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On some properties of local determinantal representations

Dmitry Kerner AND Victor Vinnikov

Abstract. Matrices of locally analytic functions in two variables correspond to the maxi-
mal Cohen-Macaulay modules over plane curve singularities and to the local determinantal
representations.

We study particularly nice classes of these representations: the class of weakly maximal
representations (corresponding to the Ulrich-maximal modules) and a more restricted class of
maximal representations.

When the curve singularity is locally reducible we obtain various decomposability criteria
for weakly-maximal/maximal determinantal representations. Namely, the criteria for the cor-
responding module to be decomposable or an extension.

Further we relate the weak maximality/maximality to the minimal modification of the curve
such that the appropriate lifting of the module becomes free.
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1. Introduction

Many of the results in §3 are valid over arbitrary algebraically closed field of zero character-
istic, but to use the approximation theorems we restrict to the complex case.

In this paper by a plane curve/hypersurface we always mean the germ at the singular point,
which is assumed to be the origin 0 ∈ Cn.

1.1. Setup. Let M be a d×d matrix with the entries in C{x1, .., xn} or C[[x1, .., xn]], the rings
of locally analytic or formal power series. We always assume f = det(M) 6≡ 0 and d > 1. In
addition we usually assume that the matrix vanishes at the origin, M|0 = 0.

Such objects were studied classically in various fields. In geometry they are called local/global
determinantal representations of the (complex, possibly singular and non-reduced) hypersurface
{det(M) = 0}. In singularity theory and linear algebra they are called matrix functions/matrix
families. In algebra they are known as matrix factorizations and maximal Cohen Macaulay
modules over singular hypersurfaces. For a short mixture of classical results cf. §1.3.

The representations are studied up to the local equivalenceM ∼ AMB forA,B ∈ GL(d,C{x1, .., xn}).
This equivalence preserves the embedded hypersurface pointwise. Restrict M to the hypersur-
face V = {detM = 0}⊂Cn.

Note that at each point corankM|pt ≤ mult(V, pt) (cf. property 2.15). This motivates the
following
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2 D.Kerner AND V.Vinnikov

Definition 1.1. The representation is called weakly maximal at the point 0 ∈ V⊂Cn, or
Ulrich-maximal [Ulrich84], if corankM|0 = mult(V, 0). The representation is called weakly
maximal near the point 0 ∈ V⊂Cn if it is weakly maximal in some neighborhood of 0 ∈ Cn.

The representation of a reduced plane curve (C, 0)⊂(C2, 0) is called maximal at the point if
any entry of the adjoint matrix M∨ belongs to the adjoint ideal Adj(C,0) (cf.§2.2.3).

So, any determinantal representation of a reduced smooth curve is weakly maximal and
maximal. Weak maximality at the point and weak maximality near the point coincide for
reduced curves.

Maximality for non-reduced curves is defines as follows. Let f =
∏

f pi
i be the decomposition

into branches (with multiplicities). Then M is called maximal if any entry of the adjoint ma-
trix M∨ is of the form g

∏

f pi−1
i for g in the adjoint ideal of the reduced curve (Cred, pt) (this

definition is motivated by the property 2.14). Note that weak maximality and maximality are
invariant with respect to the local equivalence.

In this paper we study the properties of weakly maximal and maximal determinantal rep-
resentations. They happen to be particularly important in applications. On the other hand
such determinantal representations are easy to work with. Maximality appears to be the suit-
able strengthening of weak maximality. For reduced curves with only ordinary multiple points
(e.g. nodes), maximality coincides with weak maximality.

Acknowledgements. D.K. thanks G.Belitski, R.O.Buchweitz, I.Burban, G.M.Greuel, M.Leyenson
and I.Tyomkin for numerous important discussions.

1.2. Contents of the paper. As the paper aims for broad audience a brief intro and overview
are given in §1.3. Throughout the paper we repeat some known facts.

In §2 we recall some notions and fix the notations. In particular we discuss singularities of
plane curves, sheaves on singular curves, conductor and adjoint ideals.

In §3 we study various notions of local decomposability. Suppose (C, 0) is locally reducible:
(C1, 0) ∪ (C2, 0), here (Ci, 0) can be further reducible or non-reduced, but without common
components (i.e. the intersection C1 ∩ C2 is finite). A natural question is whether M is
locally decomposable: M ∼ M1 ⊕M2, here det(Mi) defines Ci. Or at least is locally equiv-

alent to an upper-block-triangular form

(

M1 ∗
0 M2

)

. In other words, whether the kernel

EC of M|C , a module over the local ring O(C,0), is decomposable. Or at least an extension
0 → E1 → E → E2 → 0.

An arbitrary determinantal representation cannot be brought to an upper-block-triangular
form, even when the singularity (C, 0) is an ordinary multiple point. However in theorem 3.5
we prove that E is an extension for weakly maximal representations. Namely, M is locally
equivalent to an upper block triangular matrix with blocks of a very special form. If the
germs C1, C2 have no common tangent lines then E is decomposable for any weakly maximal
representation, theorem 3.1.

These results reduce the study of weakly maximal determinantal representations of (C, 0) to
those of the tangent components, i.e. the union of all the branches with the common tangent
line.

As a simple application in §3.3 we study weakly maximal determinantal representations of
the singularity

∏

(y + αix
li). In particular in examples 3.3 and 3.6 we re-derive some of the

results of [Bruce-Tari04].
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In §3.5 various aspects of local maximality are studied. Maximality implies weak maximal-
ity and complete local decomposability (theorem 3.10). Hence a curve singularity with only
smooth branches has only one maximal determinantal representation.

Conversely, weak maximality and local decomposability reduce the check of maximality to
per-branch consideration. For example, for curves with smooth branches weak maximality and
local decomposability imply maximality. Example 3.11 gives weakly maximal but non-maximal
determinantal representation for a singular branch.

Maximal determinantal representations are related to the curve normalization in the follow-
ing way. For a given (C, 0) and the kernel module E of M, a natural question is the minimal

modification C ′ ν
→ C such that the lifting ν∗(E)/Torsion is locally free. In lemma 4.1 we prove

that M is maximal iff the minimal lifting is normalization. Some related results are obtained
too.

1.3. A brief introduction and overview. We recall here the local aspects of determinantal
representations only, for some reference on the global aspect cf.[Kerner-Vinnikov2010].

1.3.1. A view from singularities. The modern study started probably from the seminal paper
[Arnol’d1971] (cf. the citing papers) and is mentioned in [Arnol’d-problems, 1975-26,pg.23]. It
seems the main type of questions considered was to write down the miniversal deformation of
a constant matrix for various equivalences (i.e. to write a normal form for a linear family of
matrices), cf. e.g. [Tannenbaum81, Chapter5], [Khabbaz-Stengle70] or [Lancaster-Rodman05].

Various examples of miniversal deformations were also considered by van-Straten’s students,
e.g. [Meyer-Brandis98].

Some recent works (for the arbitrary number of variables) from the singularity side are:
[Bruce-Tari04, Bruce-Goryunov-Zakalyukin02, Goryunov-Zakalyukin03, Goryunov-Mond05], in
particular [Bruce-Tari04] in the introduction describe the applications of determinantal repre-
sentations.

1.3.2. A view from algebra. The case of matrix family depending on one variable is trivial
(e.g. [Gantmakher-book, chapter VI]): M(x) is locally equivalent to the diagonal matrix




xk1 0 ..
.. .. .. ..
0 .. 0 xkn



 where ki ≤ ki+1. In more modern language: any k{x} module is the di-

rect sum of cyclic modules. For an introduction to the case of more variables see [Yoshino-book].

Let M be a local determinantal representation of f ∈ k{x1..xn}, or f ∈ k[[x1..xn]]. Let E be its
kernel spanned by the columns of M∨ as a module over R := k{x1..xn}/(f) or k[[x1..xn]]/(f).
Then E has a resolution by free R modules of period two:

(1) ...
M∨

→ R⊕d M
→ R⊕d M∨

→ R⊕d → E → 0

One can show that depth(E) = n−1 = dimR hence it is a maximally Cohen Macaulay (MCM)
module.

Vice-versa [Eisenbud80]: any maximally Cohen Macaulay (MCM) module E over the ring R
as above has a periodic resolution:

(2) ...
M1→ R⊕d M2→ R⊕d M1→ R⊕d → E → 0

corresponding to the matrix factorization: f1I = M1M2. Note that here the dimensions
of {Mi} are not fixed so in general M1,M2 are determinantal representations of

∏

f pi
i , for

freduced =
∏

fi.
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Note, that the module ER determines the resolution, and hence the determinantal represen-
tation, up to isomorphisms. Indeed, the isomorphism E ≈ E ′ of two R modules is naturally
extended to the isomorphisms of resolutions:

(3)

...
A1→ R⊕d A2→ R⊕d A1→ R⊕d → E → 0
≈ ≈ ≈ ≈

...
A′

1→ R⊕d A′
2→ R⊕d A′

1→ R⊕d → E ′ → 0

Suppose f above is homogeneous, of degree d. Then, by [Backelin-Herzog-Sanders88], f
admits a matrix factorization in linear matrices: f1I = A1...Ad, i.e. all the entries of {Ai} are
homogeneous linear.

For an MCM module E over the local ring R of a hypersurface the minimal number of gener-
ators of E is not bigger than multiplicity(R)× rank(E) [Ulrich84, §3]. Modules for which the
equality occurs are called Ulrich’s modules, in our case they are precisely the weakly maximal
determinantal representations, where multiplicity(R) is taken as the multiplicity for reduced
hypersurface. For an arbitrary algebraic hypersurface Ulrich modules exist [Backelin-Herzog89,
Theorem 1]. Hence, for any f ∈ C{x1, .., xn} its multiples f p, for p high enough, have weakly
maximal determinantal representations.

MCM modules have been classified in many particular cases. A ring is called of finite/tame
CM-representation type if it has a finite/countable number of indecomposable MCM’s up to
isomorphism.

• A series of papers resulted in [Buchweitz-Greuel-Schreyer87]: a hypersurface ring is of finite
CM-representation type iff it is a ring of simple (ADE) singularity.
• For the singularity

∑n
i=1 x

3
i the MCM modules and their factorizations were classified in

[LazaPfisterPopescu02] for n=3 and in [Baciu-Ene-Pfister-Popescu05] for n=4.
• The MCM modules over the ring k[[x, y]]/(xn) were classified in [Ene-Popescu08].
• The MCMmodules over the ring k[[x, y]]/(xy2) were classified in [Buchweitz-Greuel-Schreyer87]
• The MCMmodules over Thom-Sebastiani rings, i.e. k[[x1..xk, y1..yn]]/(f(x)⊕g(y)), were stud-
ied in [Herzog-Popescu97]. In particular the modules over k[[x, y]]/(xa + y3) were classified.

Let M ∈ Mat(d×d) be a matrix of d2 indeterminates, providing the polynomial factorization

MM∨ = det(M)1I = M∨M. Are (M,M∨) and (MT ,M∨T ) the only polynomial factoriza-
tions (up to equivalence)? The answer is yes for d odd and no for d even [Buchweitz-Leuschke07].

2. Preliminaries and notations

2.1. On the relevant rings. When studying the local determinantal representations several
rings appear naturally: the ring of polynomials (or its localization at the the origin C[x1..xn](m)),
the ring of locally analytic functions C{x1..xn} and the ring of formal power series C[[x1..xn]].

The ring C{x1..xn} comes inevitably from the local equivalence. For example, when bringing
a determinantal representation to some useful form (block-diagonal, upper-block-triangular
etc.) the result is almost never a matrix of polynomials. Thus for local questions we work
usually in C{x1..xn}.

However in some inductive arguments the formal power series C[[x1..xn]] appear, fortunately
just as an intermediate step. The final result (the determinantal representation and the matrices
of equivalence GL(d)×GL(d)) are always locally analytic due to the approximation theorems:

Theorem 2.1. [Artin68][GLS-book1, pg.32] Let x, y be the multi-variables and f1, .., fk ∈

C{x, y} the locally analytic series. Suppose there exist formal power series Ȳ1(x), .., Ȳl(x) ∈
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C[[x]] solving the equations:

fi

(

x, Ȳ1(x), .., Ȳl(x)
)

≡ 0, i = 1..k

Then there exists a locally analytic solution Y1(x), .., Yl(x) ∈ C{x}:

fi

(

x, Y1(x), .., Yl(x)
)

≡ 0, i = 1..k

Theorem 2.2. [Pfister-Popescu75] Let F1 = 0, F2 = 0, ..Fk = 0 be a system of polynomial
equations over a complete local ring (R,m). The system has a solution in R iff it has a solution
in R/mN for any N .

These results are used as follows. Suppose, for the function decomposition f =
∏

fi a given
matrix M ∈ Mat(d × d,O) is to be transformed to a block-diagonal (or some other) specified
form. So we consider the system of equations:

(4) (1I + A)M(1I + B) =









M1 0 .. 0
0 M2 0 .. 0
.. .. .. .. ..
0 0 .. 0 Mk









,
A|(0,0) = 0 = B|(0,0),
det(M1) = f1, .. , det(Mk) = fk

with the unknowns A,B,Mi (matrices whose entries are locally analytic functions).
By some inductive procedure we find a solution in R/mN for each N . These are polyno-

mial equations in matrix entries. Then, a locally analytic solution is guaranteed by the two
approximation theorems.

2.2. Singular curves and sheaves.

2.2.1. Plane curve singularities. For local considerations we always assume the (singular) point
to be at the origin and use the ring of locally convergent power series C{x, y}.

Associated to any germ (C, 0) is the branch decomposition (C, 0) = ∪(piCi, 0) where each
(Ci, 0) is reduced and locally irreducible. The (reduced) tangent cone T(C,0) = {l1..lk} traces
all the tangents of the branches. To this cone is associated the tangential decomposition:
(C, 0) = ∪(Cα, 0). Here Cα = {fα = 0} consists of all the branches with the tangent line lα, in
general Cα is reducible and non-reduced. Let mult(C, 0) = m and mult(Cα, 0) = mα.

For any reduced curve-germ (C, 0) the normalization (C̃, 0) is a multi-germ, corresponding
to the branches.

2.2.2. The normalization and its factorization. Given a branch (C, 0), its normalization is the
morphism (C̃, 0̃) → (C, 0) that is an isomorphism over C\{0} with C̃ smooth. For a reduced

reducible germ (C, 0) = ∪i(Ci, 0) the normalization is the combination of morphisms (C̃, 0̃) :=
∐

(C̃i, 0̃i) → (C, 0).

Usually the normalization (C̃, 0̃)
ν
→ (C, 0) can be (nontrivially) factorized: (C̃, 0) → (C ′, 0) →

(C, 0). Here both maps are bi-rational morphisms. Usually this can be done in many distinct
ways. All the possible intermediate steps form an oriented graph, usually not a tree. Alge-
braically, the intermediate steps correspond to embeddings of the local rings:

(5) O(C,0)

ν∗
C̃/C

→֒ O(C′,0)

ν∗
C̃/C′

→֒ O(C̃,0)

Example 2.3. Consider the ordinary triple point i.e. the germ of the type xy(x − y) = 0.
Here the tangent cone consists of three lines {x = 0}, {y = 0} and {x− y} and the tangential
decomposition coincides with the branch decomposition. The normalization is defined by the
embedding of local rings:

(6) C[x, y]/(
xy(x− y)

)

i
→֒ C[t1]× C[t2]× C[t3],

1xy → 11 + 12 + 13
x → t1 + t2
y → t2 + t3



6 D.Kerner AND V.Vinnikov

Hence, in this case the graph of the possible modifications is:

(7) Spec

(

C[t1]×C[t2]×C[t3]

)

�
��

@
@R

-

Spec
(

C[t1,t2]
/

(t1,t2)
×C[t3]

)

Spec
(

C[t1,t3]
/

(t1,t3)
×C[t2]

)

Spec
(

C[t2,t3]
/

(t3,t2)
×C[t1]

)

@
@R

�
��
- Spec

(

C[t1,t2,t3]
〈t1t2,t2t3,t3t1〉

)

→Spec

(

C[x,y]
〈xy(x−y)〉

)

Note that in this example we have at an intermediate step a non-planar singularity whose
embedding dimension is 3.

Example 2.4. A particular kind of modification is the separation of all the branches:
∐

(Ci, 0i) →
∪(Ci, 0). It is isomorphism when restricted to each particular branch. Then for the rings:

O∪(Ci,0)
i
→֒

∏

O(Ci,0i). If E is a module over O∪(Ci,0) then it is lifted to the collection of
modules {E ⊗

O∪(Ci,0)

O∐
(Ci,0)}/Torsion, defined by the diagonal embedding 1xy → ⊕1i.

2.2.3. Adjoint and conductor ideals. Let (C, 0) = {f(x, y) = 0}⊂(C2, 0) be a reduced singular

curve and (C ′, 0)
ν
→ (C, 0) a birational morphism (e.g. the normalization). As (C, 0) is usually

reducible, (C ′, 0) =
∐

(C ′
i, 0i) is usually a multi-germ with the morphisms (C ′

i, 0)
νi→ (C, 0).

Definition 2.5. The relative conductor ideal

(8) O(C,0) ⊃ IcdC′/C := AnnO(C,0)
(O(C′,0)) = {g| ∀i : ν∗

i (g)O(C′
i,0)

⊂ ν∗
i (O(C,0))}

Consider the ideals in C{x, y} = O(C2,0) whose restriction to (C, 0) gives IcdC′/C . Call the
maximal among them: the relative adjoint ideal AdjC′/C .

In the case of normalization (C̃, 0)
ν
→ (C, 0), by duality [Serre-book, §IV.11], the adjoint

ideal AdjC̃/C can be also defined as follows. Let ~v be the generic tangent direction, not tangent
to any of the branch.

Let µ = µ(C, 0) = dimC

(

C[x, y]/
(∂xf, ∂yf)

)

be the Milnor number. Let δ = δ(C, 0) =

dimC

(

ν∗O(C̃,0)/O(C,0)

)

be the delta invariant (also known as the genus defect or the virtual

number of nodes). They are basic invariants of singular curves, cf. [GLS-book1, §I.3.4].

Definition-Proposition 2.6. 1. The adjoint divisor of (C, 0) on C̃ is D :=
∑

mi0̃i where
mi = −ord(ν∗

i
d~v

∂~vf(x,y)
) =

∑

j 6=i

〈Cj, Ci〉+ µ(Ci, 0). In particular
∑

mi = 2δ(C).

2. The adjoint ideal is AdjC̃/C := {g | ν∗div(gC) ≥ D} ⊂ O(C2,0)

Proof. (For the full detail cf. [GLS-book1, §I.3.4].) Note that

(9) ∂~vf |Ci
= (

∏

j 6=i

fj)(∂~vfi)|Ci
⇒ ord(∂~vf |Ci

) =
∑

j 6=i

(Cj , Ci) + κ(Ci)

where κ(Ci) is the classical invariant, in particular κ(Ci) = µ(Ci) + mult(Ci) − 1. Also
ord(∂~vf |Ci

) = mult(Ci)− 1, hence: mi =
∑

j 6=i

(Cj, Ci) + µ(Ci). �

Traditionally the conductor and adjoint ideals are considered for the normalization C̃ → (C, 0)
and then denoted by Icd and Adj. They have various nice properties

Property 2.7. 1.[GLS-book1, I.3.4, pg 214]

Icd =
{

g| ∀i : div ν∗
i (g) ≥ 2δ(Ci) +

∑

j 6=i

(Cj, Ci)
}

, dim
O(C,0)

Icd
= δ, dim

OC̃

Icd
= 2δ

2. Let f =
∏

fi. Then g ∈ AdjC̃/C iff g =
∑ f

fi
gi with gi ∈ AdjC̃i/Ci

. In particular, if all the

branches are smooth then AdjC̃/C = 〈 f
f1
... f

fr
〉

3. [GLS-book2, Lemma 1.26] The adjoint ideal is a cluster ideal and AdjC̃/C⊂mp−1
x,y for p =

mult(C, 0) and mx,y⊂C{x, y} the maximal ideal.
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Example 2.8. Let C = {yar − xbr = 0}⊂(C2, 0) where a ≤ b and gcd(a, b) = 1. For a = 1 = b
this is an ordinary multiple point, other choices give e.g. Ak singularity (y2 − xk+1) etc. For
a < b the (reduced) tangent cone consists of one line {y = 0}.

The normalization
r
∐

i=1

(C̃i, 0̃i) → (C, 0) is defined by: ti → (tai , ωit
b
i) where ωi is an appropriate

root of unity. Alternatively, for the corresponding local rings: O(C,0) andOC̃ = C[t1..tr]/〈titj |i 6=
j〉 the homomorphism is defined by: x →

∑

taiαi and y →
∑

tbiβi (where αiβi are some
numbers).

By choosing the generic coordinates of (C2, 0) and calculating the order of the pole of dx
∂yf(x,y)

one has: D = (abr + 1 − a − b)
∑

0̃i⊂
∐

(C̃i, 0̃i). Therefore the adjoint ideal is generated by
{xiyj} for i+1

b
+ j+1

a
≥ r + 1

ab
. So, e.g.

• for an ordinary multiple point (xr + yr = 0) have: ID = mr−1
xy =all functions with vanishing

order at the origin at least (r − 1).
• for an Ak : y

2 + xk+1 have: ID = 〈y, x⌊k⌋〉C[x, y]
• For the cusp yd−1+ xd the adjoint ideal is md−2

x,y where mx,y is the local maximal ideal (of the
reduced point).

Example 2.9. For (y − x
d
2 )2 − yd with d even one has: D = d2

4
(01 + 02) and thus Adj =

〈y − x
d
2 , y

d
2 , x

d2

4 〉.

Note that the multiplicities {mi} from the definition 2.6 of D ⊂
∐

(C̃i, 0i) depend on the
topological type of the singularity only, while AdjC̃/C ⊂ O(C2,0) depends essentially on the par-

ticular germ (C, 0).

Adjoint and conductor ideals behave well with respect to blowup. Consider the morphisms
(C2, 0) → (C1, 0)

π
→ (C, 0). Here all the curve singularities are planar, (C2, 0), (C1, 0) are

possibly multigerms and π is the morphism induced by the blowup of origin in (C2, 0) (so that

(C1, 0)
π
→ (C, 0) is the strict transform).

We want to compare IcdC2/C1
to the ”strict transform” of IcdC2/C

. Consider the pullbacks

π∗(IcdC2/C
) = π−1(IcdC2/C

) ⊗ O(C1,0) and π∗(AdjC2/C) = π−1(AdjC2/C) ⊗ O(Bl(C2),0) locally at the

points of the multigerm ∪(C1, 0i). At each such point let g be the local equation of the excep-
tional divisor. Let the multiplicity of (C, 0) be p.

Definition-Proposition 2.10. IcdC2/C1
= ĨcdC2/C

:= ∩
0i∈(C1,0)

1

gp−1
i

π∗(IcdC2/C
). Similarly AdjC2/C1 =

ÃdjC2/C := ∩
0i∈π−1(0)

1

gp−1
i

π∗(AdjC2/C).

Proof. The ⊃ part.
First observe that any element of IcdC2/C

vanishes at 0 to the order at least (p−1), property 2.7.

Hence 1
gp−1π

∗(IcdC2/C
) is a well defined ideal in O(C1,0).

Let h ∈ C{x, y} such that h|C ∈ IcdC2/C
. Then for the intersection multiplicity have:

(h−1(0), C) ≥ 2δC2/C where δC2/C = dimOC2/OC . Hence for the strict transforms (globally
on the exceptional divisor E):

(10)
ord( 1

gp−1π
∗h|C1) =

(

π∗h−1(0)− (p− 1)E, π∗C − pE
)

= (h−1(0), C)− p(p− 1) ≥

≥ 2δC2/C − p(p− 1) = 2
∑

i δ(C2/C1,0i)

The last equality follows from the formula for δ-invariant in terms of the resolution tree multi-
plicities: [GLS-book1, pg.207, prop 3.34]

(11) δ =
∑

j∈ΓC,0

(

pj
2

)
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So, 1
gp−1π

∗h|C1 ∈ IcdC2/C1
.

The ⊂ part.
Let h ∈ IcdC2/C

such that ordh|C = c(IcdC2/C
), the conductor. Then ord 1

gp−1π
∗(h)|C1 = c(IcdC2/C1

).

Hence for any q ∈ IcdC2/C1
there exists r ∈ OC1 such that

(12) ord(q − r
1

gp−1
π∗(h)|C1) > ord(q|C1)

Note that r 1
gp−1π

∗(h) ∈ ĨcdC2/C
, so now it’s enough to prove the statement for (q − r 1

gp−1π
∗(h)).

Iterating this procedure several times get an element with sufficiently high order on C1, hence

in ĨcdC2/C
.

The statement for adjoint ideals follows now from their definition. �

2.2.4. Pullback and pushforward of torsion free modules. Given a modification νC′/C : C ′ → C
and a torsion free module EC over O(C,0) the pullback ν∗E := ν−1E ⊗ OC′ usually contains
torsion. In this paper we consider the torsion free part: ν−1

C′/CEC ⊗
O(C,0)

O(C′,0)/Torsion.

Example 2.11. Let C = {xp = yq}⊂C2 with (p, q) = 1 and q > p. Let m = 〈x, y〉O(C,0) be the
maximal ideal. Then ν : C1 → C sends t to (tq, tp) and ν∗(m) contains torsion. For example
ν∗(x)− tq−pν∗(y) is annihilated by tp = ν∗(x) ∈ C{t}.

Let EC be a torsion free module and C̃
ν
→ C the normalization. Then ν∗EC̃/Torsion is

locally free (being torsion free on a smooth curve). It can happen that already for some inter-

mediate lifting C̃ → C ′ ν
→ C the sheaf ν∗

C′/C(E)/Torsion is locally free. There always exists
the minimal such lifting.

Lemma 2.12. Given a torsion free module EC over O(C,0) there exists a modification C ′ → C
such that:
• ν∗

C′/C(E)/Torsion is free.

• If for some modification C ′′ → C the pullback ν∗
C′′/C(E)/Torsion is free then

the modification factorizes as on the diagram.

C ′′ → C ′

ց ↓
C

Proof. Let, E be a torsion free moduleM over the one-dimensional local ring R with the integral
closure R̄. We prove that the minimal extension R⊂R′⊂R̄, such that E ⊗

R
R′/Torsion is free,

is unique.

Let E
i
→֒ E ⊗

R
R̄ be the natural embedding (e → e⊗ 1). By the assumption E ⊗

R
R̄/Torsion

is free. We can choose its generators to lie in the image of E:

(13) E ⊗
R
R̄/Torsion = 〈i(e1), .., i(ek)〉, for e1, .., eq ∈ E

Consider

(14) R′ := {r| r × i(E) ⊂ i(E)}⊂R̄

By the construction: R⊂R′⊂R̄ and E ⊗
R
R′/Torsion is generated by e1, .., ek, i.e. is a free

module. And R⊂R′ is obviously the minimal extension by torsion freeness of E. �

Note that in the decomposable case, E = E1⊕E2 the minimal modifica-
tion for E is constructed from those of E1, E2 by the minimal completion
of the diagram.

C ′
E1⊕E2

→ C ′
E2

↓ ↓
C ′

E1
→ C

Suppose a rank 1 module EC is embedded into O(C,0). Given a modification C ′ ν
→ C we can

consider ν∗(EC)/Torsion as a ν−1O(C,0) ≈ O(C,0) module. Particularly important modules are



Determinantal representations 9

those that lift ”isomorphically”: ν∗(EC)/Torsion ≈ ν−1(EC). Alternatively: ν∗ν
∗(EC)/Torsion ≡

EC .

Property 2.13. Let EC torsion free module of rank=1, embedded into O(C,0). Then ν∗ν
∗(EC) ≡

EC iff E⊂IcdC′/C

This is just the definition of conductor: s ∈ H0(U, IcdC′/C) iff ν∗(s)OC′⊂ν∗OC .

2.3. The matrix and its adjoint. We work with (square) matrices, their sub-blocks and
particular entries. Sometimes to avoid confusion we emphasize the dimensionality, e.g. Md×d.
Then Mi×i denotes an i × i block in Md×d and det(Mi×i) the corresponding minor. On the
contrary by Mij we mean a particular entry.

Let M be a determinantal representation of (V, 0)⊂(Cn, 0), let M∨ be the adjoint matrix
of M (so MM∨ = det(M)1Id×d). Then M is non-degenerate outside the hypersurface V and
the corank over the hypersurface satisfies:

(15) 1 ≤ corank(M|0∈V ) ≤ mult(V, 0)

(as is checked e.g. by taking derivatives of the determinant). Hence any determinantal repre-
sentation of a smooth hypersurface is weakly maximal , cf. definition 1.1. The adjoint matrix
M∨ is not zero at smooth points of V . As M∨|V ×M|V = 0 the rank of M∨ at any smooth
point of V is 1. If corank(M|pt) ≥ 2 then M∨|pt = 0. Note that M∨∨ = (detM)d−2M and
detM∨ = (detM)d−1.

Property 2.14. (cf. e.g. [Vinnikov89, lemma on pg. 114])
1. Let M ∈ Mat(d × d) and f irreducible. Suppose any i × i minor det(Mi×i) is divisible by
f l. Then any (i+ 1)× (i+ 1) minor det(M(i+1)×(i+1)) is divisible by f l+1.
2. Consider the hypersurface germ {

∏

f pi
i = 0}⊂(Cn, 0) for {fi} reduced. Let M be its deter-

minantal representation, M|0 = 0, weakly maximal near the origin. Then all entries of M∨

are divisible by
∏

f pi−1
i .

This motivates the definition of maximality (after definition 1.1) for non-reduced curves.

Proof. 1. Let M(i+1)×(i+1) be a submatrix of M. By the assumption, any entry of M∨
(i+1)×(i+1)

is divisible by f l, thus det(M∨
(i+1)×(i+1)) is divisible by f l(i+1). But det(M∨

(i+1)×(i+1)) =

(detM(i+1)×(i+1))
i. Hence (

detM(i+1)×(i+1)

f l )i is divisible by f l. As f is irreducible the statement

follows.
2. By the assumption, for any point of pt ∈ {fi = 0} near the origin we have: corank(M|pt) ≥

pi. So any (d − pi + 1) × (d − pi + 1) minor of M is divisible by fi. By the first part of the
statement we get: any (d− 1)× (d− 1) minor of M is divisible by f pi−1

i . Hence the statement.
�

Note that in the second case the assumption of weak maximality near the point is important.

For example

(

y x
0 y

)

is weakly maximal at the origin but not near the origin. And for it the

statement does not hold.

When working with matrix of polynomials/locally analytic functions, several natural notions
are:
• degxi

(M)=the maximal degree of xi in the entries of M. This is infinity unless all the entries
of M are polynomials in xi. Similarly for deg(M), the total degree.
• ordxi

(M)=the minimal degree of xi appearing in M. If an entry of M does not depend on
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xi the order is zero, if A ≡ 0 then ordxi
(A) := ∞. Similarly ord(M) and ordx(Mij) for a

particular entry. So, e.g. ord(M) ≥ 1 iff M|(0,0) = 0
• jetk(M) is obtained from M by truncation of all the monomials with total degree higher
than k.

2.3.1. Reduction to a minimal form. Let Md×d be a locally analytic or formal matrix, without
the assumptionM|0 = 0. Let the multiplicity of the hypersurface germ {det(M) = 0} ⊂ (Cn, 0)
be m ≥ 1.

Property 2.15. 1. Locally Md×d is equivalent to

(

1I(d−p)×(d−p) 0
0 Mp×p

)

with Mp×p|(0,0) = 0

and 1 ≤ p ≤ m.
2. The stable equivalence (i.e. 1I ⊕ M1 ∼ 1I ⊕ M2) implies the ordinary local equivalence
(M1 ∼ M2).
3. If the representation is weakly maximal , i.e. rank(Md×d|0) = d − m then p = m and
det(jet1Mp×p) 6≡ 0 and det(jetp−1M∨

p×p) 6≡ 0.

Proof. From the algebraic point of view the first statement is the reduction to a minimal
presentation of the module. The second is the uniqueness of such a reduction. Both are proved
e.g. in [Yoshino-book, pg. 58].

The first statement is proved for the symmetric case in [Piontkowski2006, lemma 1.7]. Both
bounds are sharp, regardless of the singularities.

The third claim is immediate. �

2.3.2. Fitting ideals.

Definition-Proposition 2.16. The fitting ideal Ik(M)⊂C{x1, .., xn}, generated by all the k×k
minors of M , is invariant under the local equivalence.

Proof. First consider the case k = 1, i.e. the ideal I1(M) is generated by the entries of M . Then
immediately: I1(AMB)⊂I1(M). As A,B are locally invertible the opposite inclusion holds too.

For arbitrary k note that the wedge ∧kM is the collection of all the k × k minors, hence
continue as for k = 1. �

Remark 2.17. An elementary observation about fitting ideals. Suppose Mp×p is locally de-

composable as

(

Mp1×p1 0
0 Mp2×p2

)

. Then I1(M) is generated by at most p2 − 2p1p2 elements.

Similarly, if M can be locally brought to an upper-block-triangular form then I1(M) is
generated by at most p2 − p1p2 elements.

2.4. Kernel modules. Recall that a module E over a CM ring R is called maximally Cohen-
Macaulay (MCM) if depth(E) = dim(R). If dim(R) = 1, and R is reduced then E is MCM iff
it is torsion-free.

Given a local determinantal representation M|(0,..,0) = 0 define the kernel module over
C{x1, .., xn} as follows. Let E⊂C{x1, .., xn}⊕d be the collection of all the kernel vectors, i.e.
Mv ∼ det(M)...

Lemma 2.18. 1. E is a module over C{x1, .., xn}, minimally generated by the columns of M∨.
2. Its restriction to the hypersurface (i.e. E ⊗O(V,0)) is a torsion free module.
3. For a reduced hypersurface the module E ⊗O(V,0) is free iff M is a 1× 1 matrix.

Proof. 1. (This statement is also proved in [Yoshino-book, pg.56].) Let E ′ be the C{x1, .., xn}
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module generated by the columns of M∨. So E ′⊂E. Let v ∈ E and Mv = det(M)





a1
..
ap



. Let

v1..vp be the columns of M∨, then M(v−
∑

aivi) = 0 ∈ C{x1, .., xn}. As M is non-degenerate
on Cn get v ∈ E ′, hence E ′ = E. By linear independence, the columns of M∨ form a minimal
set of generators.
2. The module E is torsion free as a submodule of a free module C{x1, .., xn}

⊕p.
3. Suppose E is free and v1..vp are the columns of M∨, then E ≈ ⊕O(C,0)vi. Hence M decom-
poses and det(Mi)O(C,0)vi = 0 contradicting the freeness, unless M has only one component.
Then E is generated by one element, so M is a 1× 1 matrix. �
By its definition the kernel module has a natural basis {v1..vd}=the columns of M∨. The
embedded kernel with its basis determines the determinantal representation:

Property 2.19. 1. Let M1,M2 ∈ Mat(d × d,C{x1, .., xn}) be two local determinantal rep-
resentation of the same hypersurface and E1, E2 the corresponding kernel modules. Then

M1 = M2 or M1 = AM2 or M1 = AM2B (for A,B locally invertible) iff
(

E1, {v11..v
1
d}
)

=
(

E2, {v22..v
2
d}
)

⊂C{x1, .., xn}⊕d or E1 = E2⊂C{x1, .., xn}⊕d or E1 ≈ E2.

2. In particular: M is decomposable (or locally equivalent to an upper-block-triangular form)
iff E is a direct sum (or an extension).

Here in the first statement we mean the coincidence of the natural bases/the coincidence of
the embedded modules/the embedded isomorphism of modules.

Proof. 1. The direction ⇛ in all the statements is immediate. The converse follows from
the uniqueness of minimal free resolution [Eisenbud-book].

2. Suppose E = E1 ⊕E2, let F2
M
→ F1 → E → 0 be the minimal resolution. Let F

(i)
2

Mi→ F
(i)
1 →

Ei → 0 be the minimal resolutions of E1, E2. Consider their direct sum:

(16) F
(1)
2 ⊕ F

(2)
2

M1⊕M2→ F
(1)
1 ⊕ F

(2)
1 → E1 ⊕ E2 = E → 0

This resolution of E is minimal. Indeed, by the decomposability assumption the number of

generators of E is the sum of those of E1, E2, hence rank(F1) = rank(F
(2)
1 ) + rank(F

(1)
1 ).

Similarly, any linear relation between the generators of E (i.e. a syzygy) is the sum of relations

for E1 and E2. Hence rank(F2) = rank(F
(2)
2 ) + rank(F

(1)
2 ).

Finally, by the uniqueness of the minimal resolution we get that the two proposed resolutions
of E are isomorphic, hence the statement.

Similarly for the extension of modules. �

For various applications one needs some simple conditions that are necessary or sufficient for
decomposability of determinantal representation. Sometimes we impose the following conditions
of linear independence. Given a point pt ∈ C, let {Ci} be the local branches of (C, pt). Let

Ei = E|Ci\pt i.e. restrict the kernel to a branch outside the singular point, then extend to
the singular point by direct image. Let {Ei|pt} be the reduced fibres of the corresponding
(embedded) kernel bundles.

We often ask for the ”weak” independence: Span(∪Ei|pt) = ⊕Ei|pt or for the ”strong” in-
dependence: Span(∪Ei) = ⊕Span(Ei). In the last case the span means the minimal linear
subspace (of the ambient space) into which the kernels embed, when restricted to some neigh-
borhood of the point. The second notion is stronger, cf. remark 3.9.

3. Local decomposability and extension criteria for determinantal

representations

Suppose the curve is locally reducible (C, 0) = (C1, 0) ∪ (C2, 0), where (Ci, 0) can be fur-
ther reducible. Let E and Ei = E|(Ci,0) be the kernels of determinantal representations of
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(Ci, 0). If both Ei are maximally generated, i.e. correspond to weakly maximal determinantal
representations, then so are their extensions, corresponding to weakly maximal determinantal
representations of (C, 0). We prove the converse: if E is maximally generated then it is an
extension of maximally generated. Sometimes it is even decomposable.

3.1. Decomposability according to the tangential decomposition. For the tangent cone
T(C,0) = {lα} of the germ of curve, consider the local tangential decomposition: (C, 0) =
∪
α
(Cα, 0). Here Cα = {fα = 0} consists of all the branches with the tangent line lα, in general

Cα can be reducible and non-reduced. Let mult(C, 0) = m and mult(Cα, 0) = mα. As always
we assume M|0 = 0.

Theorem 3.1. Let Mm×m be a weakly maximal determinantal representation of (C, 0). Cor-
responding to the tangential decomposition of (C, 0), the representation M is locally equivalent
to:





Mm1×m1 0 .. 0
0 Mm2×m2 0 ..
0 .. .. Mmk×mk





Here Mmα×mα is a weakly maximal determinantal representation of (Cα, 0).

Proof. The theorem states that there exists a locally analytic solution to the problem:
(17)

(1I + A)M(1I + B) =





Mm1×m1 0 .. 0
0 ..
0 .. 0 Mmk×mk



 , A|(0,0) = 0 = B|(0,0), det(Mmα×mα) = fα

for the unknowns A,B, {Mmα×mα}α. Using Artin’s and Pfister-Popescu theorems (from §1.3.1)it
is enough to prove that the solution exists in C{x, y}/mN for any N .

By the assumption M vanishes at the origin, while the property 2.15 gives: det(jet1M) 6≡ 0.
Part 1. By GL(m,C)×GL(m,C) bring jet1(M) to the Jordan form. For that, let jet1(M) =

xP + yQ with P,Q constant matrices. Then P can be assumed as

(

1I 0
0 0

)

. The remaining

transformation of GL(m,C) × GL(m,C) preserving this form of P include the conjugation:
M → UMU−1. Hence Q can be assumed in the Jordan form.

Part 2. The matrix M is naturally subdivided into the blocks Bij , which are mi ×mj rect-
angles (corresponding to the fixed eigenvalues of jet1(M)). We should remove the off-diagonal
blocks, Bij for i 6= j. We do this by induction, at the N’th step removing all the terms whose
order is ≤ N .

Let N = mini 6=j(ordMij) for (ij) not in a diagonal block (thus N > 1). Consider jetN (M),
i.e. truncate all the monomials whose total degree is bigger than N . Suppose the block
B12 ⊂ jetN(M) is non-zero, i.e. there is an entry of order N .

As l1, l2 are linearly independent, by a linear change of coordinates in (C2, 0) can assume
l1 = x, l2 = y. Decompose: B12 = xT + yR, where T,R are m1 ×m2 matrices, with ord(T ) ≥
N − 1 and ord(R) ≥ N − 1. From the last row of B12 subtract the rows

(18) jetNMm1+1,∗, jetNMm1+2,∗, .., jetNMm1+m2,∗

of jetN (M) multiplied by Rm11, Rm12..Rm1m2 . By the assumptions this doesn’t change jetN (M)
outside the block B12. After this procedure every entry of the last row of B12 is divisible by x.
Thus subtract from the columns of B12 the column jetNM∗,m1 multiplied by the appropriate
factors.

Now the last row of B12 consists of zeros, while jetN (M) is unchanged outside B12. Do the
same procedure for the row jetNMm1−1,∗ ofB12 (using the rows jetNMm1+1,∗, jetNMm1+2,∗, .., jetNMm1+m2,∗

and the column jetNM∗,m1−1). And so on.
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Part 3. After the last step one has the refined matrix jetN (M′) which coincides with jetN (M)
outside the block B12 and has zeros inside this block. Do the same thing for all other (off-
diagonal) blocks. Then one has a block diagonal matrix jetN (M′).

Now repeat all the computation starting from non-truncated version M. This results in the
increase of N . Continue by induction. Thus, for each N can bring M to such a form that the
jetN (M) is block diagonal. �

Example 3.2. Any weakly maximal determinantal representation of an ordinary multiple
point, the curve singularity of the type f =

∏

li with li linearly independent linear forms, is

diagonalizable: M ∼









l1 0 .. 0
0 l2 ..
0 ..
0 .. lp









Example 3.3. The theorem reduces the classification of local weakly maximal determinantal
representations of plane curve singularities (i.e. families of matrices depending on 2 parameters)
to the case of singularity with one tangent line.

Consider the singularity of Dk type: {y2x+xk−1 = 0}, the union of an Ak−3 part (y
2+xk−2)

and a non-tangent smooth branch. The (non-trivial) local determinantal representations of
such singularity are either 2 × 2 or 3 × 3. We get that in the later case the representation
is decomposable and the classification problem is reduced to that of Ak−3. Compare to the
classification in [Bruce-Tari04, table 4].

Remark 3.4. • The assumption of weak maximality is necessary. Consider

(

xp−1y xp − yp

xp + yp xyp−1

)

for p > 2. This determinantal representation of an ordinary multiple point is not locally
equivalent to an upper triangular form.

Indeed, observe that I(M) is minimally generated by 4 elements, apply remark 2.17.
• It is not clear how to generalize the statement to weakly maximal determinantal representa-

tion of more variables. For example, the matrix

(

x y
0 z

)

is a weakly maximal determinantal

representation of two transversely intersecting planes. The matrix is not equivalent to a diag-
onal one, e.g. by comparing the fitting ideals.

3.2. Extensions for the case of singularity with one tangent line. Theorem 3.1 reduces
the problem of local decomposition to the case of curves (C, 0) whose tangent cone is just one
line. Suppose (C, 0) is such, choose x̂ axis as the unique tangent line, so (C, 0) = {yp + .. =

0}, with the dots for higher order terms. Let (C, 0) =
k
∪
i=1

(Ci, 0) be the decomposition into

(irreducible) branches. Here some (Ci, 0) can coincide (if the germ (C, 0) is non-reduced). A
weakly maximal determinantal representation of such a curve can be brought to a particular
upper block triangular form.

Theorem 3.5. Let M be a weakly maximal local determinantal representation of the curve-
germ as above. Then M is locally equivalent to an upper-block-triangular matrix:









Mm1×m1(x, y) Mm1×m2(x) ∗
0 Mm2×m2(x, y) Mm2×m3(x) ∗
.. .. .. ..
0 0 .. Mmk×mk

(x, y)









Here the blocks {Mmi×mi
(x, y)}i are local determinantal representations of {(Ci, 0)}, while the

blocks Mmi×mj
(x) for i < j depend on x only.

Moreover, the blocks {Mmi×mi
(x, y)}i can be assumed in the form: Diagmi×mi

(x, y)+Nmi×mi
(x),

where Nmi×mi
(x) depends on x only.
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Proof. As in the previous theorem, it is enough to prove the statement module the maximal
ideal mN for any N .

The proof consists of several parts. Choose some (Cj, 0).
Part 1. We bring the kernel over (Cj, 0) to a specific form. Adjust the coordinates in (C2, 0)
to bring the defining equation of (Cj, 0) to the Weierstraß form: fj = ymj + g1(x)y

mj−1 + ... +
gmj

(x) = 0. Here gi(x) are locally analytic functions. This transformation certainly lifts to the
transformation of M(m×m).

Let Ej = KerM(m×m)|Cj
and sj a local section. So, sj is a vector of functions in (x, y) such

that M(m×m)sj is divisible by fj . Can assume that the entries of sj have no common divisor,
thus at least one entry contains the monomial yn−1. Reduce sjmodfj , so can assume that the
only powers of y appearing in sj are < mj . Thus by local GL(d,O) transformations can bring
sj to the form (yn−1 + xh1(x, y), y

n−2xa + h2(x, y), .., .., hn(x), 0, .., 0) where hi are some locally
analytic functions with degy(hi) ≤ n− 1− i.

Part 2. Now several first columns of M are brought to a specific form.
According to the choice of sj , consider the first n columns of M (with n ≤ mj), denote this

matrix by Mm×n. Let s be the corresponding truncation of sj , so that Mm×ns is divisible by
fj.

By lemma 2.15 one can choose n rows in Mm×n to form a submatrix An×n such that
det(jet1An×n) 6≡ 0. As An×ns is divisible by fj , get: detAn×n is divisible by fj . But
ord detAn×n = n ≤ mj . Therefore: n = mj and detAmj×mj

= fj (up to a constant) and
det(jet1Amj×mj

) = ymj . So, by GL(mj ,C)L can assume (cf. the beginning of the proof of

proposition 3.1) that jet1Amj×mj
= y1I+ xÃ, for Ã strictly upper triangular (i.e. with zeros on

or below the diagonal).

Return now to Mm×mj
=

(

Amj×mj

C(m−mj )×mj

)

. By GL(m,C)L, acting on Mm×mj
from the left,

can assume that C(m−mj )×mj
has no linear y-terms. We show that by the action of GL(m,O)L

all the y-dependence of C(m−mj)×mj
can be removed. It is enough to prove this for any particular

row.
Consider the row (β1(x) + yγ1(x, y), ...βmj

(x) + yγmj
(x, y)). Let q = min

j
(ord(γi(x, y))). By

the assumption q ≥ 1. By a permutation of the indices can assume: ord(γ1(x, y)) = q. Subtract
from this row the first row of Amj×mj

multiplied by γ1. Recall that Amj×mj
= y1I+xÃ+B(x, y),

where Ã is a constant strictly upper triangular matrix and ordB(x, y) ≥ 2. Thus one gets the
row (omitting the monomials containing x only):

(19) (−B11γ1, yγ2 −B12γ1 − xγ1Ã12, ..yγmj
− B1mj

γ1 − xγ1Ã1mj
)

Again, omit all the monomials containing x only, then the row is: (yγ̃1, ..yγ̃mj
) where: ordγ̃i ≥

ordγi and ordγ̃1 > ordγ1. Continue by induction.
So, by the GL(m,O)L action all the monomials xayb with b < N can be removed, for any

given N . By taking the limit of this procedure (i.e. taking the product of all the GL(m,O)L
actions), one has:

Mm×mj
is locally equivalent to

(

Amj×mj
(x, y)

C(m−mj)×mj
(x)

)

.

Note that this is achieved by multiplication from the left only (the permutations of columns
can be undone at the end), so the form of s is not changed.

Part 3. By now C(m−mj)×mj
depends on x only. We prove that in fact C(m−mj)×mj

(x) ≡ 0.
Indeed, by construction C(m−mj )×mj

(x)s = fj.. and y appears in s only in powers < mj . Thus,
in fact C(m−mj)×mj

(x)s ≡ 0 and the claim follows by considering the highest power of y, then
the next etc.
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So, Mm×mj
is now in the needed form. By applying the procedure as above for each j we

arrive at the upper-block-triangular matrix:

(20) M =





Mm1×m1(x, y) ∗ ∗ ..
0 Mm2×m2(x, y) ∗ ..
0 .. .. Mmk×mk

(x, y)





Part 4. Now we bring each Mmi×mi
to the needed form: Diagmi×mi

(x, y) +Nmi×mi
(x). This

is done by induction, at k’th step we do this for jetk(Mmi×mi
).

First observe that the linear part of each Mmi×mi
is non-degenerate and can be brought

to the form: y1I + xT.. where T is a constant strictly upper triangular matrix whose only
possibly non-zero values are right over the diagonal. So, assume Mmi×mi

in this form, hence
in jet1Mmi×mi

the y dependence in on the diagonal only.
Suppose U2jet2(Mmi×mi

)V2 satisfies the assumption, denote M(2) := U2Mmi×mi
V2. In gen-

eral, if M(n) satisfies the assumption for jetn and Un+1MnVn+1 satisfies the assumption for
jetn+1 define M(n+1) := Un+1MnVn+1. Consider the limit lim

N
(UNUN−1...U2Mmi×mi

V2V3..VN ).

The limit exists (at least as a matrix of formal power series) because at k’th step only monomials
of the total degree at least k − 1 are involved.

To show the k’th step, assume jetk−1(M(k−1)) satisfies the condition. Let M(k−1) = A(x) +
yB(x, y), by the assumption the non-diagonal entries of B are of order at least k, the under
diagonal entries ofM(k−1) have order at least 2. Apply toM(k−1) the following row subtractions:
⋆ subtract from the second row the first row multiplied by B21,
⋆ subtract from the third row the first row multiplied by B31,
⋆ ...

Note that these operations do not change the jetk−1(M(k−1)). But now the first column of
the so obtained matrix satisfies the condition for jetk. Now act on the second column (below
the diagonal): subtract from the third row the second row multiplied by B32, subtract from the
fourth row the third row multiplied by B42 etc.

By the assumption these operations do not change jetk−1 of the matrix, do not change jetk
of the first column. After these operations jetk of the under diagonal part of the second column
satisfies the condition. Continue for other columns, till one gets a matrix whose jetk−1 equals
jetk−1(M(k−1)), while jetk of the elements below the diagonal does not depend on y.

Now do the same for the elements above the diagonal, but in the following order:
⋆ bring the first row (its part above the diagonal) to the needed form, by subtracting rows
multiplied by B1,i,
⋆ bring the second row (its part above the diagonal) to the needed form, by subtracting rows
multiplied by B2,i,
⋆ ...

The so obtained matrix satisfies the condition for jetk, i.e. we have constructed the (k−1) →
k step of induction. As explained above the limit of such a process exists, at least as a matrix
of formal power series. Now invoke Artin’s approximation lemma from §1.3.1 to obtain: there
exists a transformation Mmi×mi

→ UMmi×mi
V , such that UMmi×mi

V = Diagmi×mi
(x, y) +

Nmi×mi
(x) and all the matrices have locally analytic entries.

Part 5. Finally we kill all the y-dependence in the blocks above the diagonal.
Apply the induction similar to the one above, at k’th step we obtain a matrix whose jetk has

no y-dependence above the diagonal. As the diagonal blocks Mmi×mi
already have the needed

form, we consider the non-diagonal blocks: Mmi×mj
for j > i.

Suppose M(k−1) satisfies the assumption for jetk−1, present its entries as αij(x) + yβij(x, y).
Consider the part of the column Mi,m1+1 for 1 ≤ i ≤ m1. To kill the y-dependence subtract
from the rows 1, 2...m1 the row m1 multiplied by βim1(x, y).

Do the same for the part of the column Mi,m1+2 for 1 ≤ i ≤ m1, subtracting the row m1 + 1
multiplied by βi,m1+1(x, y), etc.
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After these operations are done for all the blocks above the diagonal we get the matrix M(k)

with the properties:
⋆ M(k) is upper block-diagonal, its diagonal blocks Mmi,mi

are of the form Diagmi×mi
(x, y) +

Nmi×mi
(x).

⋆ The off diagonal entries of jetk(M(k)) do not depend on y. �

3.3. An application: weakly maximal determinantal representations of the reduced

singularity
k
∏

i=1

(y + αix
li). These are k smooth branches with various pairwise tangency.

Corollary 3.6. Any weakly maximal determinantal representation of
k
∏

i=1

(y + αix
li) is locally

equivalent to:

(21)









y + α1x
l1 β1x

n1 h13(x) .. .. h1n(x)
0 y + α2x

l2 β2x
n2 h24(x) .. h2n(x)

.. .. .. ..
0 .. .. .. 0 y + αkx

lk









with 1 ≤ ni < min(li, li+1) and βi ∈ {0, 1}
and either hij(x) ≡ 0 or hij(x) a polynomial in x such that ordx(hij) ≥ 2 and deg(hij) <
min(li, lj).

Example 3.7. • For k = 2 we get the possible determinantal representations of (y+α1x
l1)(y+

α2x
l2):

(22) M ∼

(

y + α1x
l xl

0 y + α2x
l2

)

, 1 ≤ l < min(l1, l2) or M ∼

(

y + α1x
l 0

0 y + α2x
l2

)

Compare to [Bruce-Tari04, Table 2].
• For k = 3 consider the weakly maximal determinantal representations of y(y+x2)(y+αxl), for

l > 1. Suppose in the corollary β1 6= 0 6= β2, soM ∼





y x h(x)
0 y + x2 x
0 0 y + αxl



 with ordxh(x) ≥ 2.

Subtracting from the third column the second multiplied by h(x)/x, to kill h(x). Now multiply
the matrix from the right by a diagonal matrix, to get:

(23) M ∼





y x 0
0 y + x2 x
0 0 y + αxl





Proof. of corollary 3.6. Use the proposition 3.5 for the curve decomposition
k
∏

i=1

(y + αix
li) to

achieve the upper triangular form, such that elements over the main diagonal depend on x only.
Consider the diagonal (i, i + 1). Represent each nonzero element Mi,i+1(x) as xniM̃i,i+1,

where M̃i,i+1|(0,0) 6= 0, i.e. is locally invertible. If ni ≥ li then by adding the i′th column to the
column (i + 1) and subtracting the row (i + 1) from the row i the x−order can be increased.
Continue this process inductively, as in proofs of the previous propositions. Hence, if for some
element Mi,i+1 the x−order is at least li or li+1 the element can be just set to zero. The

remaining non-zero elements xniM̃i,i+1 are set to xni by the conjugation M → U−1MU with

(24) U =











∏

i≥1

M̃i,i+1 0 .. 0

0
∏

i≥2

M̃i,i+1 .. 0

0 .. .. 0 M̃k−1,k










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Regarding the remaining entries hij(x) with j− i ≥ 2, bring them to the needed form diagonal-
by-diagonal. This is again done by the standard procedure: add y+xli , subtract y+xlj etc. �

3.4. Some additional criteria. Weakly maximal determinantal representations are not com-
pletely decomposable in general, cf. example 3.11. We give some criteria.

Proposition 3.8. 1. Suppose (C, 0) = ∪(Ci, 0) has only smooth reduced branches and the (nor-
malized) limits of the kernel sections are linearly independent: Span(∪ lim si) = ⊕Span(lim si).
Then M is decomposable.
2. Let (C, 0) = ∪(piCi, 0) be the local decomposition into branches Ci = {fi = 0} with
f =

∏

f pi
i . A weakly maximal determinantal representation decomposes locally (M ∼ ⊕Mi)

iff the adjoint matrix can be written as M∨ =
∑ f

f
pi
i

M∨
i.

Proof. 1. By the assumption M|(0,0) = 0 and the dimensionality equals the number of (smooth)
branches, i.e. the multiplicity of the singularity. So, M is weakly maximal , hence is decom-
posable corresponding to the tangential decomposition (theorem 3.1). Thus can assume (C, 0)
has only one tangent line, i.e. all the branches are tangent.

Now, by corollary 3.6 can bring M to the upper triangular form, such that the entries over
the diagonal depend on x only and their degrees are bounded from above.

But by the assumption Span(∪ lim si) = ⊕Span(lim si), this bounds the degrees from below,
contradicting the upper bounds as above. Hence there are no terms over the diagonal.

2. It is enough to prove the decomposability for the case (C, 0) = (C1, 0) ∪ (C2, 0), where
(Ci, 0) are possibly reducible, non-reduced, but without common components (i.e. C1 ∩ C2

is finite). Let f , f1, f2 be the defining functions of the germs, so f1, f2 are relatively prime
and f = f1f2. Let m,m1, m2 be the corresponding multiplicities at the origin, so by weak
maximality ord(M∨) ≥ (m− 1) and ord(M∨

i) ≥ (mi − 1).
Multiply M∨ = f

f1
M∨

1 +
f
f2
M∨

2 by M, then one has:

(25) f1I = MM∨ =
f

f1
MM∨

1 +
f

f2
MM∨

2

So, MM∨
i is divisible by fi. Therefore can define the matrices {Ai}, {Bi} by fiAi := MM∨

i

and fiBi := M∨
iM. By definition:

∑

Ai = 1I and
∑

Bi = 1I. We prove that in fact ⊕Ai = 1I
and ⊕Bi = 1I. The key ingredient is the identity:

(26) M∨
jfiAi = M∨

jMM∨
i = fjBjMi

It follows that M∨
jAi is divisible by fj and thus jetmj−1(M∨

jAi) = 0 for i 6= j. Hence, due to
the orders of M∨

j ,M we get: jetmj
(MM∨

jAi) = jetmj
(fjAjAi) = 0, implying:

(27) jet0(Aj)jet0(Ai)
for i 6=j
= 0, and

∑

jet0(Ai) = 1I ⇛ 1I = ⊕jet0(Ai)

The equivalence M → UMV results in: Ai → UAiU
−1 and Bj → V BjV

−1. So, by the

conjugation by (constant) matrices can assume the block form: jet0(A1) =

(

1I 0
0 0

)

and

jet0(A2) =

(

0 0
0 1I

)

.

Apply further conjugation to remove the terms of Ai in the columns of the i’th block to get:

(28) A1 =

(

1I ∗
0 ∗

)

, A2 =

(

∗ 0
∗ 1I

)

Finally, use A1 + A2 = 1I to obtain A1 =

(

1I 0
0 0

)

and A2 =

(

0 0
0 1I

)

.
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Do the same procedure for Bi’s, this keeps Ai’s intact. Now use the original definition, to
write: M∨

i =
1
f
M∨fiAi and M∨

i = fiBi
1
f
M∨. This gives:

(29) M∨ = ⊕
f

fi
M∨

i

�

Remark 3.9. The smoothness of the branches in the first statement is important. For example,

consider M =

(

xa yd+1

yc xby

)

, a determinantal representation of y(xa+b−yc+d) for (a+b, c+d) = 1.

Assume also c > 1 and d > 0. This determinantal representation is not equivalent to an upper-
triangular. Otherwise one would have I1(M) ∋ y.

On the other hand the limits of the kernel sections are linearly independent. M∨ =
(

xby −yd+1

−yc xa

)

. So, on y = 0 the kernel is generated by

(

0
xa

)

, whose limit is

(

0
1

)

. On

xa+b = yc+d both columns of M∨ are non-zero, but linearly dependent. So, for a > d + 1 or

c− 1 > b their (normalized) limit at the origin is

(

1
0

)

.

3.5. Maximal determinantal representations.

Theorem 3.10. Let Mp×p be maximal determinantal representation of (possibly non-reduced)
(C, 0). As always assume M|(0,0) = 0. Then:
1. The representation is weakly maximal , i.e. p = mult(C, 0).
2. The representation is completely decomposable, i.e. for the branch decomposition (C, 0) =
∪(piCi, 0) one has: M ≈ ⊕Mi with Mi the (maximal) representation of (piCi, 0) .
3. In particular, if (C, 0) = f−1(0) is a reduced curve with smooth branches, and f =

∏

fi is
the branch decomposition, any maximal determinantal representation is locally equivalent to the

diagonal









f1 0 ..
0 f2 0 ..
.. .. ..
0 .. 0 fk









.

4. Conversely, if a determinantal representation is completely decomposable (M ∼ ⊕Mi ac-
cording to (C, 0) = ∪(piCi, 0)) then it is maximal iff each Mi is. In particular if (C, 0) is reduced
and all the branches are smooth then the complete local decomposability implies maximality.

Proof. 1. By the maximality assumption and property 2.7: ord(M∨) ≥ mult(C, 0)−1 = m−1.
Thus ord(detM∨) ≥ p(m−1). But detM∨ = f p−1, giving: p(m−1) ≤ (p−1)m, i.e. m ≤ p.

As M|(0,0) = 0 have m ≥ p and the claim follows.
2. Immediate corollary of the property 2.7 and the proposition 3.8.

The other statements are immediate. �
The following example shows that weak maximality implies neither local decomposability nor
local maximality (even for a branch).

Example 3.11. The case of two branches. Consider the weakly maximal local representation
of {y2 − x4 = 0}

(30) M =

(

y − x2 x
0 y + x2

)

To see that M is not locally decomposable note that I1(M) =< y, x >. If M ∼

(

f1 0
0 f2

)

then fi are the equations of branches and x /∈< f1, f2 >.
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The case of one branch. Consider the following weakly maximal representation of detM = y2−

xd, for d odd: Mk =

(

y xk

xd−k y

)

. It is not locally maximal for k < d
2
−1 as I1(M∨

k) 6⊂ AdjC̃/C .

A natural question is the existence of maximal determinantal representations or even the
description of all of them. By the complete decomposability as above the question is completely
reduced to the case of a multiple branch, i.e. {f p = 0} ⊂ (C2, 0) for f ∈ C{x, y} irreducible.
We answer this in the reduced case.

Theorem 3.12. • If a locally irreducible, reduced curve (C, 0)⊂(C2, 0) admits a maximal de-
terminantal representation then (C, 0) is equisingular to xp + yq = 0
• If (C, 0) is equisingular to xp + yq = 0 then it admits precisely one maximal determinantal
representation, up to equivalence, and this determinantal representation can be chosen symmet-
ric.

4. The minimal liftings

Recall that any torsion free module on a reduced curve has the minimal lifting 2.2.4. This is
tightly related to (weak) maximality and decomposability.

Theorem 4.1. 1. Suppose (C, 0) is reduced. Let s1, s2 be two local sections of the kernel,
i.e. vectors in O⊕p

(C,0). Consider the normalized (non-zero) limits at the origin: lim si ∈ Cp. If

lim s1 6= lim s2 then (C, 0) = (C1, 0)∪(C2, 0) and the minimal lifting separates these components.
Vice versa, if the minimal lifting separates the branches (C1, 0) and (C2, 0) then the (normal-

ized) limits of s1, s2 are distinct.
2. Let (C, 0) = (C1, 0) ∪ (C2, 0) be a local decomposition, here (Ci, 0) can be further re-

ducible but without common components. Suppose M can be brought to the corresponding

upper-block-triangular form M ∼

(

M1 ..
0 M2

)

. Let (C ′, 0)
ν
→ (C, 0) be the minimal modi-

fication such that the pullback ν∗(EC)/Torsion is locally free. Then ν separates C1 and C2:
(C ′, 0) = ν−1(C1, 0)

∐

ν−1(C2, 0).
3. In particular the minimal lifting of a weakly maximal determinantal representation sepa-

rates all the distinct branches.
4. Suppose M is local maximal and (C, 0) reduced. The minimal morphism (C ′, 0)

ν
→ (C, 0),

for which the lifting ν∗E/Torsion is locally free, is the normalization.

Proof. 1. If a sheaf of rank 1 is locally free then any two sections have the same normalized
limit.

Vice versa, if lim s1 = lim s2 then the lifting of (C1, 0) ∪ (C2, 0) to (C̃1, 0) ∪ (C̃2, 0) (two
normalized branches, intersecting transversally) makes the kernel locally free.

2. The adjoint matrix of

(

M1 A
0 M2

)

is:

(

M∨
1 det(M2) −M∨

1AM∨
2

0 det(M1)M∨
2

)

. Here A|(0,0) = 0,

i.e. ord(A) > 0.

Let C ′ ν
→ C be the minimal modification such that ν∗

C′/C(E)/Torsion is locally free. Assume

(C1, 0) and (C2, 0) do not get separated by ν, then ν∗(detM1) 6= 0 ∈ OC′ . So ν∗ det(M1)
cannot annihilate the generators of ν∗

C′/C(E)/Torsion.

No combination of the columns of ν∗

(

M∨
1 det(M2)

0

)

can be a generator of ν∗
C′/C(E) as

they all are annihilated by detM1. Hence all the generators of the free module ν∗
C′/C(E) are

some combinations of the columns of ν∗

(

−M∨
1AM∨

2

det(M1)M∨
2

)

. Then in particular:

(31) ν∗

(

M∨
1 det(M2)

0

)

= ν∗

(

−M∨
1AM∨

2

det(M1)M∨
2

)

B
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for some matrixB. Thus ν∗M∨
2B is divisible by ν∗ det(M2), contradicting−ν∗(M∨

1AM∨
2B) =

ν∗(M∨
1 det(M2)), because ord(A) > 0.

3. By the proposition 3.5 each weakly maximal determinantal representation can be brought

to the upper triangular form





M1 ..
.. .. ..
0 0 Mk



 corresponding to the branch decomposition

(C, 0) = ∪k
i=1(piCi, 0).

�

Remark 4.2.

• If the minimal lifting is the normalization, the determinantal representation is not necessarily
weakly maximal or equivalent to upper triangular, even if (C, 0) is an ordinary multiple point.

Recall the example from remark 3.4. The determinantal representation

(

xp−1y xp − yp

xp + yp xyp−1

)

defines the ordinary multiple point: {xpyp + y2p − x2p = 0}, the union of lines.
Note that both M and M∨ are homogeneous, so the kernel sections are proportional to

constant vectors. The limits of any two kernel sections are distinct, so the minimal lifting
separates all the branches, i.e. is the normalization. But the determinantal representation is
not weakly maximal (e.g. because I(M)is generated by four elements). The problem here is
that the limits, though distinct, are not linearly independent.

• For a locally irreducible curve (a branch) the weak maximality does not seem to impose

restrictions on the minimal lifting. For example consider the representation

(

x yk

yl x

)

with

k < l and (k, l) = 1. Here C[x, y] = C[tk+l, t2]⊂C[t] and the kernel is generated by

(

x
−yl

)

,
(

−yk

x

)

. Hence the minimal lifting is C[t2, tk+l]⊂C[t2, tk−l] = C[x, y, x
yk
], which can be the

normalization or just one blowup.
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[Möring-van Straten02] K.Möhring, D.van Straten, A criterion for the equivalence of formal singularities. Amer.

J. Math. 124 (2002), no. 6, 1319–1327
[Pfister-Popescu75] G.Pfister, D.Popescu, Die strenge Approximationseigenschaft lokaler Ringe. Invent. Math.

30 (1975), no. 2, 145–174
[Piontkowski2006] J.Piontkowski, Linear symmetric determinantal hypersurfaces. Michigan Math. J. 54 (2006),

no. 1, 117–155
[Serre-book] J.P.Serre, Algebraic groups and class fields. Graduate Texts in Mathematics, 117. Springer-Verlag,

New York, 1988. x+207 pp
[Tannenbaum81] A.Tannenbaum, Invariance and system theory: algebraic and geometric aspects. Lecture Notes

in Mathematics, 845. Springer-Verlag, Berlin-New York, 1981. x+161 pp
[Ulrich84] B.Ulrich, Gorenstein rings and modules with high numbers of generators. Math. Z. 188 (1984), no.

1, 23–32
[Vinnikov89] V.Vinnikov, Complete description of determinantal representations of smooth irreducible curves.

Linear Algebra Appl. 125, 103-140 (1989).
[Yoshino-book] Y.Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings. LondonMathematical Society

Lecture Note Series, 146. Cambridge University Press, Cambridge, 1990. viii+177 pp.

http://enriques.mathematik.uni-mainz.de/straten/students.html


22 D.Kerner AND V.Vinnikov

Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be’er Sheva

84105, Israel.

E-mail address : kernerdm@math.bgu.ac.il

Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be’er Sheva

84105, Israel.

E-mail address : vinnikov@math.bgu.ac.il


	1. Introduction
	2. Preliminaries and notations
	3. Local decomposability and extension criteria for determinantal representations
	4. The minimal liftings
	References

