EXAMPLES OF NON-POLYGONAL LIMIT SHAPES IN I.I.D. FIRST-PASSAGE PERCOLATION AND INFINITE COEXISTENCE IN SPATIAL GROWTH MODELS

MICHAEL DAMRON AND MICHAEL HOCHMAN

Abstract

We construct an edge-weight distribution for i.i.d. first-passage percolation on \mathbb{Z}^{2} whose limit shape is not a polygon and has extreme points which are arbitrarily dense in the boundary. Consequently, the associated Richardson-type growth model can support coexistence of a countably infinite number of distinct species, and the graph of infection has infinitely many ends.

1. Introduction

Throughout this note μ denotes a Borel probability measure on \mathbb{R}^{+}with finite mean, and \mathcal{M} is the family of such measures. Let \mathbb{E} denote the set of nearest-neighbor edges of the lattice \mathbb{Z}^{2}, and let $\left\{\tau_{e}: e \in \mathbb{E}\right\}$ be a family of i.i.d. random variables with marginal μ and joint distribution $\mathbb{P}=\mu^{\mathbb{E}}$. The passage time of a path $\gamma=\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{E}^{n}$ in the graph $\left(\mathbb{Z}^{2}, \mathbb{E}\right)$ is $\tau(\gamma)=\sum_{i=1}^{n} \tau_{e_{i}}$, and for $x, y \in \mathbb{Z}^{2}$ the passage time from x to y is

$$
\tau(x, y)=\min _{\gamma} \tau(\gamma),
$$

where the minimum is over all paths γ joining x to y. A minimizing path is called a geodesic from x to y.

The theory of first passage percolation (FPP) is concerned with the large-scale geometry of the metric space $\left(\mathbb{Z}^{2}, \tau\right)$. The following fundamental result concerns the asymptotic geometry of balls. Write $B(t)=\left\{x \in \mathbb{Z}^{2}: \tau(0, x) \leq t\right\}$ for the ball of radius t at the origin, and for $S \subseteq \mathbb{R}^{2}$ and $a \geq 0$, write $a S=\{a x: x \in S\}$.

Theorem 1.1 (Cox-Durrett [1). For each $\mu \in \mathcal{M}$ there exists a deterministic, convex, compact set B_{μ} such that for any $\varepsilon>0$,

$$
\mathbb{P}\left((1-\varepsilon) B_{\mu} \subseteq \frac{1}{t} B(t) \subseteq(1+\varepsilon) B_{\mu} \text { for all large } t\right)=1 .
$$

Little is known about the geometry of B_{μ}, which is called the limit shape. It is conjectured to be strictly convex when μ is non-atomic, and non-polygonal in all but the most degenerate cases, but, in fact, there are currently no known examples of μ for which these properties are verified (see [9]). For a compact, convex set $C \subseteq \mathbb{R}^{2}$ write $\operatorname{ext}(C)$ for the set of extreme points and $\operatorname{sides}(C)=|\operatorname{ext}(C)|$, so that C is a polygon if and only if $\operatorname{sides}(C)<\infty$. The best result to date, due to Marchand [7], is that under mild

[^0]assumptions, $\operatorname{sides}\left(B_{\mu}\right) \geq 8$. Building on results of Marchand, our purpose of this note is to give the first examples of distributions for which the limit shape is not a polygon.

Theorem 1.2. For every $\varepsilon>0$ there exists $\mu \in \mathcal{M}$ (with atoms) such that B_{μ} is not a polygon, i.e., $\operatorname{sides}\left(B_{\mu}\right)=\infty$, and $\operatorname{ext}\left(B_{\mu}\right)$ is ε-dense in ∂B_{μ}. There exist continuous μ such that $\operatorname{sides}\left(B_{\mu}\right)>1 / \varepsilon$ and $\operatorname{ext}\left(B_{\mu}\right)$ is ε-dense in ∂B_{μ}.

It is tempting to try to obtain a strictly convex limit shape by taking a limit of measures μ_{n} such that $B_{\mu_{n}}$ have progressively denser sets of extreme points, but unfortunately the limit one gets in our example is the unit ball of ℓ^{1}.

We also obtain examples of measures μ such that, at the points $v \in \operatorname{ext}\left(B_{\mu}\right)$ which lie on the boundary of the ℓ^{1}-unit ball, ∂B_{μ} is infinitely differentiable. This should be compared with the work of Zhang [10], where such behavior was ruled out for certain μ.

Theorem 1.2 has implications for the Richardson growth model, whose definition we recall next. Fix $x_{1}, \ldots, x_{k} \in \mathbb{Z}^{2}$ and imagine that at time 0 the site x_{i} is inhabited by a species of type i. Each species spreads at unit speed, taking time τ_{e} to cross an edge $e \in \mathbb{E}$. An uninhabited site is exclusively and permanently colonized by the first species that reaches it, i.e., $y \in \mathbb{Z}^{2}$ is occupied at time t by the i-th species if $\tau\left(y, x_{i}\right) \leq t$ and $\tau\left(y, x_{i}\right)<\tau\left(y, x_{j}\right)$ for all $j \neq i$. This is well-defined when there are unique geodesics, i.e., \mathbb{P}-a.s. no two paths have the same passage time, as is the case when μ is continuous, but we shall also want to consider measures μ with atoms, so we require a mechanism to break ties. For simplicity we introduce a worst-case model: if two species $i \neq j$ reach an unoccupied site x at the same instant then x is colonized by a species of type -1 , which spreads according to the same rules as the others. Under this convention if a site is occupied by the species $i \neq-1$ then it would be so occupied under any other tie-breaking rule.

Given initial sites x_{1}, \ldots, x_{k}, consider the set colonized by the i-th species:

$$
C_{i}=\left\{y \in \mathbb{Z}^{2}: y \text { is eventually occupied by } i\right\} .
$$

One says that μ admits coexistence of k species if for some choice of x_{1}, \ldots, x_{k},

$$
\mathbb{P}\left(\left|C_{i}\right|=\infty \text { for all } i=1, \ldots, k\right)>0
$$

Coexistence of infinitely many species is defined similarly.
It is not known, even in simple examples, how many species can coexist. When μ is the exponential distribution, Häggström and Pemantle [5] proved coexistence of 2 species, and for a broad class translation-invariant measures on $(0, \infty)^{\mathbb{E}}$, including some non-i.i.d. ones, Hoffman [6] demonstrated coexistence of 8 species by establishing a relation with the number of sides of the limit shape in the associated FPP. Using the same relation we obtain the following:

Theorem 1.3. There exists $\mu \in \mathcal{M}$ (with atoms) which admits coexistence of infinitely many species. For each k there exist continuous $\mu \in \mathcal{M}$ admitting coexistence of k species.

Finally, the graph of infection $K \subseteq \mathbb{E}$ is the union over $x \in \mathbb{Z}^{d}$ of the edges of geodesics from 0 to x. If μ is continuous this is a.s. a tree. A graph has m ends if, after removing a finite set of vertices, the induced graph contains at least m infinite connected components, and, if there are m ends for every $m \in \mathbb{N}$, we say there are infinitely many ends. Newman [8] has conjectured for a broad class of μ that K has infinitely many ends. Hoffman [6] showed for continuous distributions that in general there are a.s. at least 4 ends.

Theorem 1.4. There exist $\mu \in \mathcal{M}$ (with atoms) such that \mathbb{P}-a.s., K has infinitely many ends. For each k there exist continuous $\mu \in \mathcal{M}$ such that \mathbb{P}-a.s., K has at least k ends.

When μ is continuous Theorems 1.3 and 1.4 follow, respectively, from Theorem 1.2 and from Theorems 1.4 and 1.6 of Hoffman [6]. For the non-continuous case we provide the necessary modifications of Hoffman's arguments in Section 4 .

2. Background on the limit shape

Endow \mathcal{M} with the topology of weak convergence and for convenience fix a compatible metric $d(\cdot, \cdot)$ on \mathcal{M}. Next, fix the ℓ^{1}-metric on \mathbb{R}^{2}, and write $A^{(\varepsilon)}$ for the ε-neighborhood of $A \subseteq \mathbb{R}$. Let \mathcal{C} denote the space of non-empty, closed, convex subsets of \mathbb{R}^{2} endowed with the Hausdorff metric d_{H} :

$$
d_{H}(A, B)=\inf \left\{\varepsilon: A \subseteq B^{(\varepsilon)} \text { and } B \subseteq A^{(\varepsilon)}\right\}
$$

Theorem 2.1 (Cox-Kesten [2]). The map $\mu \mapsto B_{\mu}$ from \mathcal{M} to \mathcal{C} is continuous.
It is elementary to verify that for $A \in \mathcal{C}$, the map $A \mapsto \operatorname{ext}(A)$ is semi-continuous in the sense that, given $x \in \operatorname{ext}(A)$ and $\varepsilon>0$, there is a $\delta>0$ such that if $A^{\prime} \in \mathcal{C}$ and $d_{H}\left(A, A^{\prime}\right)<\delta$ then there exists $x^{\prime} \in \operatorname{ext}\left(A^{\prime}\right)$ with $\left\|x-x^{\prime}\right\|_{1}<\varepsilon$. Combined with the continuity theorem above, we have:

Corollary 2.2. Let $\mu \in \mathcal{M}$. For every $x_{1}, \ldots, x_{k} \in \operatorname{ext}\left(B_{\mu}\right)$ and $\varepsilon>0$ there is a $\delta>0$ such that, if $\nu \in \mathcal{M}$ and $d(\nu, \mu)<\delta$ then there are $y_{1}, \ldots, y_{k} \in \operatorname{ext}\left(B_{\nu}\right)$ such that $\left\|x_{i}-y_{i}\right\|<\varepsilon$ for $i=1, \ldots, k$.

We next recall some results about limit shapes for a special class of measures. Given $0<p<1$, let $\mathcal{M}_{p} \subseteq \mathcal{M}$ denote the set of measures $\mu \in \mathcal{M}$ with an atom of mass p located at $x=1$, i.e., $\mu(\{1\})=p$, and no mass to the left of 1, i.e., $\mu((-\infty, 1))=0$. Limit shapes for μ of this form were first studied in Durrett and Liggett [4]. Writing \vec{p}_{c} for the critical parameter of oriented percolation on \mathbb{Z}^{2} (see Durrett [3] for background), it was shown that when $p>\vec{p}_{c}$ and $\mu \in \mathcal{M}_{p}$, the limit shape B_{μ} contains a "flat edge", or, more precisely, ∂B_{μ} has sides which lie on the boundary of the ℓ^{1}-unit ball. The nature of this edge was fully characterized in [7]. For $p \geq \vec{p}_{c}$, let α_{p} be the asymptotic speed of super-critical oriented percolation on \mathbb{Z}^{2} with parameter p (see [3]). Define points
$w_{p}, w_{p}^{\prime} \in \mathbb{R}^{2}$ by

$$
\begin{aligned}
w_{p} & =\left(1 / 2+\alpha_{p} / \sqrt{2}, 1 / 2-\alpha_{p} / \sqrt{2}\right) \\
w_{p}^{\prime} & =\left(1 / 2-\alpha_{p} / \sqrt{2}, 1 / 2+\alpha_{p} / \sqrt{2}\right) .
\end{aligned}
$$

Let $\left[w_{p}, w_{p}^{\prime}\right] \subseteq \mathbb{R}^{2}$ denote the line segment with endpoints w_{p} and w_{p}^{\prime}. It will be important to note that α_{p} is strictly increasing in $p>\vec{p}_{c}$, so the same is true of $\left[w_{p}, w_{p}^{\prime}\right]$.

Theorem 2.3 (Marchand [7]). Let $\mu \in \mathcal{M}_{p}$. Then
(1) $B_{\mu} \subseteq\left\{x \in \mathbb{R}^{2}:\|x\|_{1} \leq 1\right\}$.
(2) If $p<\vec{p}_{c}$, then $B_{\mu} \subseteq\left\{x \in \mathbb{R}^{2}:\|x\|_{1}<1\right\}$.
(3) If $p>\vec{p}_{c}$, then $B_{\mu} \cap[0, \infty)^{2}=\left[w_{p}, w_{p}^{\prime}\right]$.
(4) If $p=\vec{p}_{c}$, then $B_{\mu} \cap[0, \infty)^{2}=\{(1 / 2,1 / 2)\}$.

As noted by Marchand, this implies $\operatorname{sides}\left(B_{\mu}\right) \geq 8$ for $\mu \in \mathcal{M}_{p}$ and $\vec{p}_{c}<p<1$, since w_{p}, w_{p}^{\prime} and their reflections about the axes are extreme points.

3. Proof of Theorem 1.2

Our aim is to construct a $\mu \in \mathcal{M}$ with sides $B_{\mu}=\infty$. Fix any $p_{0}>\vec{p}_{c}, \mu_{0} \in \mathcal{M}_{p_{0}}$ and $\delta_{0}>0$. We will inductively define a sequence $p_{1}>p_{2}>\ldots>\vec{p}_{c}$, measures $\mu_{1} \in \mathcal{M}_{p_{1}}$, $\mu_{2} \in \mathcal{M}_{p_{2}}, \ldots$, and $\delta_{1}, \delta_{2}, \ldots>0$ such that for every $n \geq 0$ and all $k \leq n$,
(1) If $\nu \in \mathcal{M}$ and $d\left(\nu, \mu_{k}\right)<\delta_{k}$ then $\operatorname{sides}\left(B_{\nu}\right) \geq k$, and
(2) $d\left(\mu_{k}, \mu_{n}\right)<\frac{1}{2} \delta_{k}$.

Note that (1) implies that $\operatorname{sides}\left(B_{\mu_{k}}\right) \geq k$. Assuming p_{k}, μ_{k} and δ_{k} are defined for $k \leq n$, we define them for $n+1$. Fix $p_{n+1} \in\left(\vec{p}_{c}, p_{n}\right)$ and set $r=p_{n}-p_{n+1}>0$. For $y>1$ construct μ_{n+1}^{y} from μ_{n} by moving an amount r of mass from the atom at 1 to y, that is,

$$
\mu_{n+1}^{y}=\mu_{n}-r \delta_{1}+r \delta_{y} .
$$

We claim that for small enough $y>1$ and any sufficiently small choice of $\delta_{n+1}>0$ the measure $\mu_{n+1}=\mu_{n+1}^{y}$ has the desired properties. First, $\mu_{n+1}^{y} \rightarrow \mu_{n}$ weakly as $y \downarrow 1$, so, since μ_{n} satisfies (2), so does μ_{n+1}^{y} for all sufficiently small y.

Second, we claim that $\operatorname{sides}\left(B_{\mu_{n+1}^{y}}\right) \geq n+1$ for y close enough to 1 . Indeed, since $r>0$ we have $w_{p_{n+1}} \neq w_{p_{n}}$. Using (1), choose n extreme points $x_{1}, \ldots, x_{n} \in \operatorname{ext}\left(B_{\mu_{n}}\right)$ and let

$$
a=\min \left\{\left\|x_{i}-x_{j}\right\|_{1},\left\|x_{i}-w_{p_{n+1}}\right\|_{1}: i \neq j\right\} .
$$

Note that $a>0$ by Marchand's theorem. By Corollary [2.2, for y close enough to 1 , for each $i=1, \ldots, n$ we can choose an extreme point x_{i}^{\prime} of $B_{\mu_{n+1}^{y}}$ with $\left\|x_{i}^{\prime}-x_{i}\right\|<a / 2$. By Marchand's theorem, $B_{\mu_{n+1}^{y}}$ also has an extreme point at $w_{p_{n+1}}$. By definition of a, these extreme points are distinct, giving $\operatorname{sides}\left(B_{\mu_{n+1}^{y}}\right) \geq n+1$.

Finally, by Corollary [2.2, μ_{n+1}^{y} satisfies (1) for any sufficiently small choice of δ_{n+1}.
Let μ be a weak limit of μ_{n}. Then $d\left(\mu, \mu_{n}\right) \leq \frac{1}{2} \delta_{n}$ for all n, so by $(2), \operatorname{sides}\left(B_{\mu}\right)=\infty$.

At each step, rather than creating a new atom at y, one can instead add, e.g., Lebesgue measure on a small interval around y. In this way one can make the atom at 1 be the only atom of μ.

Regarding the degree of denseness of the extreme points in the boundary, note that at each stage if y is small enough and p_{n+1} is close enough to p_{n}, the new extreme point we introduce can be made arbitrarily close to $w_{p_{n}}$ (here we use that α_{p} is continuous in $p>\vec{p}_{c}$, from [3]), and in the limit we can ensure an extreme point close to it. Thus, if we begin from $\mu_{0}=\delta_{1}$ and choose p_{n} so that $\lim p_{n}=\vec{p}_{c}$, and using Marchand's result that the flat edge in $B_{\mu_{n}}$ then shrinks to a point (and symmetry of the limit shape about the axes), we can ensure ε-density of the extreme points of B_{μ}.

For the second part of Theorem 1.2, choose a sequence $\nu_{n} \in \mathcal{M}$ of continuous measures converging weakly to μ. By Corollary [2.2, $\operatorname{sides}\left(B_{\nu_{n}}\right) \rightarrow \infty$, and if $\operatorname{ext}\left(B_{\mu}\right)$ is ε-dense in ∂B_{μ} then the same holds for $B_{\nu_{n}}$ for sufficiently large n.

Regarding the remark after the theorem, one may verify that if at each stage y is chosen close enough to 1 and $p=\lim p_{n}$, then w_{p} is a C^{∞}-point of ∂B_{μ}.

4. Proof of Theorem [1.3.

Let us recall Hoffman's argument relating coexistence to the geometry of the limit shape for continuous μ (Theorem 1.6 of [6]). Extend τ to $\mathbb{R}^{2} \times \mathbb{R}^{2}$ by $\tau(x, y)=\tau\left(x^{\prime}, y^{\prime}\right)$ where x^{\prime} is the unique lattice point in $x+[-1 / 2,1 / 2)^{2}$. Similarly, a geodesic between x, y is a geodesic between x^{\prime}, y^{\prime}. For $S \subseteq \mathbb{R}^{2}$, the Busemann function $B_{S}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by

$$
B_{S}(x, y)=\inf _{z \in S} \tau(x, z)-\inf _{w \in S} \tau(y, w) .
$$

For $v \in \mathbb{R}^{2}$, write $S+v=\{s+v: s \in S\}$. If $v \in \partial B_{\mu}$ is a point of differentiability and w is a tangent vector at v, let π_{v} denote the linear functional $a v+b w \mapsto a$. Define the lower density of a set $A \subseteq \mathbb{N}$ by $\underline{d}(A)=\liminf \frac{1}{N}|A \cap\{1, \ldots, N\}|$.

Theorem 4.1 (Hoffman [6]). Let $\mu \in \mathcal{M}$ and let $v \in B_{\mu}$ be a point of differentiability of ∂B_{μ} with tangent line $L \subseteq \mathbb{R}^{2}$. Then for every $\varepsilon>0$ there exists an $M=M(v, \varepsilon)>0$ such that, if $x, y \in \mathbb{R}^{2}$ satisfy $\pi_{v}(x-y)>M$, then

$$
\mathbb{P}\left(\underline{d}\left(n \in \mathbb{N}: B_{L+n v}(y, x)>(1-\varepsilon) \pi_{v}(x-y)\right)>1-\varepsilon\right)>1-\varepsilon .
$$

Hoffman's proof of this result does not use unique passage times.
Theorem 4.1 is related to coexistence as follows. Suppose sides $\left(B_{\mu}\right) \geq k$. We can then find k points of differentiability $v_{1}, \ldots, v_{k} \in \partial B_{\mu}$ with distinct tangent lines L_{i}, and in particular $\pi_{v_{i}}\left(v_{i}-v_{j}\right)>0$ for all $j \neq i$. Fix $\varepsilon>0$ and choose $R>0$ large enough so that the points $x_{i}=R v_{i}$ satisfy $\pi_{v_{i}}\left(x_{i}-x_{j}\right)>M\left(v_{i}, \varepsilon / k^{2}\right)$. Using the elementary relation $\underline{d}\left(\cap_{i=1}^{n} A_{i}\right) \geq 1-\sum_{i=1}^{n}\left(1-\underline{d}\left(A_{i}\right)\right)$, for each i we have

$$
\mathbb{P}\left(\underline{d}\left(n \in \mathbb{N}: B_{L+n v_{i}}\left(x_{j}, x_{i}\right)>0 \text { for all } j \neq i\right)>1-\frac{\varepsilon}{k}\right)>1-\frac{\varepsilon}{k},
$$

and hence with positive probability (which can be made arbitrarily close to 1 by decreasing ε), for each i there is a positive density of n such that $B_{L_{i}+n v_{i}}\left(x_{j}, x_{i}\right)>0$ for all $j \neq i$. For such an n, take $y_{i, n} \in L_{i}+n v_{i}$ to be the closest point (in the sense of passage times) to x_{i}; assuming unique geodesics, by definition $y_{i, n}$ is reached first by species i. The points $y_{i, n}$ are in C_{i}, so $\left|C_{i}\right|=\infty$ for $i=1, \ldots, k$, i.e., coexistence occurs.

If geodesics are not unique the argument still applies, using the following observation. If $B_{L_{i}+n v_{i}}\left(x_{j}, x_{i}\right)>0, j \neq i$, then the only way that $y_{i, n}$ could be colonized by a species other than i is if it is colonized by -1 . This can occur only if there is a site z on a geodesic from x_{i} to $y_{i, n}$ which is reached simultaneously by species i and $j \neq i$. If this happens then by concatenating the geodesic from x_{j} to z with the geodesic from z to y we get a path from x_{j} to $L_{i}+n v_{i}$ with passage time equal to $\tau\left(x_{i}, y_{i, n}\right)$, so $\tau\left(x_{j}, L_{i}+n v_{i}\right) \leq \tau\left(x_{i}, y_{i, n}\right)$ and hence $B_{L_{i}+n v_{i}}\left(x_{j}, x_{i}\right) \leq 0$, contrary to assumption.

When $\operatorname{sides}\left(B_{\mu}\right)=\infty$, one proves coexistence of infinitely many types similarly. Choose a sequence $\left\{v_{i}\right\}_{i=1}^{\infty} \subseteq \partial B_{\mu}$ of points of differentiability of the boundary, ordered clockwise, say. Given $\varepsilon>0$, define the points x_{i} inductively by $x_{i+1}=x_{i}+R_{i}\left(v_{i+1}-v_{i}\right)$ for a sufficiently large $R_{i}>0$ so as to ensure that for $i \neq j, \pi_{v_{i}}\left(x_{i}-x_{j}\right)>M\left(v_{i}, \varepsilon_{i, j}\right)$, where $\sum_{i, j} \varepsilon_{i, j}<\varepsilon$. The rest of the argument is the same as above.

5. Proof of Theorem 1.4.

Recall that K denotes the graph of infection. When there are unique geodesics, Hoffman's results imply that the number of ends of K is at least $\operatorname{sides}\left(B_{\mu}\right) / 2$ (Theorem 1.4 of [6]), establishing Theorem 1.4 for non-atomic μ. In this section we deal with the presence of atoms, proving the following result:

Theorem 5.1. If μ is not purely atomic and has at least $s \in \mathbb{N}$ sides, then the number of ends in K is \mathbb{P}-a.s. at least

$$
\begin{equation*}
k=4\left\lfloor\frac{s-4}{12}\right\rfloor . \tag{5.1}
\end{equation*}
$$

See below Theorem 5.3 for an explanation of this bound.
For simplicity, in the following discussion we fix a measure $\mu \in \mathcal{M}_{p}$ with $p<1$, and make two further assumptions: (a) the only atom of μ is the atom at 1 , and (b) μ is supported on a bounded interval $[1, R]$. The argument can be modified to deal with the general case of the theorem.

Proposition 5.2. Suppose that \mathbb{P}-a.s. there exist k infinite geodesics $\gamma_{1}, \ldots, \gamma_{k}$ starting at 0 , edges e_{1}, \ldots, e_{k}, and a finite set $V \subseteq \mathbb{Z}^{2}$, such that (a) e_{i} lies on γ_{i} but not on γ_{j} for $i \neq j$, (b) the endpoints of e_{i} are in V, (c) $\tau_{e_{i}}>1$, and (d) each pair of geodesics is disjoint outside of V. Then \mathbb{P}-a.s., K has k ends.

Proof. Under our assumptions on μ, with probability 1 every pair of edges with passage times >1 has distinct passage times. Consequently, geodesics between $x, y \in \mathbb{Z}^{2}$ can
differ only in edges e with $\tau_{e}=1$, and must share edges with $\tau_{e}>1$. We assume we are in this probability-1 event.

We claim that no two of the given geodesics are connected in $K \backslash V$. Suppose for instance that γ_{1}, γ_{2} were connected in $K \backslash V$ by a path σ which we may assume is simple (non self-intersecting) and with endpoints $y_{1} \in \gamma_{1}$ and $y_{2} \in \gamma_{2}$. Denote the sequence of vertices in σ by $y_{1}=v_{1}, v_{2}, \ldots, v_{k}=y_{2}$. Write $e=e_{1}$ and let $J \subseteq\{1, \ldots, k\}$ denote the set of j such that there exists a geodesic σ_{j} from 0 to v_{j} which contains e. We claim that $k \in J$. This leads to a contradiction because then σ_{k} and γ_{2} are both geodesics connecting 0 and y_{2}, but only one of them, σ_{k}, contains e.

Clearly $1 \in J$. Suppose now that $j \in J$ with corresponding geodesic σ_{j}. Write f for the edge between v_{j} and v_{j+1}, and note that $f \neq e$ because the endpoints of e are in V while those of f are not. Also, $\tau\left(0, v_{j}\right) \neq \tau\left(0, v_{j+1}\right)$, since $f \in K$. If $\tau\left(0, v_{j+1}\right)>\tau\left(0, v_{j}\right)$ then we adjoin f to σ_{j} and obtain a geodesic σ_{j+1} with the desired properties. If $\tau\left(0, v_{j+1}\right)<\tau\left(0, v_{j}\right)$ and v_{j+1} lies on σ_{j} we remove f from σ_{j} to obtain σ_{j+1}. On the other hand, if v_{j+1} does not lie on σ_{j} but $\tau\left(0, v_{j+1}\right)<\tau\left(0, v_{j}\right)$, then there is a geodesic σ_{j+1}^{\prime} from 0 to v_{j} whose last edge is f. Because σ_{j+1}^{\prime} must reach v_{j} in the same time as σ_{j} does, it must pass through each of those edges of σ_{j} which have passage times >1, and in particular through e. We remove f from σ_{j+1}^{\prime} to obtain σ_{j+1}.

Our goal is to establish the hypotheses of the proposition for k as in (5.1). It is enough to show that there exist random variables $m<M$ such that with probability one,
(1) There exist k geodesics $\gamma_{1}, \ldots, \gamma_{k}$ which are disjoint outside of $m B_{\mu}$.
(2) There are edges e_{i} in γ_{i}, with endpoints in $M B_{\mu} \backslash m B_{\mu}$, such that $\tau_{e_{i}}>1$.

This suffices because we can then set $V=M B_{\mu}$ in the proposition. To show that such m, M exist, it is enough to show that for every $\varepsilon>0$ there exists deterministic $m<M$ such that each of the conditions above holds on an event of probability $>1-\varepsilon$.

Given $u, v, w \in \partial B_{\mu}$ which are points of differentiability of ∂B_{μ}, let $C(u, v, w)$ denote the open arc in ∂B_{μ} from u to w containing v. We rely on the following result, whose proof does not require unique geodesics:

Theorem 5.3 (Hoffman [6]). Let $u, v, w \in \partial B_{\mu}$ be points of differentiability of ∂B_{μ}, let L be the tangent line at v, and write $C=C(u, v, w)$. Then for every $\varepsilon>0$ there is an $M_{0}=M_{0}(\varepsilon)$ such that for every $M>M_{0}$, with probability $>1-\varepsilon$ the set

$$
I=\left\{n \in \mathbb{N}: \gamma \cap M \partial B_{\mu} \subseteq M C \text { for all geodesics } \gamma \text { from } 0 \text { to } L+n v\right\}
$$

satisfies $\underline{d}(I)>1-\varepsilon$.
Henceforth fix k as in (5.1) and $\varepsilon>0$ and for $i=1, \ldots, k$ choose points $u_{i}, v_{i}, w_{i} \in \partial B_{\mu}$ and lines L_{i} as in the theorem, and such that the closed sets $C_{i}=\overline{C\left(u_{i}, v_{i}, w_{i}\right)}$ are pairwise disjoint and do not intersect the boundary of the ℓ^{1} unit ball; write $C=\bigcup_{i=1}^{k} C_{i}$. Note that k was picked so that such a choice is possible: note that $\frac{1}{4}\left(\operatorname{sides}\left(B_{\mu}\right)-4\right)$ is the number of distinct sides on each of the four curves in ∂B_{μ} which constitute the
complement of the ℓ^{1} unit ball; dividing this number by 3 gives an upper bound on the number of triples we can choose in each of these curves. Taking integer part and multiplying by 4 gives k.

Claim 5.4. There exists M_{0} and $\rho>0$ such that with probability at least $1-\varepsilon$, for all $M>M_{0}$, every $x \in M C$ and every geodesic γ from 0 to x, at least a ρ-fraction of the edges of γ have passage times >1.

Proof. Pick $\delta>0$ and define edge weights $\left\{\tau_{e}^{\prime}: e \in \mathbb{E}\right\}$ by the rule that if $\tau_{e}>1$ then $\tau_{e}^{\prime}=\tau_{e}+\delta$ and $\tau_{e}^{\prime}=\tau_{e}$ otherwise. Let μ^{\prime} denote the marginal distribution of τ_{e}^{\prime}.

Choose $\eta>0$ so that $(1-\eta) C \cap B_{\mu^{\prime}}=\emptyset$ (we can do so by a theorem of Marchand [7. Theorem 1.5] and the fact that C is disjoint from the ℓ^{1} unit ball). For a path σ let $f(\sigma)$ denote the fraction of edges of σ with passage time >1. By Theorem [1.1, there is an event A with $\mathbb{P}(A)>1-\varepsilon$ and an M_{0} such that for all $M>M_{0}$ and $y \in \partial B_{\mu}$, the τ-geodesic γ from 0 to y satisfies $\left(1-\eta^{2}\right) M<\tau(\gamma)<\left(1+\eta^{2}\right) M$, and similarly for $y^{\prime} \in M \partial B_{\mu}^{\prime}$ and the τ^{\prime}-length of τ^{\prime}-geodesics from 0 to y^{\prime}. We claim that A is the desired event. Indeed, let $M>M_{0}$ and let γ be a τ-geodesic from 0 to some $x \in M C$. Since $\tau_{e} \geq 1$ for all $e \in \mathbb{E}$, the number of edges in γ is at most $\tau(\gamma)$. Hence

$$
\begin{aligned}
\tau^{\prime}(\gamma) & =\tau(\gamma)+\delta f(\gamma) \#\{\text { edges of } \gamma\} \\
& \leq(1+\delta f(\gamma)) \tau(\gamma) \\
& \leq(1+\delta f(\gamma))\left(1+\eta^{2}\right) M
\end{aligned}
$$

On the other hand $x=\frac{M}{s} y$ for some $y \in \partial B_{\mu^{\prime}}$ and $s<1-\eta$, so

$$
\tau^{\prime}(\gamma) \geq\left(1-\eta^{2}\right) \frac{M}{1-\eta}
$$

Combining these we find that $f(\gamma) \geq \frac{\eta}{\delta} \cdot \frac{1-\eta}{1+\eta^{2}}$. This lower bound on f can serve as ρ.
Let $\alpha>0$ be the quantity

$$
\begin{equation*}
\alpha=\frac{1}{2} \min \left\{\pi_{v_{i}}\left(x_{i}-x_{j}\right): x_{i} \in C_{i}, x_{j} \in C_{j}, i \neq j\right\} . \tag{5.2}
\end{equation*}
$$

and fix finite, $\frac{\alpha}{100 R}$-dense sets $D_{i} \subseteq C_{i}$. Let ρ be as in the claim and $L \gg m / \rho$. By Theorems 5.3 and 1.1, we can choose an integer m and $M=L m$ such that, with probability $>1-\varepsilon$, there is a set $I \subseteq \mathbb{N}$ of density $>1-\varepsilon$ such that, for $n \in I$,
(A) Every geodesic $\gamma_{i, n}$ from 0 to $L_{i}+n v_{i}$ intersects $m \partial B_{\mu}$ in $m C_{i}$ and intersects $M \partial B_{\mu}$ in $M C_{i}$.
(B) If $i \neq j$ then $B_{L_{i}+n v_{i}}\left(x_{j}, x_{i}\right)>m \alpha$ for all $x_{i} \in m D_{i}$ and $x_{j} \in m D_{j}$.
(C) $|\tau(0, x)-m|<\frac{m \alpha}{10}$ for all $x \in m D_{i}$.
(D) At least a $\rho / 2$-fraction of edges on $\gamma_{i, n} \cap\left(M B_{\mu} \backslash m B_{\mu}\right)$ have passage time >1.

Fix $\gamma_{i, n}$ as in (A). We may choose an infinite $J \subseteq I$ such that $\lim _{n \in J} \gamma_{i, n} \rightarrow \gamma_{i}$ for some infinite geodesics γ_{i} originating at 0, i.e., for every $r>0$ we have $\gamma_{i} \cap[-r, r]^{2}=$ $\gamma_{i, n} \cap[-r, r]^{2}$ for all large enough $n \in J$. Henceforth we only consider such n.

Let $y_{i, n}$ be the first intersection point of $\gamma_{i, n}$ with $m C_{i}$, and choose $x_{i, n} \in D_{i}$ such that $\left|x_{i, n}-y_{i, n}\right| \leq \frac{m \alpha}{R 10}$. Since μ is supported on $[0, R]$, we conclude that $\tau\left(x_{i, n}, y_{i, n}\right) \leq \frac{m \alpha}{10}$, so

$$
\begin{equation*}
\left|B_{L_{i}+n v_{i}}\left(y_{j, n}, y_{i, n}\right)-B_{L_{i}+n v_{i}}\left(x_{j, n}, x_{i, n}\right)\right|<\frac{2 m \alpha}{10} \text { for } i \neq j \text {. } \tag{5.3}
\end{equation*}
$$

Claim 5.5. The γ_{i} 's are disjoint outside of $m B_{\mu}$.
Proof. Suppose for example that γ_{1}, γ_{2} intersect at some point z outside of $m B_{\mu}$. Then for large enough $n \in J$ the same is true of $\gamma_{1, n}$ and $\gamma_{2, n}$. Then

$$
\tau\left(0, y_{1, n}\right)+\tau\left(y_{1, n}, z\right)=\tau\left(0, y_{2, n}\right)+\tau\left(y_{2, n}, z\right) .
$$

By (C) we have $\left|\tau\left(0, y_{1, n}\right)-\tau\left(0, y_{2, n}\right)\right|<\frac{2 m \alpha}{10}$, so

$$
\left|\tau\left(y_{1, n}, z\right)-\tau\left(y_{2, n}, z\right)\right|<\frac{2 m \alpha}{10} .
$$

Write σ_{1} for the part of $\gamma_{1, n}$ from $y_{1, n}$ to $L_{1}+n v_{1}$. Let σ_{2} be path which starts at $y_{2, n}$, follows $\gamma_{2, n}$ until z, and then follows $\gamma_{1, n}$ until $L_{1}+n v_{1}$. We find that $\left|\tau\left(\sigma_{1}\right)-\tau\left(\sigma_{2}\right)\right|<$ $\frac{2 m \alpha}{10}$. But $\gamma_{1, n}$ is a shortest path from 0 to $L_{1}+n v_{1}$, so σ_{1} is a shortest path from $y_{1, n}$ to $L_{1}+n v_{1}$. Hence $B_{L_{1}+n v_{1}}\left(y_{2, n}, y_{1, n}\right) \leq \frac{2 m \alpha}{10}$. By (5.3), this contradicts (B).

Finally, combining the last claim with (D) establishes the two claims stated after Proposition 5.2. This completes the proof of Theorem 1.4 .

References

[1] Cox, J. T. and Durrett, R. (1981). Some limit theorems for percolation with necessary and sufficient conditions. Ann. Probab. 9 583-603.
[2] Cox, J. T. and Kesten, H. (1981). On the continuity of the time constant of first-passage percolation. J. Appl. Probab. 18 809-819.
[3] Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999-1040.
[4] Durrett, R. and Liggett, T. (1981). The shape of the limit set in Richardson's growth model. Ann. Probab. 9 186-193.
[5] Häggström, O. and Pemantle, R. (1998). First passage percolation and a model for competing spatial growth. J. Appl. Probab. 35 683-692.
[6] Hoffman, C. (2008). Geodesics in first passage percolation. Ann. Appl. Probab. 18 1944-1969.
[7] Marchand, R. (2002). Strict inequalities for the time constant in first passage percolation. Ann. Appl. Probab. 12 1001-1038.
[8] Newman, C. A surface view of first-passage percolation. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 1017-1023, Birkhauser, Basel, 1995.
[9] Häggström, O. and Meester, R. (1995). Asymptotic shapes for stationary first passage percolation. Ann. Probab. 23 1511-1522.
[10] Zhang, Yu, (2007). Shape curvatures and transversal fluctuations in the first passage percolation model. Preprint, http://arxiv.org/abs/math.PR/0701689

Mathematics Department, Princeton University, Fine Hall, Washington Rd., Princeton, NJ 08544.

E-mail address: Michael Damron: mdamron@math.princeton.edu,
Michael Hochman: hochman@math.princeton.edu

[^0]: M.D. supported by an NSF Postdoctoral Fellowship. M.H. supported by NSF grant 0901534.

