
ar
X

iv
:1

00
9.

25
23

v1
  [

m
at

h.
PR

] 
 1

3 
Se

p 
20

10

EXAMPLES OF NON-POLYGONAL LIMIT SHAPES IN I.I.D.

FIRST-PASSAGE PERCOLATION AND INFINITE COEXISTENCE IN

SPATIAL GROWTH MODELS

MICHAEL DAMRON AND MICHAEL HOCHMAN

Abstract. We construct an edge-weight distribution for i.i.d. first-passage percolation

on Z
2 whose limit shape is not a polygon and has extreme points which are arbitrarily

dense in the boundary. Consequently, the associated Richardson-type growth model

can support coexistence of a countably infinite number of distinct species, and the

graph of infection has infinitely many ends.

1. Introduction

Throughout this note µ denotes a Borel probability measure on R
+ with finite mean,

and M is the family of such measures. Let E denote the set of nearest-neighbor edges of

the lattice Z
2, and let {τe : e ∈ E} be a family of i.i.d. random variables with marginal

µ and joint distribution P = µE. The passage time of a path γ = (e1, . . . , en) ∈ E
n in the

graph (Z2,E) is τ(γ) =
∑n

i=1 τei , and for x, y ∈ Z
2 the passage time from x to y is

τ(x, y) = min
γ

τ(γ),

where the minimum is over all paths γ joining x to y. A minimizing path is called a

geodesic from x to y.

The theory of first passage percolation (FPP) is concerned with the large-scale geome-

try of the metric space (Z2, τ). The following fundamental result concerns the asymptotic

geometry of balls. Write B(t) = {x ∈ Z
2 : τ(0, x) ≤ t} for the ball of radius t at the

origin, and for S ⊆ R
2 and a ≥ 0, write aS = {ax : x ∈ S}.

Theorem 1.1 (Cox-Durrett [1]). For each µ ∈ M there exists a deterministic, convex,

compact set Bµ such that for any ε > 0,

P

(

(1− ε)Bµ ⊆ 1

t
B(t) ⊆ (1 + ε)Bµ for all large t

)

= 1.

Little is known about the geometry of Bµ, which is called the limit shape. It is

conjectured to be strictly convex when µ is non-atomic, and non-polygonal in all but the

most degenerate cases, but, in fact, there are currently no known examples of µ for which

these properties are verified (see [9]). For a compact, convex set C ⊆ R
2 write ext(C)

for the set of extreme points and sides(C) = | ext(C)|, so that C is a polygon if and

only if sides(C) < ∞. The best result to date, due to Marchand [7], is that under mild
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2 M. Damron and M. Hochman

assumptions, sides(Bµ) ≥ 8. Building on results of Marchand, our purpose of this note

is to give the first examples of distributions for which the limit shape is not a polygon.

Theorem 1.2. For every ε > 0 there exists µ ∈ M (with atoms) such that Bµ is not a

polygon, i.e., sides(Bµ) = ∞, and ext(Bµ) is ε-dense in ∂Bµ. There exist continuous µ

such that sides(Bµ) > 1/ε and ext(Bµ) is ε-dense in ∂Bµ.

It is tempting to try to obtain a strictly convex limit shape by taking a limit of measures

µn such that Bµn have progressively denser sets of extreme points, but unfortunately the

limit one gets in our example is the unit ball of ℓ1.

We also obtain examples of measures µ such that, at the points v ∈ ext(Bµ) which

lie on the boundary of the ℓ1-unit ball, ∂Bµ is infinitely differentiable. This should be

compared with the work of Zhang [10], where such behavior was ruled out for certain µ.

Theorem 1.2 has implications for the Richardson growth model, whose definition we

recall next. Fix x1, . . . , xk ∈ Z
2 and imagine that at time 0 the site xi is inhabited by

a species of type i. Each species spreads at unit speed, taking time τe to cross an edge

e ∈ E. An uninhabited site is exclusively and permanently colonized by the first species

that reaches it, i.e., y ∈ Z
2 is occupied at time t by the i-th species if τ(y, xi) ≤ t and

τ(y, xi) < τ(y, xj) for all j 6= i. This is well-defined when there are unique geodesics,

i.e., P-a.s. no two paths have the same passage time, as is the case when µ is continuous,

but we shall also want to consider measures µ with atoms, so we require a mechanism

to break ties. For simplicity we introduce a worst-case model: if two species i 6= j reach

an unoccupied site x at the same instant then x is colonized by a species of type −1,

which spreads according to the same rules as the others. Under this convention if a site is

occupied by the species i 6= −1 then it would be so occupied under any other tie-breaking

rule.

Given initial sites x1, . . . , xk, consider the set colonized by the i-th species:

Ci = {y ∈ Z
2 : y is eventually occupied by i}.

One says that µ admits coexistence of k species if for some choice of x1, . . . , xk,

P(|Ci| = ∞ for all i = 1, . . . , k) > 0.

Coexistence of infinitely many species is defined similarly.

It is not known, even in simple examples, how many species can coexist. When µ is the

exponential distribution, Häggström and Pemantle [5] proved coexistence of 2 species,

and for a broad class translation-invariant measures on (0,∞)E, including some non-i.i.d.

ones, Hoffman [6] demonstrated coexistence of 8 species by establishing a relation with

the number of sides of the limit shape in the associated FPP. Using the same relation we

obtain the following:

Theorem 1.3. There exists µ ∈ M (with atoms) which admits coexistence of infinitely

many species. For each k there exist continuous µ ∈ M admitting coexistence of k species.
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Finally, the graph of infection K ⊆ E is the union over x ∈ Z
d of the edges of geodesics

from 0 to x. If µ is continuous this is a.s. a tree. A graph has m ends if, after removing a

finite set of vertices, the induced graph contains at least m infinite connected components,

and, if there are m ends for every m ∈ N, we say there are infinitely many ends. Newman

[8] has conjectured for a broad class of µ that K has infinitely many ends. Hoffman [6]

showed for continuous distributions that in general there are a.s. at least 4 ends.

Theorem 1.4. There exist µ ∈ M (with atoms) such that P-a.s., K has infinitely many

ends. For each k there exist continuous µ ∈ M such that P-a.s., K has at least k ends.

When µ is continuous Theorems 1.3 and 1.4 follow, respectively, from Theorem 1.2

and from Theorems 1.4 and 1.6 of Hoffman [6]. For the non-continuous case we provide

the necessary modifications of Hoffman’s arguments in Section 4.

2. Background on the limit shape

Endow M with the topology of weak convergence and for convenience fix a compatible

metric d(·, ·) on M. Next, fix the ℓ1-metric on R
2, and write A(ε) for the ε-neighborhood

of A ⊆ R. Let C denote the space of non-empty, closed, convex subsets of R2 endowed

with the Hausdorff metric dH :

dH(A,B) = inf{ε : A ⊆ B(ε) and B ⊆ A(ε)}.

Theorem 2.1 (Cox-Kesten [2]). The map µ 7→ Bµ from M to C is continuous.

It is elementary to verify that for A ∈ C, the map A 7→ ext(A) is semi-continuous in

the sense that, given x ∈ ext(A) and ε > 0, there is a δ > 0 such that if A′ ∈ C and

dH(A,A′) < δ then there exists x′ ∈ ext(A′) with ‖x− x′‖1 < ε. Combined with the

continuity theorem above, we have:

Corollary 2.2. Let µ ∈ M. For every x1, . . . , xk ∈ ext(Bµ) and ε > 0 there is a

δ > 0 such that, if ν ∈ M and d(ν, µ) < δ then there are y1, . . . , yk ∈ ext(Bν) such that

‖xi − yi‖ < ε for i = 1, . . . , k.

We next recall some results about limit shapes for a special class of measures. Given

0 < p < 1, let Mp ⊆ M denote the set of measures µ ∈ M with an atom of mass p

located at x = 1, i.e., µ({1}) = p, and no mass to the left of 1, i.e., µ((−∞, 1)) = 0. Limit

shapes for µ of this form were first studied in Durrett and Liggett [4]. Writing ~pc for

the critical parameter of oriented percolation on Z
2 (see Durrett [3] for background), it

was shown that when p > ~pc and µ ∈ Mp, the limit shape Bµ contains a “flat edge”, or,

more precisely, ∂Bµ has sides which lie on the boundary of the ℓ1-unit ball. The nature

of this edge was fully characterized in [7]. For p ≥ ~pc, let αp be the asymptotic speed

of super-critical oriented percolation on Z
2 with parameter p (see [3]). Define points
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wp, w
′

p ∈ R
2 by

wp = (1/2 + αp/
√
2 , 1/2 − αp/

√
2),

w′

p = (1/2 − αp/
√
2 , 1/2 + αp/

√
2).

Let [wp, w
′

p] ⊆ R
2 denote the line segment with endpoints wp and w′

p. It will be important

to note that αp is strictly increasing in p > ~pc, so the same is true of [wp, w
′

p].

Theorem 2.3 (Marchand [7]). Let µ ∈ Mp. Then

(1) Bµ ⊆ {x ∈ R
2 : ‖x‖1 ≤ 1}.

(2) If p < ~pc, then Bµ ⊆ {x ∈ R
2 : ‖x‖1 < 1}.

(3) If p > ~pc, then Bµ ∩ [0,∞)2 = [wp, w
′

p].

(4) If p = ~pc, then Bµ ∩ [0,∞)2 = {(1/2, 1/2)}.

As noted by Marchand, this implies sides(Bµ) ≥ 8 for µ ∈ Mp and ~pc < p < 1, since

wp, w
′

p and their reflections about the axes are extreme points.

3. Proof of Theorem 1.2

Our aim is to construct a µ ∈ M with sidesBµ = ∞. Fix any p0 > ~pc, µ0 ∈ Mp0 and

δ0 > 0. We will inductively define a sequence p1 > p2 > . . . > ~pc, measures µ1 ∈ Mp1 ,

µ2 ∈ Mp2 , . . ., and δ1, δ2, . . . > 0 such that for every n ≥ 0 and all k ≤ n,

(1) If ν ∈ M and d(ν, µk) < δk then sides(Bν) ≥ k, and

(2) d(µk, µn) <
1
2δk.

Note that (1) implies that sides(Bµk
) ≥ k. Assuming pk, µk and δk are defined for k ≤ n,

we define them for n + 1. Fix pn+1 ∈ (~pc, pn) and set r = pn − pn+1 > 0. For y > 1

construct µy
n+1 from µn by moving an amount r of mass from the atom at 1 to y, that is,

µy
n+1 = µn − rδ1 + rδy.

We claim that for small enough y > 1 and any sufficiently small choice of δn+1 > 0 the

measure µn+1 = µy
n+1 has the desired properties. First, µy

n+1 → µn weakly as y ↓ 1, so,

since µn satisfies (2), so does µy
n+1 for all sufficiently small y.

Second, we claim that sides(Bµ
y
n+1

) ≥ n + 1 for y close enough to 1. Indeed, since

r > 0 we have wpn+1
6= wpn . Using (1), choose n extreme points x1, . . . , xn ∈ ext(Bµn)

and let

a = min
{

‖xi − xj‖1 ,
∥

∥xi − wpn+1

∥

∥

1
: i 6= j

}

.

Note that a > 0 by Marchand’s theorem. By Corollary 2.2, for y close enough to 1, for

each i = 1, . . . , n we can choose an extreme point x′i of Bµ
y
n+1

with ‖x′i − xi‖ < a/2. By

Marchand’s theorem, Bµ
y
n+1

also has an extreme point at wpn+1
. By definition of a, these

extreme points are distinct, giving sides(Bµ
y
n+1

) ≥ n+ 1.

Finally, by Corollary 2.2, µy
n+1 satisfies (1) for any sufficiently small choice of δn+1.

Let µ be a weak limit of µn. Then d(µ, µn) ≤ 1
2δn for all n, so by (2), sides(Bµ) = ∞.
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At each step, rather than creating a new atom at y, one can instead add, e.g., Lebesgue

measure on a small interval around y. In this way one can make the atom at 1 be the

only atom of µ.

Regarding the degree of denseness of the extreme points in the boundary, note that

at each stage if y is small enough and pn+1 is close enough to pn, the new extreme point

we introduce can be made arbitrarily close to wpn (here we use that αp is continuous in

p > ~pc, from [3]), and in the limit we can ensure an extreme point close to it. Thus, if we

begin from µ0 = δ1 and choose pn so that lim pn = ~pc, and using Marchand’s result that

the flat edge in Bµn then shrinks to a point (and symmetry of the limit shape about the

axes), we can ensure ε-density of the extreme points of Bµ.

For the second part of Theorem 1.2, choose a sequence νn ∈ M of continuous measures

converging weakly to µ. By Corollary 2.2, sides(Bνn) → ∞, and if ext(Bµ) is ε-dense in

∂Bµ then the same holds for Bνn for sufficiently large n.

Regarding the remark after the theorem, one may verify that if at each stage y is

chosen close enough to 1 and p = lim pn, then wp is a C∞-point of ∂Bµ.

4. Proof of Theorem 1.3.

Let us recall Hoffman’s argument relating coexistence to the geometry of the limit

shape for continuous µ (Theorem 1.6 of [6]). Extend τ to R
2 × R

2 by τ(x, y) = τ(x′, y′)

where x′ is the unique lattice point in x + [−1/2, 1/2)2. Similarly, a geodesic between

x, y is a geodesic between x′, y′. For S ⊆ R
2, the Busemann function BS : R2 × R

2 → R

is defined by

BS(x, y) = inf
z∈S

τ(x, z) − inf
w∈S

τ(y,w).

For v ∈ R
2, write S + v = {s+ v : s ∈ S}. If v ∈ ∂Bµ is a point of differentiability and

w is a tangent vector at v, let πv denote the linear functional av + bw 7→ a. Define the

lower density of a set A ⊆ N by d(A) = lim inf 1
N
|A ∩ {1, . . . , N}|.

Theorem 4.1 (Hoffman [6]). Let µ ∈ M and let v ∈ Bµ be a point of differentiability of

∂Bµ with tangent line L ⊆ R
2. Then for every ε > 0 there exists an M = M(v, ε) > 0

such that, if x, y ∈ R
2 satisfy πv(x− y) > M , then

P

(

d
(

n ∈ N : BL+nv(y, x) > (1− ε)πv(x− y)
)

> 1− ε
)

> 1− ε.

Hoffman’s proof of this result does not use unique passage times.

Theorem 4.1 is related to coexistence as follows. Suppose sides(Bµ) ≥ k. We can then

find k points of differentiability v1, . . . , vk ∈ ∂Bµ with distinct tangent lines Li, and in

particular πvi(vi− vj) > 0 for all j 6= i. Fix ε > 0 and choose R > 0 large enough so that

the points xi = Rvi satisfy πvi(xi − xj) > M(vi, ε/k
2). Using the elementary relation

d(∩n
i=1Ai) ≥ 1−∑n

i=1(1− d(Ai)), for each i we have

P

(

d
(

n ∈ N : BL+nvi(xj , xi) > 0 for all j 6= i
)

> 1− ε

k

)

> 1− ε

k
,
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and hence with positive probability (which can be made arbitrarily close to 1 by decreas-

ing ε), for each i there is a positive density of n such that BLi+nvi(xj , xi) > 0 for all

j 6= i. For such an n, take yi,n ∈ Li + nvi to be the closest point (in the sense of passage

times) to xi; assuming unique geodesics, by definition yi,n is reached first by species i.

The points yi,n are in Ci, so |Ci| = ∞ for i = 1, . . . , k, i.e., coexistence occurs.

If geodesics are not unique the argument still applies, using the following observation.

If BLi+nvi(xj , xi) > 0, j 6= i, then the only way that yi,n could be colonized by a species

other than i is if it is colonized by −1. This can occur only if there is a site z on a geodesic

from xi to yi,n which is reached simultaneously by species i and j 6= i. If this happens then

by concatenating the geodesic from xj to z with the geodesic from z to y we get a path

from xj to Li + nvi with passage time equal to τ(xi, yi,n), so τ(xj , Li + nvi) ≤ τ(xi, yi,n)

and hence BLi+nvi(xj , xi) ≤ 0, contrary to assumption.

When sides(Bµ) = ∞, one proves coexistence of infinitely many types similarly.

Choose a sequence {vi}∞i=1 ⊆ ∂Bµ of points of differentiability of the boundary, ordered

clockwise, say. Given ε > 0, define the points xi inductively by xi+1 = xi +Ri(vi+1 − vi)

for a sufficiently large Ri > 0 so as to ensure that for i 6= j, πvi(xi − xj) > M(vi, εi,j),

where
∑

i,j εi,j < ε. The rest of the argument is the same as above.

5. Proof of Theorem 1.4.

Recall that K denotes the graph of infection. When there are unique geodesics, Hoff-

man’s results imply that the number of ends of K is at least sides(Bµ)/2 (Theorem 1.4 of

[6]), establishing Theorem 1.4 for non-atomic µ. In this section we deal with the presence

of atoms, proving the following result:

Theorem 5.1. If µ is not purely atomic and has at least s ∈ N sides, then the number

of ends in K is P-a.s. at least

(5.1) k = 4

⌊

s− 4

12

⌋

.

See below Theorem 5.3 for an explanation of this bound.

For simplicity, in the following discussion we fix a measure µ ∈ Mp with p < 1, and

make two further assumptions: (a) the only atom of µ is the atom at 1, and (b) µ is

supported on a bounded interval [1, R]. The argument can be modified to deal with the

general case of the theorem.

Proposition 5.2. Suppose that P-a.s. there exist k infinite geodesics γ1, . . . , γk starting

at 0, edges e1, . . . , ek, and a finite set V ⊆ Z
2, such that (a) ei lies on γi but not on γj

for i 6= j, (b) the endpoints of ei are in V , (c) τei > 1, and (d) each pair of geodesics is

disjoint outside of V . Then P-a.s., K has k ends.

Proof. Under our assumptions on µ, with probability 1 every pair of edges with passage

times > 1 has distinct passage times. Consequently, geodesics between x, y ∈ Z
2 can
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differ only in edges e with τe = 1, and must share edges with τe > 1. We assume we are

in this probability-1 event.

We claim that no two of the given geodesics are connected in K \ V . Suppose for

instance that γ1, γ2 were connected in K \V by a path σ which we may assume is simple

(non self-intersecting) and with endpoints y1 ∈ γ1 and y2 ∈ γ2. Denote the sequence of

vertices in σ by y1 = v1, v2, . . . , vk = y2. Write e = e1 and let J ⊆ {1, . . . , k} denote the

set of j such that there exists a geodesic σj from 0 to vj which contains e. We claim

that k ∈ J . This leads to a contradiction because then σk and γ2 are both geodesics

connecting 0 and y2, but only one of them, σk, contains e.

Clearly 1 ∈ J . Suppose now that j ∈ J with corresponding geodesic σj. Write

f for the edge between vj and vj+1, and note that f 6= e because the endpoints of

e are in V while those of f are not. Also, τ(0, vj) 6= τ(0, vj+1), since f ∈ K. If

τ(0, vj+1) > τ(0, vj) then we adjoin f to σj and obtain a geodesic σj+1 with the desired

properties. If τ(0, vj+1) < τ(0, vj) and vj+1 lies on σj we remove f from σj to obtain

σj+1. On the other hand, if vj+1 does not lie on σj but τ(0, vj+1) < τ(0, vj), then there

is a geodesic σ′

j+1 from 0 to vj whose last edge is f . Because σ′

j+1 must reach vj in the

same time as σj does, it must pass through each of those edges of σj which have passage

times > 1, and in particular through e. We remove f from σ′

j+1 to obtain σj+1. �

Our goal is to establish the hypotheses of the proposition for k as in (5.1). It is enough

to show that there exist random variables m < M such that with probability one,

(1) There exist k geodesics γ1, . . . , γk which are disjoint outside of mBµ.

(2) There are edges ei in γi, with endpoints in MBµ \mBµ, such that τei > 1.

This suffices because we can then set V = MBµ in the proposition. To show that such

m,M exist, it is enough to show that for every ε > 0 there exists deterministic m < M

such that each of the conditions above holds on an event of probability > 1− ε.

Given u, v, w ∈ ∂Bµ which are points of differentiability of ∂Bµ, let C(u, v, w) denote

the open arc in ∂Bµ from u to w containing v. We rely on the following result, whose

proof does not require unique geodesics:

Theorem 5.3 (Hoffman [6]). Let u, v, w ∈ ∂Bµ be points of differentiability of ∂Bµ, let

L be the tangent line at v, and write C = C(u, v, w). Then for every ε > 0 there is an

M0 = M0(ε) such that for every M > M0, with probability > 1− ε the set

I =
{

n ∈ N : γ ∩M∂Bµ ⊆ MC for all geodesics γ from 0 to L+ nv
}

satisfies d(I) > 1− ε.

Henceforth fix k as in (5.1) and ε > 0 and for i = 1, . . . , k choose points ui, vi, wi ∈ ∂Bµ

and lines Li as in the theorem, and such that the closed sets Ci = C(ui, vi, wi) are

pairwise disjoint and do not intersect the boundary of the ℓ1 unit ball; write C =
⋃k

i=1Ci.

Note that k was picked so that such a choice is possible: note that 1
4(sides(Bµ) − 4) is

the number of distinct sides on each of the four curves in ∂Bµ which constitute the
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complement of the ℓ1 unit ball; dividing this number by 3 gives an upper bound on

the number of triples we can choose in each of these curves. Taking integer part and

multiplying by 4 gives k.

Claim 5.4. There exists M0 and ρ > 0 such that with probability at least 1 − ε, for all

M > M0, every x ∈ MC and every geodesic γ from 0 to x, at least a ρ-fraction of the

edges of γ have passage times > 1.

Proof. Pick δ > 0 and define edge weights {τ ′e : e ∈ E} by the rule that if τe > 1 then

τ ′e = τe + δ and τ ′e = τe otherwise. Let µ′ denote the marginal distribution of τ ′e.

Choose η > 0 so that (1 − η)C ∩ Bµ′ = ∅ (we can do so by a theorem of Marchand

[7, Theorem 1.5] and the fact that C is disjoint from the ℓ1 unit ball). For a path σ let

f(σ) denote the fraction of edges of σ with passage time > 1. By Theorem 1.1, there

is an event A with P(A) > 1 − ε and an M0 such that for all M > M0 and y ∈ ∂Bµ,

the τ -geodesic γ from 0 to y satisfies (1 − η2)M < τ(γ) < (1 + η2)M , and similarly for

y′ ∈ M∂B′

µ and the τ ′-length of τ ′-geodesics from 0 to y′. We claim that A is the desired

event. Indeed, let M > M0 and let γ be a τ -geodesic from 0 to some x ∈ MC. Since

τe ≥ 1 for all e ∈ E, the number of edges in γ is at most τ(γ). Hence

τ ′(γ) = τ(γ) + δf(γ)#{edges of γ}
≤ (1 + δf(γ))τ(γ)

≤ (1 + δf(γ))(1 + η2)M.

On the other hand x = M
s
y for some y ∈ ∂Bµ′ and s < 1− η, so

τ ′(γ) ≥ (1− η2)
M

1− η
.

Combining these we find that f(γ) ≥ η
δ
· 1−η
1+η2

. This lower bound on f can serve as ρ. �

Let α > 0 be the quantity

(5.2) α =
1

2
min{πvi(xi − xj) : xi ∈ Ci , xj ∈ Cj , i 6= j}.

and fix finite, α
100R -dense sets Di ⊆ Ci. Let ρ be as in the claim and L ≫ m/ρ. By The-

orems 5.3 and 1.1, we can choose an integer m and M = Lm such that, with probability

> 1− ε, there is a set I ⊆ N of density > 1− ε such that, for n ∈ I,

(A) Every geodesic γi,n from 0 to Li + nvi intersects m∂Bµ in mCi and intersects

M∂Bµ in MCi.

(B) If i 6= j then BLi+nvi(xj , xi) > mα for all xi ∈ mDi and xj ∈ mDj .

(C) |τ(0, x) −m| < mα
10 for all x ∈ mDi.

(D) At least a ρ/2-fraction of edges on γi,n ∩ (MBµ \mBµ) have passage time > 1.

Fix γi,n as in (A). We may choose an infinite J ⊆ I such that limn∈J γi,n → γi for

some infinite geodesics γi originating at 0, i.e., for every r > 0 we have γi ∩ [−r, r]2 =

γi,n ∩ [−r, r]2 for all large enough n ∈ J . Henceforth we only consider such n.
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Let yi,n be the first intersection point of γi,n with mCi, and choose xi,n ∈ Di such that

|xi,n− yi,n| ≤ mα
R10 . Since µ is supported on [0, R], we conclude that τ(xi,n, yi,n) ≤ mα

10 , so

(5.3) |BLi+nvi(yj,n, yi,n)−BLi+nvi(xj,n, xi,n)| <
2mα

10
for i 6= j.

Claim 5.5. The γi’s are disjoint outside of mBµ.

Proof. Suppose for example that γ1, γ2 intersect at some point z outside of mBµ. Then

for large enough n ∈ J the same is true of γ1,n and γ2,n. Then

τ(0, y1,n) + τ(y1,n, z) = τ(0, y2,n) + τ(y2,n, z).

By (C) we have |τ(0, y1,n)− τ(0, y2,n)| < 2mα
10 , so

|τ(y1,n, z) − τ(y2,n, z)| <
2mα

10
.

Write σ1 for the part of γ1,n from y1,n to L1 + nv1. Let σ2 be path which starts at y2,n,

follows γ2,n until z, and then follows γ1,n until L1 + nv1. We find that |τ(σ1)− τ(σ2)| <
2mα
10 . But γ1,n is a shortest path from 0 to L1 + nv1, so σ1 is a shortest path from y1,n

to L1 + nv1. Hence BL1+nv1(y2,n, y1,n) ≤ 2mα
10 . By (5.3), this contradicts (B). �

Finally, combining the last claim with (D) establishes the two claims stated after

Proposition 5.2. This completes the proof of Theorem 1.4.
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