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EXAMPLES OF NON-POLYGONAL LIMIT SHAPES IN ILI.D.
FIRST-PASSAGE PERCOLATION AND INFINITE COEXISTENCE IN
SPATIAL GROWTH MODELS

MICHAEL DAMRON AND MICHAEL HOCHMAN

ABSTRACT. We construct an edge-weight distribution for i.i.d. first-passage percolation
on Z? whose limit shape is not a polygon and has extreme points which are arbitrarily
dense in the boundary. Consequently, the associated Richardson-type growth model
can support coexistence of a countably infinite number of distinct species, and the

graph of infection has infinitely many ends.

1. INTRODUCTION

Throughout this note p denotes a Borel probability measure on R™ with finite mean,
and M is the family of such measures. Let E denote the set of nearest-neighbor edges of
the lattice Z2, and let {7, : e € E} be a family of i.i.d. random variables with marginal
v and joint distribution P = p®. The passage time of a path v = (e1,...,e,) € E™ in the
graph (Z*,E) is 7(y) = Y| Te;» and for z,y € Z? the passage time from z to y is

7(2,y) = min(y),
where the minimum is over all paths v joining x to y. A minimizing path is called a
geodesic from x to y.

The theory of first passage percolation (FPP) is concerned with the large-scale geome-
try of the metric space (Z2, 7). The following fundamental result concerns the asymptotic
geometry of balls. Write B(t) = {x € Z?> : 7(0,z) < t} for the ball of radius ¢ at the
origin, and for S C R? and a > 0, write a.S = {az : = € S}.

Theorem 1.1 (Cox-Durrett [I]). For each u € M there exists a deterministic, convex,
compact set B, such that for any e > 0,

1
P <(1 —¢e)B, C ;B(t) C (14¢)By, for all large t> =1.

Little is known about the geometry of B,, which is called the limit shape. It is
conjectured to be strictly convex when g is non-atomic, and non-polygonal in all but the
most degenerate cases, but, in fact, there are currently no known examples of u for which
these properties are verified (see [9]). For a compact, convex set C C R? write ext(C)
for the set of extreme points and sides(C) = |ext(C)|, so that C is a polygon if and
only if sides(C) < oco. The best result to date, due to Marchand [7], is that under mild
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assumptions, sides(B,) > 8. Building on results of Marchand, our purpose of this note
is to give the first examples of distributions for which the limit shape is not a polygon.

Theorem 1.2. For every € > 0 there exists y € M (with atoms) such that B,, is not a
polygon, i.e., sides(B),) = oo, and ext(B,) is e-dense in 0B,,. There exist continuous
such that sides(B,,) > 1/e and ext(B,,) is e-dense in 0B,,.

It is tempting to try to obtain a strictly convex limit shape by taking a limit of measures
pin such that B, have progressively denser sets of extreme points, but unfortunately the
limit one gets in our example is the unit ball of £!.

We also obtain examples of measures p such that, at the points v € ext(B,) which
lie on the boundary of the ¢'-unit ball, 0B, is infinitely differentiable. This should be
compared with the work of Zhang [10], where such behavior was ruled out for certain pu.

Theorem has implications for the Richardson growth model, whose definition we
recall next. Fix z1,...,2; € Z? and imagine that at time 0 the site z; is inhabited by
a species of type i. Each species spreads at unit speed, taking time 7, to cross an edge
e € E. An uninhabited site is exclusively and permanently colonized by the first species
that reaches it, i.e., y € Z2 is occupied at time ¢ by the i-th species if 7(y,z;) < t and
7(y,2;) < 7(y,x;) for all j # i. This is well-defined when there are unique geodesics,
i.e., P-a.s. no two paths have the same passage time, as is the case when p is continuous,
but we shall also want to consider measures p with atoms, so we require a mechanism
to break ties. For simplicity we introduce a worst-case model: if two species i # j reach
an unoccupied site x at the same instant then x is colonized by a species of type —1,
which spreads according to the same rules as the others. Under this convention if a site is
occupied by the species i # —1 then it would be so occupied under any other tie-breaking

rule.
Given initial sites z1,...,xy, consider the set colonized by the i-th species:
C; = {y € Z*? : y is eventually occupied by i}.
One says that p admits coexistence of k species if for some choice of x1,. .., x,

P(|Ci| = o0 foralli=1,...,k) > 0.

Coexistence of infinitely many species is defined similarly.

It is not known, even in simple examples, how many species can coexist. When p is the
exponential distribution, Haggstrom and Pemantle [5] proved coexistence of 2 species,
and for a broad class translation-invariant measures on (0, 00)¥, including some non-i.i.d.
ones, Hoffman [6] demonstrated coexistence of 8 species by establishing a relation with
the number of sides of the limit shape in the associated FPP. Using the same relation we
obtain the following:

Theorem 1.3. There exists p € M (with atoms) which admits coexistence of infinitely
many species. For each k there exist continuous i € M admitting coexistence of k species.
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Finally, the graph of infection K C E is the union over & € Z% of the edges of geodesics
from 0 to x. If p is continuous this is a.s. a tree. A graph has m ends if, after removing a
finite set of vertices, the induced graph contains at least m infinite connected components,
and, if there are m ends for every m € N, we say there are infinitely many ends. Newman
[8] has conjectured for a broad class of u that K has infinitely many ends. Hoffman [6]
showed for continuous distributions that in general there are a.s. at least 4 ends.

Theorem 1.4. There exist p € M (with atoms) such that P-a.s., K has infinitely many
ends. For each k there exist continuous p € M such that P-a.s., K has at least k ends.

When p is continuous Theorems [[.3] and [I4] follow, respectively, from Theorem
and from Theorems 1.4 and 1.6 of Hoffman [6]. For the non-continuous case we provide
the necessary modifications of Hoffman’s arguments in Section Ml

2. BACKGROUND ON THE LIMIT SHAPE

Endow M with the topology of weak convergence and for convenience fix a compatible
metric d(-,-) on M. Next, fix the /’-metric on R?, and write A®) for the e-neighborhood
of A C R. Let C denote the space of non-empty, closed, convex subsets of R? endowed
with the Hausdorfl metric dg:

dr(A,B) =inf{e : AC B and B C A®)},
Theorem 2.1 (Cox-Kesten [2]). The map p+— B, from M to C is continuous.

It is elementary to verify that for A € C, the map A — ext(A) is semi-continuous in
the sense that, given x € ext(A) and € > 0, there is a 6 > 0 such that if A’ € C and
dr(A, A") < 6 then there exists 2’ € ext(A’) with ||z — 2’|, < e. Combined with the
continuity theorem above, we have:

Corollary 2.2. Let p € M. For every x1,...,x, € ext(B,) and ¢ > 0 there is a
d > 0 such that, if v € M and d(v, ) < 6 then there are yi, ...,y € ext(B,) such that
lxi —yil| <€ fori=1,... k.

We next recall some results about limit shapes for a special class of measures. Given
0<p<1,let M, C M denote the set of measures € M with an atom of mass p
located at x = 1, i.e., u({1}) = p, and no mass to the left of 1, i.e., u((—o0,1)) = 0. Limit
shapes for p of this form were first studied in Durrett and Liggett [4]. Writing p, for
the critical parameter of oriented percolation on Z? (see Durrett [3] for background), it
was shown that when p > p,. and p € M), the limit shape B,, contains a “flat edge”, or,
more precisely, B, has sides which lie on the boundary of the ¢'-unit ball. The nature
of this edge was fully characterized in [7]. For p > pg, let a; be the asymptotic speed
of super-critical oriented percolation on Z? with parameter p (see [3]). Define points
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/ 2
wp, w,, € R* by

wy, = (1/24a,/V2, 1/2 — a,/V?2),
wh = (1/2—ap/V2, 1/2+ a,/V?2).

p

Let [w,, w!] C R? denote the line segment with endpoints w, and w’,. It will be important
P %p p p

to note that «,, is strictly increasing in p > p, so the same is true of [wy, w;,].

Theorem 2.3 (Marchand [7]). Let p € M,,. Then
(1) B, C{z e R* : |jzf|, < 1}.
(2) If p < pe, then B, C {z € R? : |jz|; < 1}.
(3) If p > pe, then B, N [0,00)% = [wp, w].

(4) If p = pe, then B, N[0,00)% = {(1/2,p1/2)}.

As noted by Marchand, this implies sides(B,) > 8 for u € M,, and p. < p < 1, since
wy, w, and their reflections about the axes are extreme points.

3. PROOF OF THEOREM

Our aim is to construct a p € M with sides B,, = co. Fix any po > pe, po € My, and
dp > 0. We will inductively define a sequence p1 > py > ... > P, measures j1 € M,,,
p2 € My,, ..., and 61,0d2,... > 0 such that for every n > 0 and all k¥ < n,

(1) If v € M and d(v, ) < 0 then sides(B,) > k, and
(2) s o) < 365
Note that (1) implies that sides(B,, ) > k. Assuming py, puy and 0, are defined for k < n,

we define them for n + 1. Fix ppy1 € (P, pn) and set r = pp, — ppy1 > 0. For y > 1
construct p¥ 41 from g, by moving an amount r of mass from the atom at 1 to y, that is,

,uZH = fin, — 101 + 10y.

We claim that for small enough y > 1 and any sufficiently small choice of 6,411 > 0 the
measure fin4+1 = fi2 41 has the desired properties. First, w 41— M weakly as y | 1, so,
since f,, satisfies (2), so does p¥ 41 for all sufficiently small y.

Second, we claim that SideS(BuZH) > n + 1 for y close enough to 1. Indeed, since
r > 0 we have wp, , # wp,. Using (1), choose n extreme points z1,...,x, € ext(5,,)
and let

a= min{|]az,~ — x4l ||z — wanHl R j}.
Note that a > 0 by Marchand’s theorem. By Corollary 2.2 for y close enough to 1, for
each i = 1,...,n we can choose an extreme point z of By with |z} — ;|| < a/2. By
Marchand’s theorem, Buiﬂ also has an extreme point at wp, ,,. By definition of a, these
extreme points are distinct, giving sides(BMZH) >n+ 1
Finally, by Corollary 2.2} ¥, satisfies (1) for any sufficiently small choice of 6,4 1.
Let 1 be a weak limit of yu,. Then d(u, tn) < 36, for all n, so by (2), sides(B,,) = cc.
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At each step, rather than creating a new atom at y, one can instead add, e.g., Lebesgue
measure on a small interval around y. In this way one can make the atom at 1 be the
only atom of pu.

Regarding the degree of denseness of the extreme points in the boundary, note that
at each stage if y is small enough and p,1 is close enough to p,,, the new extreme point
we introduce can be made arbitrarily close to w,, (here we use that cy, is continuous in
p > Pe, from [3]), and in the limit we can ensure an extreme point close to it. Thus, if we
begin from pg = é; and choose p,, so that lim p,, = p., and using Marchand’s result that
the flat edge in B,,, then shrinks to a point (and symmetry of the limit shape about the
axes), we can ensure e-density of the extreme points of B,,.

For the second part of Theorem [[.2], choose a sequence v,, € M of continuous measures
converging weakly to p. By Corollary 22| sides(B,,,) — oo, and if ext(B,,) is e-dense in
0B, then the same holds for B,,, for sufficiently large n.

Regarding the remark after the theorem, one may verify that if at each stage y is
chosen close enough to 1 and p = lim p,,, then wj, is a C°°-point of 0B,,.

4. PROOF OF THEOREM [[.3

Let us recall Hoffman’s argument relating coexistence to the geometry of the limit
shape for continuous y (Theorem 1.6 of [6]). Extend 7 to R? x R? by 7(z,y) = 7(2/, )
where 2/ is the unique lattice point in = + [~1/2,1/2)%. Similarly, a geodesic between
x,7 is a geodesic between 2/, 3/. For S C R?, the Busemann function Bg : R? x R?2 = R
is defined by

Bgs(z,y) = inf 7(z,2) — inf 7(y,w).
z€8 weS

For v € R?, write S+v = {s+v : s € S}. If v € dB,, is a point of differentiability and
w is a tangent vector at v, let m, denote the linear functional av 4+ bw — a. Define the
lower density of a set A C N by d(A) = liminf £|AN{1,...,N}|.

Theorem 4.1 (Hoffman [6]). Let 1 € M and let v € B, be a point of differentiability of
0B, with tangent line L C R2. Then for every € > 0 there exists an M = M(v,e) > 0
such that, if x,y € R? satisfy m,(x —y) > M, then

P(d(n eN : Brinw(y,z) > (1 —e)my(z —y)) > 1 —6) >1—e.

Hoffman’s proof of this result does not use unique passage times.

Theorem A1l is related to coexistence as follows. Suppose sides(B,,) > k. We can then
find k points of differentiability v1,...,v; € 0B, with distinct tangent lines L;, and in
particular 7, (v; —v;) > 0 for all j # . Fix € > 0 and choose R > 0 large enough so that
the points x; = Ruv; satisfy m,, (z; — 2j) > M(v;,e/k?). Using the elementary relation
din_4A;) >1—-37" (1 —d(A)), for each i we have

P(d(nEN : Brgn, (z5,2;) > 0 for allj;éi) >1_%> >1_%
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and hence with positive probability (which can be made arbitrarily close to 1 by decreas-
ing €), for each ¢ there is a positive density of n such that By, n, (2, 2;) > 0 for all
j # 4. For such an n, take y; ,, € L; + nv; to be the closest point (in the sense of passage
times) to z;; assuming unique geodesics, by definition y; ,, is reached first by species i.
The points y; ,, are in Cj, so |Cj| = oo for i =1,...,k, i.e., coexistence occurs.

If geodesics are not unique the argument still applies, using the following observation.
If B, 4nv,(xj,x;) >0, j # 1, then the only way that y;,, could be colonized by a species
other than i is if it is colonized by —1. This can occur only if there is a site z on a geodesic
from z; to y; , which is reached simultaneously by species 7 and j # ¢. If this happens then
by concatenating the geodesic from z; to z with the geodesic from z to y we get a path
from z; to L; + nv; with passage time equal to 7(z;, yi ), so 7(z;, L; + nv;) < 7(xi, Yin)
and hence Br, 4ny, (25, 2;) < 0, contrary to assumption.

When sides(B,,) = oo, one proves coexistence of infinitely many types similarly.
Choose a sequence {v;}5°, C 0B, of points of differentiability of the boundary, ordered
clockwise, say. Given £ > 0, define the points x; inductively by x; 11 = z; + R;(vit1 — v;)
for a sufficiently large R; > 0 so as to ensure that for i # j, m, (z; — x;) > M (v, & 5),
where 3, ;& ; <e. The rest of the argument is the same as above.

5. PROOF OF THEOREM [ 4]

Recall that K denotes the graph of infection. When there are unique geodesics, Hoff-
man’s results imply that the number of ends of K is at least sides(B,,)/2 (Theorem 1.4 of
[6]), establishing Theorem [[.4] for non-atomic p. In this section we deal with the presence
of atoms, proving the following result:

Theorem 5.1. If u is not purely atomic and has at least s € N sides, then the number
of ends in K is P-a.s. at least

(5.1) /c:4f_4J.

12

See below Theorem [5.3] for an explanation of this bound.

For simplicity, in the following discussion we fix a measure u € M, with p < 1, and
make two further assumptions: (a) the only atom of p is the atom at 1, and (b) u is
supported on a bounded interval [1, R]. The argument can be modified to deal with the
general case of the theorem.

Proposition 5.2. Suppose that P-a.s. there exist k infinite geodesics 71, ...,V starting
at 0, edges e1, ..., e, and a finite set V C 7%, such that (a) e; lies on ~; but not on v}
fori # 3, (b) the endpoints of e; are in' V', (¢c) Te;, > 1, and (d) each pair of geodesics is
disjoint outside of V.. Then P-a.s., K has k ends.

Proof. Under our assumptions on pu, with probability 1 every pair of edges with passage
times > 1 has distinct passage times. Consequently, geodesics between z,y € Z2 can
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differ only in edges e with 7. = 1, and must share edges with 7. > 1. We assume we are
in this probability-1 event.

We claim that no two of the given geodesics are connected in K \ V. Suppose for
instance that 71,7, were connected in K \ V' by a path ¢ which we may assume is simple
(non self-intersecting) and with endpoints y; € 71 and y, € 2. Denote the sequence of
vertices in o by y;3 = v1,v2,...,0r = yo. Write e = e; and let J C {1,...,k} denote the
set of j such that there exists a geodesic o; from 0 to v; which contains e. We claim
that £ € J. This leads to a contradiction because then o, and o are both geodesics
connecting 0 and yo, but only one of them, oy, contains e.

Clearly 1 € J. Suppose now that j € J with corresponding geodesic o;. Write
f for the edge between v; and vj41, and note that f # e because the endpoints of
e are in V while those of f are not. Also, 7(0,v;) # 7(0,vj41), since f € K. If
7(0,vj41) > 7(0,v;) then we adjoin f to o; and obtain a geodesic 011 with the desired
properties. If 7(0,vj41) < 7(0,v;) and v;j1; lies on o; we remove f from o; to obtain
0j+1. On the other hand, if v;; does not lie on o; but 7(0,vj41) < 7(0,v;), then there
is a geodesic a; 41 from 0 to v; whose last edge is f. Because a; 41 must reach v; in the
same time as o; does, it must pass through each of those edges of o; which have passage
times > 1, and in particular through e. We remove f from a} 41 to obtain gj41. O

Our goal is to establish the hypotheses of the proposition for k as in (5.1]). It is enough
to show that there exist random variables m < M such that with probability one,

(1) There exist k geodesics 71, ...,y which are disjoint outside of mB,,.

(2) There are edges e; in v;, with endpoints in M B,, \ mB,,, such that 7., > 1.
This suffices because we can then set V = M B,, in the proposition. To show that such
m, M exist, it is enough to show that for every £ > 0 there exists deterministic m < M
such that each of the conditions above holds on an event of probability > 1 —e.

Given u,v,w € 0B, which are points of differentiability of 9B, let C(u,v,w) denote

the open arc in 0B, from u to w containing v. We rely on the following result, whose
proof does not require unique geodesics:

Theorem 5.3 (Hoffman [6]). Let u,v,w € 0B, be points of differentiability of 0B, let
L be the tangent line at v, and write C = C(u,v,w). Then for every € > 0 there is an
My = My(e) such that for every M > My, with probability > 1 — ¢ the set

I= {n eN:yNMOIB, C MC for all geodesics vy from 0 to L+nv}
satisfies d(I) > 1 —e.

Henceforth fix k as in (5.1]) and € > 0 and for i = 1,. .., k choose points u;, v;, w; € 0B,
and lines L; as in the theorem, and such that the closed sets C; = m are
pairwise disjoint and do not intersect the boundary of the ¢! unit ball; write C' = Ule C;.
Note that k was picked so that such a choice is possible: note that %(sides(B,) — 4) is
the number of distinct sides on each of the four curves in 0B, which constitute the
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complement of the ¢! unit ball; dividing this number by 3 gives an upper bound on
the number of triples we can choose in each of these curves. Taking integer part and
multiplying by 4 gives k.

Claim 5.4. There exists My and p > 0 such that with probability at least 1 — e, for all
M > My, every x € MC and every geodesic v from 0 to x, at least a p-fraction of the
edges of v have passage times > 1.

Proof. Pick § > 0 and define edge weights {7/ : e € E} by the rule that if 7. > 1 then
7. =T + 0 and 7. = 7. otherwise. Let y/ denote the marginal distribution of 7.

Choose n > 0 so that (1 —7)C N By =0 (we can do so by a theorem of Marchand
[7, Theorem 1.5] and the fact that C is disjoint from the ¢! unit ball). For a path o let
f(o) denote the fraction of edges of o with passage time > 1. By Theorem [[.1] there
is an event A with P(A) > 1 — ¢ and an My such that for all M > My and y € 0B,
the 7-geodesic 7 from 0 to y satisfies (1 — n?>)M < 7(v) < (1 +n?)M, and similarly for
y' € MOB,, and the 7'-length of 7'-geodesics from 0 to y’. We claim that A is the desired
event. Indeed, let M > My and let v be a 7-geodesic from 0 to some x € MC'. Since
Te > 1 for all e € E, the number of edges in « is at most 7(vy). Hence

m(y) = 7(7) 4 6f(y)#{edges of ~}
< (1+6f()T(v)
< (146f(y)A+n*)M

On the other hand x = %y for some y € B,y and s <1 —1, so

M
() > 1 -7 )1_
Combining these we find that f(vy) > %- 1;
Let a > 0 be the quantity
1
(5.2) a= §min{7rvi(mi —xzj) rx; €Ci,xj€Cy,i# G}

and fix finite, 55p-dense sets D; C C;. Let p be as in the claim and L >> m/p. By The-
orems [5.3] and [[.T] we can choose an integer m and M = Lm such that, with probability
> 1 —¢g, there is a set I C N of density > 1 — & such that, for n € I,

(A) Every geodesic v;, from 0 to L; + nv; intersects modB,, in mC; and intersects
MOB,, in MC;.

(B) If i # j then Br, iy, (z,2;) > ma for all x; € mD; and z; € mD;.

(C) |7(0,2) —m| < 5§ for all z € mD;.

(D) At least a p/2-fraction of edges on v; , N (M B, \ mB,,) have passage time > 1.

Fix 7;, as in (A). We may choose an infinite J C I such that limye 7, — 7; for
]2 _

some infinite geodesics ; originating at 0, i.e., for every r > 0 we have v; N [—r,r
Vi O[T, r]2 for all large enough n € J. Henceforth we only consider such n.
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Let y; », be the first intersection point of «; , with mC}, and choose z;, € D; such that

mo mo

|Tin — Yin| < Big- Since p is supported on [0, R], we conclude that (2, yin) < 5, 50

2ma . .
(5.3) 1 BLitnv: (Yjns Yim) — BLino (T Tin)| < o for i # j.
Claim 5.5. The v;’s are disjoint outside of mB,,.

Proof. Suppose for example that 7,72 intersect at some point z outside of mB,,. Then
for large enough n € J the same is true of 71, and y2,. Then

T(07 yl,n) + T(yl,Tw Z) - T(07 y27n) + T(yZ,na Z)-

By () we have |7(0,y1,n) — 7(0, y2.n)| < 2’1”—0a, SO
2ma
IT(Y1,m,2) — T(Y2,n, 2)| < ——.
10
Write o1 for the part of q ,, from y1, to L1 + nv;. Let o2 be path which starts at s,

follows 72, until z, and then follows vy ,, until L; + nv;. We find that |7(01) — 7(02)| <

2?”—00‘. But 71, is a shortest path from 0 to L1 4 nvy, so o1 is a shortest path from ¥y,
to Ly + nvy. Hence Br, 4nv, (Y20, Y1n) < 2’1”—00‘. By (&.3), this contradicts (BI). O

Finally, combining the last claim with (D) establishes the two claims stated after
Proposition This completes the proof of Theorem [L.4l
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