point, and since the
Lelong number of N l{ generically vanishes on each Z ]k , we conclude that the 5;? and
ng(z) are integers. That ny(x) is an integer can also be seen directly by copying the
proof of Proposition Moreover, cf., Remark [(5.3] 6;‘? and ng(z) only depend on
the integral closure of J at x.

We shall now see that the coefficients 6;‘? of the distinguished varieties are, in fact,
> 1, following the proof of Corollary 5.4.19, in [I7]. The blow-up 77: Bls X — X
of X along J can be seen as the subvariety of X x P}* defined by the equations
tjfx —trf; = 0, where 0 < j < k < m. Moreover, the line bundle associated with the
exceptional divisor is the pullback of Opm (—1) from P™ to Bl7 X, so w; = dd°log It|?
represents minus its first Chern class. This form is strictly positive on the fibers
of w7, and since the normalization X* — Bl X is a finite map, the pullback w of
wy to X remains strictly positive on the fibers of v: X+ — X as well. Let E; be
one of the irreducible component of the exceptional divisor of v. We conclude that
vi([E;]AwF~1) is a positive integer times [Zj’?], where Z]’? := v(Ej). On the other
hand, this current is unaffected if we replace w by w; since these two forms are first
Chern forms of the same line bundle. It follows that ﬂf > 1.

We saw in (the beginning of) Section [7] that Em(M,f) is equal to the k:th Segre
number of J at x. Next, we show that the fixed Vogel components of J are precisely
the S]f . Fix a point € X. As in proof of Theorem [6.3] we can construct, for k > 1
and a generic a € (P™)", a normal current Aj, with support on |D¥| such that

dd° Ay, = [Dk]/\([ak—l . f/]/\ . /\[al . f/] . w];_l),
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Now 7, A is a normal (k — 1,k — 1)-current with support on Uj Z;?, and thus it
vanishes by Lemma 22 It follows that m, ([D¥]A[ag—_1 - f]JA-- Aloy - f]) = S,]: and

hence S,J: occurs in a generic Vogel cycle at x, meaning that S}: is a fixed Vogel cycle.
On the other hand, the cycles

(8.4) (D IDAlag—1 - fIA--- Alar - f])

<k

must be moving. Indeed, by (the proof of) Theorem [6.1], taking mean values of (8.4
over all a € (P™)F, we get the current N l{ , which carries no mass on any variety of
codimension k, as seen above.

By arguments as in the proof of Theorem [6.3] one shows that for a generic choice
of a € (P™)F,

(8.5) (L glak - fIN--- Alar - f]) = €o(1x\z(dd" log | f*)*)

cf. ([6.7). However, the left hand side of (83 is by Proposition B4 equal to my(x).
This concludes the proof of Theorem [Tl

Remark 8.1. One can see more directly that only the distinguished varieties occur
in S,{ if S,{ is defined by (R2)) from an arbitrary normal modification 7 : X = X. To
begin with, 7 factors over v, i.e., there exists a modification v: X — X such that
m=vov. If wy is the form associated with 7 - Ox+ in X, then 0*w, = wy.

Let Df be an irreducible component of the divisor D¥. Since \Df\ c m1(2),
it follows that ﬂ(\Df\) is contained in one of the components E; of E in XT. If
§(|D§f|) has codimension > 1 in F;, then Z([Df]/\w']f_l) = (Vs [D;?])/\wi_l vanishes by
Lemma 2.2l Hence ﬂ*([Df]/\wk_l) = I/*D*([Df]/\wk_l) vanishes unless §(|D§f|) = Ej,
in which case W(\Df\) is a distinguished variety. O

9. PROPER INTERSECTIONS

In Section B] we defined the proper intersection of a Cartier divisor H and a pure
dimensional cycle Z as the current [H|A[Z]. We will now sketch how (the Lelong
current of) a general proper intersection can be defined as a limit of “explicit” regular
forms.

Assume that Y is a smooth manifold of dimension n, and that 7y, ..., Z, are ana-
lytic cycles in Y of pure codimensions py, . .., p., respectively, that intersect properly,
i.e., the set-theoretical intersection V := ; |Z;| has codimension p :=p; + ...+ p,.

Choose holomorphic tuples f; such that ngf = [Z;]. This is always possible semi-
globally; for example, if each component of Z; has multiplicity one, then just take
fj as generators of the radical of Z;. Then, by Section [5]

(9.1) (Z -+ Z0) v= MIT A AME

is a closed positive current of bidegree (p,p) with support on V, so it is the Lelong
current of a cycle with support on V; we define this cycle, which we denote by
Z. -+ Z1, to be the intersection cycle of Z1,...,Z,.. Notice that, by Proposition [5.2],
Z,---Z1 has integer coefficients. We claim that [Z,---Z;] is independent of the
choices of f; and that it is commutative and associative regarded as a product, i.e.,
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[Z3-(Zo-21)] = [(Z3- Zs)- Z1] provided that all the involved intersections are propeifl.

In fact, since (the right hand side of) (O] is defined recursively from the right and

MJ} = [Z4], it is clearly independent of the choice of f;. The claim then follows if

we can show that (O.I]) is not affected if we interchange the first and last factor.
Given a tuple of holomorphic functions g, let

A9 = (2mi) ] g|P D log |g[*A(dd® log |g|*)* Y,

so that dAZ’)‘ = 5Ai’)‘ = M} A One can show that AZ’)‘ has an analytic continuation

as a current to Re A > —e¢, cf. Sectionl Set A := Ai”\b\zo. Then dA] = 0A) = M.
Following section Bl we can define

(9.2) Q= Al AMIm= A AMTY — MICAMI ™I AMPAAT

Pm—1

The support of Q is clearly contained in (7*~"|Z;| and since Alm is a smooth form
outside |Z,,|, actually suppQ) C V. Now (2 is a pseudomeromorphic current in the
sense of [5], and thus, since it has bidegree (x,p — 1) and support on a variety of
codimension p, it vanishes, see [5, Corollary 2.4]. One can check that the formal
Leibniz rule holds for products of the form (@.2)). Hence applying 0 to ([@.2) we get
MIm A~ AMI = M /\MJSI}/\---/\MJ;/\MI&L, which concludes the proof of the
claim.

Remark 9.1. If Zy,...,Z, intersect properly, one can show that the current valued
funtion

ALy oo Ar) 5 MIPAA - AN,
a priori defined when Re A; are large, can be analytically continued to where \; > —e,

for some € > 0, cf. [25]. This gives an alternative proof of that (9.1]) is commutative.
U

Proposition 9.2. Assume that Z1, ..., Z, are analytic cycles in'Y of pure dimensions
that intersect properly. Then Z, --- Zy coincides with the (proper) intersection of the
product cycle Z. x --- X Z1 and the diagonal Ay inY x --- x Y.

For the proof we will need the following lemmas, which are of independent interest.

Lemma 9.3. Let x €Y. Let hy,...,hy, be a regular sequence in Oy,. Then

(9.3) MM = MM A  AMM = [Ry]A - - AlR).

Remark 9.4. Lemma follows with the same proof if Y is an analytic space and
hi,...,hy is a geometrically regular sequence. This version of the lemma implies
that if f1,..., fm are tuples f; = fj1,..., fjr, of holomorphic functions on Y such
that fi1,..., fizrs---s fm1s- -5 fmrm 18 @ geometrically regular sequence, then

M! = MPmA - AMP = M- AMD

T
see [29] and [16] for similar results for residue currents. O
Sketch of proof of Lemmal[9.3. For generic choices of aj, oy, - b is equal to a non-zero
constant times h; on ﬁ;n:_ll{ozj -h =0}. If v = [am—1 - hJA ... Alag - h] we thus have
that oy, - h]Ay = M "Ay = M Ay = [hi]Ay. Since the proper intersection is
commutative, this is in fact equal to yA[h;]. By induction, [ay, - h] A+ Afaq - h] =
[ A -+ - Alhy] for generic ag. Now, ([@.3]) follows from Theorem O

"Notice that the assumption that Zi, ..., Z, intersect properly, does not imply that the members
of a arbitrary subfamily intersect properly.
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Lemma 9.5. Let f be a tuple of holomorphic functions on an analytic space X and
leti: X — X x Cy be the trivial embedding. Then Mo(f’w) =0 and

(9.4) M =i Ml k>0
Moreover, if W C X is an analytic variety,
(9.5) MIP'AW x {0}] = i (M AW)).

If we consider X as embedded in some larger analytic space X' and i: X/ —
X' x Cy, then ([@.4]) reads

MINX x Cy) = i (M A[X]).
In particular, if f =0,
(9.6) MPAX x Cyp] = i.[X] = [X x {0}].

Proof. Let z be local coordinates on X. Since (z,w) — (f(2),w) does not vanish

identically on X x C,,, it follows that Méf w) .

Let us now prove (@4]). First consider the case when k = 0. By (&71) we may
assume that X is irreducible. Then either f = 0 on X or the zero set of f has at
least codimension 1 in X. In the first case

M = MY = [w] = i1 = i M = i M.

In the latter case the zero set of (f,w) has at least codimension 2 on X x C,,, and
and so both sides of (9.4)) vanish by Lemma [2.21 Thus (@.4]) holds for & = 0.

Next let 7: X — X be a smooth modification such that J - O < is principal and
moreover f° is locally a monomial; use the notation from Section @l Observe that
then 7®id,: X x C,, = X x C,, is a smooth modification with the same properties.
It follows that it is enough to prove (@.4) in case X is smooth, J = (f°) is principal
and f0 is (in local coordinates) a monomial.

In light of Section d] we thus have to show that

0.7) e (S + [w) D log (| f I + [w]*)A(dd® log(|f[* + [w]*))*

is equal to [fO]A(dd®log |f'|)FIA[w] = Mkf when A = 0. Indeed, at A = 0, (0.7
is equal to M,gflﬂ) Note that (@.7) is locally integrable for ReA > 0. Moreover,
if Re A < 1, it is integrable in the w-direction and thus acts on forms that are just

bounded in the w-direction. Since M Igﬁ”) is of order zero and suppM ,gﬁv) C {w =0},

it follows that to check the action of M,gj:lﬂ) on test form, it is enough to consider
forms &(z, w) = £(z), where £(z) is any test form in X. However, after the (generically
1—1) change of variables f%w = w, so that | f|?+|w|? = | f°12(|f'|? + |w|?), the action
of [O.7) on & is equal to

(2m')_1/ A PSP + |wlP) A0 log | fol*A(ddC log(If'* + [w]*) A& (2).
Taking A = 0, we get

(9.8) / ol AE(2)A / (dd log(| 7' + |w[?))".

w
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One can check that the inner integral in (0.8 is equal to (dd®log|f’|?)*~!, which
proves (@4). Finally we prove ([Q.5]). Let j: W < X. Then, using (5.0]),

MITCIAW x {0Y] =ty MPVTEY = 45, M) = 4, M A[W).
O

Proof of Proposition[0.2. With no loss of generality we may assume that Y = C".
Pick coordinates (z1,...,%,) on Y" = C™. That the Z; intersect properly implies
that Acn and Z,. x - - - x Z7 intersect properly in C™. It follows that zo—2z1, ..., z,— 21,
is a geometrically regular sequence on Z, X - -+ X Zy; indeed, note that Acn = {29 —
ZlyeeyZr — 21}

Let p; := codim Z;, and let f; be holomorphic tuples in C" such that ng = [Z;].
Then [Z, x -+ x Z1] = MIT"IA -  AMIIE) 50 that

(9.9) [Acn - Zp X -+ X Z1] = M((:’z 1)21, 2= Zl)/\Mf'r(Zr) ./\Mgf(m)‘
Introducing new sets of variables w := 21,72 1= 29 — 21,...,7 := 2 — 21, the right
hand side of (0.9) is equal to

(9.10) M) AN A AMJ ) A MR,

Note that the factors in (9.10) correspond to cycles

(9.11) Acn, CUTIR X Z,, ..., C8 x Zoy x CO72n 0 7y x o=,

respectively. Since the Z; intersect properly, the cycles (IEII) intersect properly in
C™, and thus we are free to move the left hand factor in (@O.I0]) to the right. After
that we can replace fj(w + n;) with f;(w), since they coincide when 7 = 0. After
moving back the factor M (7;2_"'1')"7:, (@10 is equal to

M((?2’1> TIAMP I AMPE = M((;h’l) "ANZ x CETn) = [z x {0},

where Z = Z, - - - Z. Here we have used Lemmal[0.3land (0.0)) for the last equality. O

Remark 9.6. Observe that by Lemma [0.3]
(r—1)n
[Acn - Zp x - x Z] = N\ [hlAZe x -+ x Z4],
j=1
where h; are appropriate hyperplanes. Thus general proper intersections of cycles
can be reduced to the proper intersections of cycles and smooth divisors. O

Let us remark that several results in this paper for Bochner-Martinelli currents
and their products follow from corresponding results for the residue current, cf.,

Remarks [4.2] [0.1] and

10. THE TWORZEWSKI PRODUCT

We now turn our attention to nonproper intersections. The aim of this section is
to reconstruct Tworzewski’s intersection cycles of arbitrary analytic cycles by means
of currents. Throughout this section Y is a manifold of dimension n. We first define
the intersection A o Z of a smooth manifold A C Y, or, more generally, a coherent
ideal sheaf 7 on Y, and an analytic cycle Z in Y.

As in the introduction we may assume that J is a sheaf on the analytic space Z.
If the generic Vogel cycle has no moving components at any point, then, assuming
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that f generates J, N/ = 0, we have a well-defined intersection cycle (whose Lelong
current is) M/ = S/, in view of Theorem [[4l If there are moving components,
the situation is more complicated. It is tempting to define the intersection as the
positive current M7, although M7/ is not in general the Lelong current of a cycle
and it depends on the choice of generators f of J. This viewpoint will be further
exploited in [6].

Tworzewski’s idea is that one can anyway associate a cycle, as described in the
introduction: We define A o X as the unique cycle whose total multiplicity at x is
equal to ) e?’z(x), where 6?’2(217) is the Segre numbers of the sheaf J(A) on Z. It
is not clear to us that A o Z is always an effective cycle, although we believe it is
true.

Note that Ao Z = A-Z if A and Z intersect properly. Moreover, if |Z| C A, then
Ao Z = Z. If A is a divisor, then [A o Z] = 14[Z] + [AJA[Z], i.e., Ao Z consists
of the irreducible components of Z contained in A plus the proper intersection of A
and the remaining components of Z.

Proposition 10.1. Let A be a submanifold of Y and Z an analytic cycle in'Y. Then

(10.1) (AxCy)o(Zx{0})=(A0Z)x{0}
and
(10.2) (Ax{0})o(ZxCy)=(A0Z) x{0}.

Proof. Let f be a tuple that defines the ideal sheaf J(A) in Y. Then f ® 1 defines
J(AxCy)inY x C, and

e “ N @) = G (M NZ x {0}) = (M NZ]) = ¢ (a),

where we have used ([@.5]) for the second equality. This proves (I0.]).
Next, note that f,w defines J(A x {0}) in Y x C,. Thus, using (5.6) and (@.4)

we have

Ax{0},ZxCy W A,
e 1O Co gy — 0 (MIIA[Z % C)) = £(MIA[Z)) = e (),

which proves (I0.2)); the shift k+1 to k is because the index k in the expression e?’Z
refers to the codimension on Z. O

Now, let us consider intersections of general analytic cycles. If Z is an analytic
cycle in Y, let ia, Z denote its image in the diagonal Ay C Y x --- x Y under

ing: Y =Y x--- XY o (z,...,2).

Given analytic cycles Zi,...,Z, in Y, following Tworzewski [28], we define the
Tworzewski product, Z, ® --- e Z,.. by

iAy(210---OZr) Z:AYO(le---XZT»).

This product is clearly commutative in each entry and locally defined.

If Z1,...,Z, are cycles in Y C Y’, where Y is a submanifold of the manifold Y,
then the definition of Z; e --- e Z. does not depend on whether we consider the Z;
as sitting in Y or in Y’. Let Ay be the diagonal in Y x --- x Y and let Ay~ be the
diagonal in Y/ x - --xY”’. Then one just has to show that the pullbacks to Z; x - -+ x Z,,
of J(Ay+) and J(Ay) coincide. In fact, since the definition is local, we can reduce
to the case when Y = C*" and Y/ =Y x C, = C" x C,. Then what we claim is
straightforward.
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Finally, consider analytic cycles Z1, ..., Z, in an analytic (not necessarily smooth)
space X. A local minimal embedding i: X < C¥ is unique up to a (local) biholo-
morphism on CV, and any embedding is like (i,0): X < Y = C" x C™. Hence there
is a well-defined product Z1 e ---e Z,.

Assume that Z1,..., 7, are of pure dimensions. Then it is natural to consider the
tuple

(Z10---0 Z)(z) := e%iﬁzf_%(x)a

here the entry corresponding to k£ corresponds to the Segre number for the “dimen-
sion” k. It is clear that (Z1,...,Z,) — (Z1 e --- ® Z,)r(x) is monotonous in each
Zj-entry. In the same way we introduce, for any smooth submanifold A C Y and
any cycle Z in Y, the tuple (Ao Z)i(z) := efi’HZlZ_k(:E).

If Zy,...,Z, intersect properly, then Z; e --- @ Z. coincides with the classical
proper intersection 7 --- Z, as defined in Section [9 this follows immediately from
Proposition

Proposition 10.2. Assume that A is a smooth submanifold of Y and that Z is an
analytic cycle inY. Then AeZ = Ao Z.

Proof. Assume without loss of generality that Y = C". Choose local coordinates
z = (2,2") on C" so that A = {2/ = 0}, and local coordinates (z,w) on C™ x C".
We will show that

A A z—w
(10.3) (Ao 2)j(x) = edﬂfzmimz—j(x) = bo (Mg Atdim z—NZ % A])
coincides with
A %
(10.4) (Ao 2)j(w) = egim 7 ;(x) = €e( Mg 7N Z)).

Note that M7 “A[Z x A] = M7 7 IA[Z x {w' = 0}]. Let 2/, 2" w',n" =
2" —w" be new coordinates on C" x C". Then (@.4]) implies that M,gzl’"”) A[Z x{w' =

) +dim A
0}] = i M7 A|Z x {w' = 0}], where i : (Cgff;,ﬁ%g}}A — (Cgffz,,w,.’n,,. Moreover, by (@.5)),
MZ AN[Z x {w' = 0}] = j. M7 N[ Z], where j : Cl = Cgff;,d’lg}A. Hence

Mgi;—lwA+dimZ—j/\[Z x Al = Z'*j*MjimZ—j/\[Z]

and thus (I0.3) is equal to (I0.4]). O

Corollary 10.3. Assume that A and B are smooth analytic subsets in'Y . Then
(i) AoB=AeB=DBoA.
(ii) If AC B, then Ae B = A.

The first statement follows since Z; o --- @ Zr is commutative. For the second
statement we have used that Ao Z = Z if |Z| C A.

Corollary 10.4. For any point a € Y, {a} ¢ Z = mult,(Z){a}.

Indeed if @ is a point, then {a} @ Z = {a} 0 Z = {,[Z]){a} = mult,(Z){a}.

Most of the results in this section, or similar statements, can be found in either
[28] or [23], but with other proofs. However, we have not found Proposition [0.2] in
the literature.
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11. EXAMPLES
The following simple lemma is useful for computations.

Lemma 11.1. Let X and X' be two analytic spaces, let 7: X' — X be a holomorphic
map, and let f be a tuple of holomorphic functions on X. Assume that T is proper,
surjective, and generically v to 1. Then

*

(11.1) rM] =M

Moreover, if £ is a tuple that defines the maximal ideal at © € X, then the Segre
numbers at x associated with J = J(f) on X are given by

1 T* T*
(11.2) en(z) = ;/an_gk/\Mk 7
where n = dim X .

Proof. Since T*M]{’A = MkT*f’)‘ if Re A >> 0, we have that then

1 .
/ Mg = _/ M PN
X rJXx

for test forms 1. Taking analytic continuations to A = 0, we get (ILI]). In view of
Proposition [5.4], we have

2
en) = taif = [ MM =

1 THEN o T A2 1 T* f
- M, 57 AM, A=0 " M, S AM -~
X X!
O
In particular,
1 *
11.3 mult, X = | M=~ [ M °.
( n n
X rJx

Ezample 11.2. Let 7, s be relatively prime and consider the cusp Z = {z] — 25 = 0}
in C2. Since we have the parametrization 7: t +— (¢5,¢") of Z, using (IL.3) we get

multgZ = / Ml(zl’ZQ) = Ml(ts’tr) = / Mfmin(s'r) = min(s, r).
Z Cy Ce
O

Ezample 11.3. Let Z = {z927" — 22 = 0} C C2, where m > 1, and let A = {x9 =
x3 = 0}. Since A is smooth and contained in Z, and Z is smooth outside the origin
in C3, we must have that A @ Z = A outside the origin, cf., Corollary [0.3l Thus
AeZ =A+a{0}.

To determine a let us consider a generic Vogel sequence of J(A) on Z at the origin
and let us compute the corresponding Vogel cycle. Let Hi be a generic hyperplane
that contains A, defined by hy = awg — 3. Then Z; = H; - Z is the curve {xox" —

(ax2)? = 0,az9 — 3 = 0}. Tt follows that Z{* is equal to A, whereas ZIZ\A is the
curve {z}" —a?x9 = 0,axy —x3 = 0}. Next, let hy = Bag — 3. Then Zy = Hy- ZIZ\A
is the cycle {x3 = xo = 0, z]* = 0}. Since its support is contained in A, it is equal
to Z3' and it has order m at the origin. We conclude that [V"] = [A] + m[{0}]. In
particular a = m.
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We can also compute a, which is the second Segre number e?’Z(O) of J7(A) on Z, as
the Lelong number of a certain Bochner-Martinelli current. Notice that 7 : (t1,%2) —
(t2,12,¢7t5) is a surjective, generically 2 — 1, mapping C? — Z. If i: Z — C3 is the
identity map we have by Lemma [IT.1] that

3 (0) = My NZ)) = [ Mg IAMY™ " N aga! — o] =
/%Méi*wl,i*wg,i*wg)/\M2(i*w2,i*w3) _ %/{(\:2 Mét%,t%,t{ntz)/\Mét%,tantz)‘

t1,t9

2,17 0)

According to Theorem (.11 MQ(
[(Btz — 11" )t2]A[(atz — t1")t2]

for generic choices of o, 8 € C. For generic «, 3, using the new variables v; = t1,v9 =
oty — t°, we get

[Bta — t1"|Alaty — '] = [B'va — o/ Afva] = [0]"]Ava] = m[{0}]

for some o/, 3" € C. Since [(aty — t1")ts] = [t2] + [ate — 1], by (B4) and B.3]), we
thus have that

[(Bty — t7)ta]A[(ats — tT)ta] = ([Bta — t1'] + [t2]) Alats — 1] = 2m[{0}].

242 4m
Now, Métl’t”tl t2) _ 10,0y, SO e?’Z(O) = m as expected. O

is the mean value of all

The next example shows that the Tworzewski product is not associative in general.

Example 11.4. Let A and Z be as in Example I[1.3l According to Corollaries 10.3]
and [[0.4] ({0} e A)eZ = {0}  Z = 2{0}, since multgZ = 2, which can be seen using
(I13). However, by Corollary [[0.3] and Example [1.3]

{0} o (Ae2) = {0} o (A+m{0}) = (m + 1){0}.

so that ({0} e A) e Z # {0} @ (A e Z) unless m = 1. Notice that m + 1 is the total
degree of A e Z at 0.

Let us also compute {0} ¢ A e Z. Since {0} x A x Z C ((C?’)iy,Z has dimension 3,
{0} @ Ao Z = af0}, where « is the Lelong number of

MN[0} x A x Z) = MY A {2 = 0y, = y3 = 0} x Z]
= M INC, x Z(2)] = MEAIZ];
here we have used Lemma for the last two equalities. Now, by Corollary [10.4],
M3NZ] = (multgZ)[{0}] = 2[{0}], so that a = 2. O

Ezample 11.5. Consider the tuple f = t3(t1,t2,t3) = t3t in X = C}, with zero
set Z = {t3 = 0}. Let h be a Vogel sequence of J(f) at 0 of the form h; =
ai-f,...,hs = as- f. Let us compute the corresponding Vogel cycle V. First note

that X(i(\z = Xo = X. Thus, by Proposition 3.4]

1X1) = M = [t3] + [ - 4] = [XT] + (X7 V).

Furthermore, using (3.4)) and (3.3]), we obtain

[Xo) = MECZOANE D — (A o - 4] + [ - A0 - 6] = [XZ] + [X5 V7.
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and
1X5]) = MO IAMP 2O AN = (3] + s - 1)) Aoz -t Ao - 1] = 2[{0}] =: [XZ],
for a generic o;. Hence

VY = VP + (V] + (V] = [ta] + [tal AL - €] + 2[{0}]

and, in particular, eg(0) = 0, e;(0) = 1 e3(0) = 1, and e3(0) = 2. Observe that V}
and V})h are fixed, whereas VJ' is moving. A computation, using Theorem and
Lemma [6.2] yields

M{ =0, M = [t3], M = [t3]Add® log([t:[? + [t2]?), M = 2[{0}].

Example 11.6. The mapping v: C} — CS defined by

(t1,ta,t3) = Y(t) = (t1, b2, tat, tata, 13, 13)
is proper and injective, so that Z := «(C3) is a subvariety of C%. Let A = {23 = 24 =
z5 = z¢ = 0}. Then A is smooth and contained in Z and, since Z is smooth outside
0, it follows from Corollary 0.3 that Ae Z = A+ a{0}. Here a = 6‘24’Z(0) + e?’Z(O)
since 664 Z(0) = 0 and ef’Z(O) is precisely the multiplicity of A at 0. By Lemma [IT.1],

AZ _ vz v*(23,24,25,26) __ (t1,t2,t2) t3(t1,t2,t3)
€ (0) = M3—k/\Mk = Mg—k 3 AM, ,
c? c?

where we have used that the ideal v*z is generated by ¢, t2, t%, that the ideal v* 7 (A)

is generated by t3(t1,t2,t3), and that e?’Z(O) only depends on the ideals.
Thus in light of Example [I1.5]

e (0) = /C MDAt ndd og 1 = /C M A lt5)Add g i

= M2 Add log |2 = €o(dd°log [t'|?) = 1,
(C2

(t1:t2)

where t' = (t1,t2). To see the last equality, by Theorem [6.3] one can replace

dd®log [t|? with a generic hyperplane [« - ¢]. In a similar way one concludes that

e?’Z(O) = 2. Hence Ao Z = A + 3{0}. O
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