EXAMPLES OF NON-POLYGONAL LIMIT SHAPES IN I.I.D. FIRST-PASSAGE PERCOLATION AND INFINITE COEXISTENCE IN SPATIAL GROWTH MODELS

MICHAEL DAMRON AND MICHAEL HOCHMAN

ABSTRACT. We construct an edge-weight distribution for i.i.d. first-passage percolation on \mathbb{Z}^2 whose limit shape is not a polygon and has extreme points which are arbitrarily dense in the boundary. Consequently, the associated Richardson-type growth model can support coexistence of a countably infinite number of distinct species, and the graph of infection has infinitely many ends.

1. INTRODUCTION

Throughout this note μ denotes a Borel probability measure on \mathbb{R}^+ with finite mean, and \mathcal{M} is the family of such measures. Let \mathbb{E} denote the set of nearest-neighbor edges of the lattice \mathbb{Z}^2 , and let $\{\tau_e : e \in \mathbb{E}\}$ be a family of i.i.d. random variables with marginal μ and joint distribution $\mathbb{P} = \mu^{\mathbb{E}}$. The *passage time* of a path $\gamma = (e_1, \ldots, e_n) \in \mathbb{E}^n$ in the graph $(\mathbb{Z}^2, \mathbb{E})$ is $\tau(\gamma) = \sum_{i=1}^n \tau_{e_i}$, and for $x, y \in \mathbb{Z}^2$ the *passage time* from x to y is

$$\tau(x,y) = \min_{\gamma} \tau(\gamma)$$

where the minimum is over all paths γ joining x to y. A minimizing path is called a *geodesic* from x to y.

The theory of first passage percolation (FPP) is concerned with the large-scale geometry of the metric space (\mathbb{Z}^2, τ) . The following fundamental result concerns the asymptotic geometry of balls. Write $B(t) = \{x \in \mathbb{Z}^2 : \tau(0, x) \leq t\}$ for the ball of radius t at the origin, and for $S \subseteq \mathbb{R}^2$ and $a \geq 0$, write $aS = \{ax : x \in S\}$.

Theorem 1.1 (Cox-Durrett [1]). For each $\mu \in \mathcal{M}$ there exists a deterministic, convex, compact set B_{μ} such that for any $\varepsilon > 0$,

$$\mathbb{P}\left((1-\varepsilon)B_{\mu} \subseteq \frac{1}{t}B(t) \subseteq (1+\varepsilon)B_{\mu} \text{ for all large } t\right) = 1.$$

Little is known about the geometry of B_{μ} , which is called the *limit shape*. It is conjectured to be strictly convex when μ is non-atomic, and non-polygonal in all but the most degenerate cases, but, in fact, there are currently no known examples of μ for which these properties are verified (see [9]). For a compact, convex set $C \subseteq \mathbb{R}^2$ write $\operatorname{ext}(C)$ for the set of extreme points and $\operatorname{sides}(C) = |\operatorname{ext}(C)|$, so that C is a polygon if and only if $\operatorname{sides}(C) < \infty$. The best result to date, due to Marchand [7], is that under mild

M.D. supported by an NSF Postdoctoral Fellowship. M.H. supported by NSF grant 0901534.

assumptions, sides $(B_{\mu}) \geq 8$. Building on results of Marchand, our purpose of this note is to give the first examples of distributions for which the limit shape is not a polygon.

Theorem 1.2. For every $\varepsilon > 0$ there exists $\mu \in \mathcal{M}$ (with atoms) such that B_{μ} is not a polygon, i.e., $\operatorname{sides}(B_{\mu}) = \infty$, and $\operatorname{ext}(B_{\mu})$ is ε -dense in ∂B_{μ} . There exist continuous μ such that $\operatorname{sides}(B_{\mu}) > 1/\varepsilon$ and $\operatorname{ext}(B_{\mu})$ is ε -dense in ∂B_{μ} .

It is tempting to try to obtain a strictly convex limit shape by taking a limit of measures μ_n such that B_{μ_n} have progressively denser sets of extreme points, but unfortunately the limit one gets in our example is the unit ball of ℓ^1 .

We also obtain examples of measures μ such that, at the points $v \in \text{ext}(B_{\mu})$ which lie on the boundary of the ℓ^1 -unit ball, ∂B_{μ} is infinitely differentiable. This should be compared with the work of Zhang [10], where such behavior was ruled out for certain μ .

Theorem 1.2 has implications for the Richardson growth model, whose definition we recall next. Fix $x_1, \ldots, x_k \in \mathbb{Z}^2$ and imagine that at time 0 the site x_i is inhabited by a species of type *i*. Each species spreads at unit speed, taking time τ_e to cross an edge $e \in \mathbb{E}$. An uninhabited site is exclusively and permanently colonized by the first species that reaches it, i.e., $y \in \mathbb{Z}^2$ is occupied at time *t* by the *i*-th species if $\tau(y, x_i) \leq t$ and $\tau(y, x_i) < \tau(y, x_j)$ for all $j \neq i$. This is well-defined when there are unique geodesics, i.e., \mathbb{P} -a.s. no two paths have the same passage time, as is the case when μ is continuous, but we shall also want to consider measures μ with atoms, so we require a mechanism to break ties. For simplicity we introduce a worst-case model: if two species $i \neq j$ reach an unoccupied site x at the same instant then x is colonized by a species of type -1, which spreads according to the same rules as the others. Under this convention if a site is occupied by the species $i \neq -1$ then it would be so occupied under any other tie-breaking rule.

Given initial sites x_1, \ldots, x_k , consider the set colonized by the *i*-th species:

 $C_i = \{ y \in \mathbb{Z}^2 : y \text{ is eventually occupied by } i \}.$

One says that μ admits coexistence of k species if for some choice of x_1, \ldots, x_k ,

$$\mathbb{P}(|C_i| = \infty \text{ for all } i = 1, \dots, k) > 0.$$

Coexistence of infinitely many species is defined similarly.

It is not known, even in simple examples, how many species can coexist. When μ is the exponential distribution, Häggström and Pemantle [5] proved coexistence of 2 species, and for a broad class translation-invariant measures on $(0, \infty)^{\mathbb{E}}$, including some non-i.i.d. ones, Hoffman [6] demonstrated coexistence of 8 species by establishing a relation with the number of sides of the limit shape in the associated FPP. Using the same relation we obtain the following:

Theorem 1.3. There exists $\mu \in \mathcal{M}$ (with atoms) which admits coexistence of infinitely many species. For each k there exist continuous $\mu \in \mathcal{M}$ admitting coexistence of k species.

Finally, the graph of infection $K \subseteq \mathbb{E}$ is the union over $x \in \mathbb{Z}^d$ of the edges of geodesics from 0 to x. If μ is continuous this is a.s. a tree. A graph has m ends if, after removing a finite set of vertices, the induced graph contains at least m infinite connected components, and, if there are m ends for every $m \in \mathbb{N}$, we say there are infinitely many ends. Newman [8] has conjectured for a broad class of μ that K has infinitely many ends. Hoffman [6] showed for continuous distributions that in general there are a.s. at least 4 ends.

Theorem 1.4. There exist $\mu \in \mathcal{M}$ (with atoms) such that \mathbb{P} -a.s., K has infinitely many ends. For each k there exist continuous $\mu \in \mathcal{M}$ such that \mathbb{P} -a.s., K has at least k ends.

When μ is continuous Theorems 1.3 and 1.4 follow, respectively, from Theorem 1.2 and from Theorems 1.4 and 1.6 of Hoffman [6]. For the non-continuous case we provide the necessary modifications of Hoffman's arguments in Section 4.

2. Background on the limit shape

Endow \mathcal{M} with the topology of weak convergence and for convenience fix a compatible metric $d(\cdot, \cdot)$ on \mathcal{M} . Next, fix the ℓ^1 -metric on \mathbb{R}^2 , and write $A^{(\varepsilon)}$ for the ε -neighborhood of $A \subseteq \mathbb{R}$. Let \mathcal{C} denote the space of non-empty, closed, convex subsets of \mathbb{R}^2 endowed with the Hausdorff metric d_H :

$$d_H(A,B) = \inf\{\varepsilon : A \subseteq B^{(\varepsilon)} \text{ and } B \subseteq A^{(\varepsilon)}\}.$$

Theorem 2.1 (Cox-Kesten [2]). The map $\mu \mapsto B_{\mu}$ from \mathcal{M} to \mathcal{C} is continuous.

It is elementary to verify that for $A \in C$, the map $A \mapsto \operatorname{ext}(A)$ is semi-continuous in the sense that, given $x \in \operatorname{ext}(A)$ and $\varepsilon > 0$, there is a $\delta > 0$ such that if $A' \in C$ and $d_H(A, A') < \delta$ then there exists $x' \in \operatorname{ext}(A')$ with $||x - x'||_1 < \varepsilon$. Combined with the continuity theorem above, we have:

Corollary 2.2. Let $\mu \in \mathcal{M}$. For every $x_1, \ldots, x_k \in \text{ext}(B_\mu)$ and $\varepsilon > 0$ there is a $\delta > 0$ such that, if $\nu \in \mathcal{M}$ and $d(\nu, \mu) < \delta$ then there are $y_1, \ldots, y_k \in \text{ext}(B_\nu)$ such that $||x_i - y_i|| < \varepsilon$ for $i = 1, \ldots, k$.

We next recall some results about limit shapes for a special class of measures. Given $0 , let <math>\mathcal{M}_p \subseteq \mathcal{M}$ denote the set of measures $\mu \in \mathcal{M}$ with an atom of mass plocated at x = 1, i.e., $\mu(\{1\}) = p$, and no mass to the left of 1, i.e., $\mu((-\infty, 1)) = 0$. Limit shapes for μ of this form were first studied in Durrett and Liggett [4]. Writing \vec{p}_c for the critical parameter of oriented percolation on \mathbb{Z}^2 (see Durrett [3] for background), it was shown that when $p > \vec{p}_c$ and $\mu \in \mathcal{M}_p$, the limit shape B_{μ} contains a "flat edge", or, more precisely, ∂B_{μ} has sides which lie on the boundary of the ℓ^1 -unit ball. The nature of this edge was fully characterized in [7]. For $p \ge \vec{p}_c$, let α_p be the asymptotic speed of super-critical oriented percolation on \mathbb{Z}^2 with parameter p (see [3]). Define points $w_p, w'_p \in \mathbb{R}^2$ by

$$w_p = (1/2 + \alpha_p/\sqrt{2}, 1/2 - \alpha_p/\sqrt{2}),$$

$$w'_p = (1/2 - \alpha_p/\sqrt{2}, 1/2 + \alpha_p/\sqrt{2}).$$

Let $[w_p, w'_p] \subseteq \mathbb{R}^2$ denote the line segment with endpoints w_p and w'_p . It will be important to note that α_p is strictly increasing in $p > \vec{p_c}$, so the same is true of $[w_p, w'_p]$.

Theorem 2.3 (Marchand [7]). Let $\mu \in \mathcal{M}_p$. Then

- (1) $B_{\mu} \subseteq \{x \in \mathbb{R}^2 : \|x\|_1 \le 1\}.$
- (2) If $p < \vec{p_c}$, then $B_{\mu} \subseteq \{x \in \mathbb{R}^2 : \|x\|_1 < 1\}$.
- (3) If $p > \vec{p_c}$, then $B_{\mu} \cap [0, \infty)^2 = [w_p, w'_p]$.
- (4) If $p = \vec{p_c}$, then $B_{\mu} \cap [0, \infty)^2 = \{(1/2, 1/2)\}$.

As noted by Marchand, this implies $\operatorname{sides}(B_{\mu}) \geq 8$ for $\mu \in \mathcal{M}_p$ and $\vec{p}_c , since <math>w_p, w'_p$ and their reflections about the axes are extreme points.

3. Proof of Theorem 1.2

Our aim is to construct a $\mu \in \mathcal{M}$ with sides $B_{\mu} = \infty$. Fix any $p_0 > \vec{p_c}, \mu_0 \in \mathcal{M}_{p_0}$ and $\delta_0 > 0$. We will inductively define a sequence $p_1 > p_2 > \ldots > \vec{p_c}$, measures $\mu_1 \in \mathcal{M}_{p_1}$, $\mu_2 \in \mathcal{M}_{p_2}, \ldots$, and $\delta_1, \delta_2, \ldots > 0$ such that for every $n \ge 0$ and all $k \le n$,

- (1) If $\nu \in \mathcal{M}$ and $d(\nu, \mu_k) < \delta_k$ then sides $(B_{\nu}) \ge k$, and
- (2) $d(\mu_k, \mu_n) < \frac{1}{2}\delta_k$.

Note that (1) implies that sides $(B_{\mu_k}) \ge k$. Assuming p_k, μ_k and δ_k are defined for $k \le n$, we define them for n + 1. Fix $p_{n+1} \in (\vec{p_c}, p_n)$ and set $r = p_n - p_{n+1} > 0$. For y > 1construct μ_{n+1}^y from μ_n by moving an amount r of mass from the atom at 1 to y, that is,

$$\mu_{n+1}^y = \mu_n - r\delta_1 + r\delta_y.$$

We claim that for small enough y > 1 and any sufficiently small choice of $\delta_{n+1} > 0$ the measure $\mu_{n+1} = \mu_{n+1}^y$ has the desired properties. First, $\mu_{n+1}^y \to \mu_n$ weakly as $y \downarrow 1$, so, since μ_n satisfies (2), so does μ_{n+1}^y for all sufficiently small y.

Second, we claim that $\operatorname{sides}(B_{\mu_{n+1}^y}) \ge n+1$ for y close enough to 1. Indeed, since r > 0 we have $w_{p_{n+1}} \ne w_{p_n}$. Using (1), choose n extreme points $x_1, \ldots, x_n \in \operatorname{ext}(B_{\mu_n})$ and let

$$u = \min \left\{ \left\| x_i - x_j \right\|_1, \left\| x_i - w_{p_{n+1}} \right\|_1 : i \neq j \right\}.$$

Note that a > 0 by Marchand's theorem. By Corollary 2.2, for y close enough to 1, for each i = 1, ..., n we can choose an extreme point x'_i of $B_{\mu^y_{n+1}}$ with $||x'_i - x_i|| < a/2$. By Marchand's theorem, $B_{\mu^y_{n+1}}$ also has an extreme point at $w_{p_{n+1}}$. By definition of a, these extreme points are distinct, giving sides $(B_{\mu^y_{n+1}}) \ge n+1$.

Finally, by Corollary 2.2, μ_{n+1}^y satisfies (1) for any sufficiently small choice of δ_{n+1} . Let μ be a weak limit of μ_n . Then $d(\mu, \mu_n) \leq \frac{1}{2}\delta_n$ for all n, so by (2), sides $(B_\mu) = \infty$. At each step, rather than creating a new atom at y, one can instead add, e.g., Lebesgue measure on a small interval around y. In this way one can make the atom at 1 be the only atom of μ .

Regarding the degree of denseness of the extreme points in the boundary, note that at each stage if y is small enough and p_{n+1} is close enough to p_n , the new extreme point we introduce can be made arbitrarily close to w_{p_n} (here we use that α_p is continuous in $p > \vec{p_c}$, from [3]), and in the limit we can ensure an extreme point close to it. Thus, if we begin from $\mu_0 = \delta_1$ and choose p_n so that $\lim p_n = \vec{p_c}$, and using Marchand's result that the flat edge in B_{μ_n} then shrinks to a point (and symmetry of the limit shape about the axes), we can ensure ε -density of the extreme points of B_{μ} .

For the second part of Theorem 1.2, choose a sequence $\nu_n \in \mathcal{M}$ of continuous measures converging weakly to μ . By Corollary 2.2, sides $(B_{\nu_n}) \to \infty$, and if $\operatorname{ext}(B_{\mu})$ is ε -dense in ∂B_{μ} then the same holds for B_{ν_n} for sufficiently large n.

Regarding the remark after the theorem, one may verify that if at each stage y is chosen close enough to 1 and $p = \lim p_n$, then w_p is a C^{∞} -point of ∂B_{μ} .

4. Proof of Theorem 1.3.

Let us recall Hoffman's argument relating coexistence to the geometry of the limit shape for continuous μ (Theorem 1.6 of [6]). Extend τ to $\mathbb{R}^2 \times \mathbb{R}^2$ by $\tau(x, y) = \tau(x', y')$ where x' is the unique lattice point in $x + [-1/2, 1/2)^2$. Similarly, a geodesic between x, y is a geodesic between x', y'. For $S \subseteq \mathbb{R}^2$, the Busemann function $B_S : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ is defined by

$$B_S(x,y) = \inf_{z \in S} \tau(x,z) - \inf_{w \in S} \tau(y,w).$$

For $v \in \mathbb{R}^2$, write $S + v = \{s + v : s \in S\}$. If $v \in \partial B_{\mu}$ is a point of differentiability and w is a tangent vector at v, let π_v denote the linear functional $av + bw \mapsto a$. Define the lower density of a set $A \subseteq \mathbb{N}$ by $\underline{d}(A) = \liminf \frac{1}{N} |A \cap \{1, \ldots, N\}|$.

Theorem 4.1 (Hoffman [6]). Let $\mu \in \mathcal{M}$ and let $v \in B_{\mu}$ be a point of differentiability of ∂B_{μ} with tangent line $L \subseteq \mathbb{R}^2$. Then for every $\varepsilon > 0$ there exists an $M = M(v, \varepsilon) > 0$ such that, if $x, y \in \mathbb{R}^2$ satisfy $\pi_v(x - y) > M$, then

$$\mathbb{P}\Big(\underline{d}\Big(n\in\mathbb{N} : B_{L+nv}(y,x) > (1-\varepsilon)\pi_v(x-y)\Big) > 1-\varepsilon\Big) > 1-\varepsilon.$$

Hoffman's proof of this result does not use unique passage times.

Theorem 4.1 is related to coexistence as follows. Suppose $\operatorname{sides}(B_{\mu}) \geq k$. We can then find k points of differentiability $v_1, \ldots, v_k \in \partial B_{\mu}$ with distinct tangent lines L_i , and in particular $\pi_{v_i}(v_i - v_j) > 0$ for all $j \neq i$. Fix $\varepsilon > 0$ and choose R > 0 large enough so that the points $x_i = Rv_i$ satisfy $\pi_{v_i}(x_i - x_j) > M(v_i, \varepsilon/k^2)$. Using the elementary relation $\underline{d}(\bigcap_{i=1}^n A_i) \geq 1 - \sum_{i=1}^n (1 - \underline{d}(A_i))$, for each *i* we have

$$\mathbb{P}\Big(\underline{d}\Big(n \in \mathbb{N} : B_{L+nv_i}(x_j, x_i) > 0 \text{ for all } j \neq i\Big) > 1 - \frac{\varepsilon}{k}\Big) > 1 - \frac{\varepsilon}{k},$$

and hence with positive probability (which can be made arbitrarily close to 1 by decreasing ε), for each *i* there is a positive density of *n* such that $B_{L_i+nv_i}(x_j, x_i) > 0$ for all $j \neq i$. For such an *n*, take $y_{i,n} \in L_i + nv_i$ to be the closest point (in the sense of passage times) to x_i ; assuming unique geodesics, by definition $y_{i,n}$ is reached first by species *i*. The points $y_{i,n}$ are in C_i , so $|C_i| = \infty$ for $i = 1, \ldots, k$, i.e., coexistence occurs.

If geodesics are not unique the argument still applies, using the following observation. If $B_{L_i+nv_i}(x_j, x_i) > 0$, $j \neq i$, then the only way that $y_{i,n}$ could be colonized by a species other than i is if it is colonized by -1. This can occur only if there is a site z on a geodesic from x_i to $y_{i,n}$ which is reached simultaneously by species i and $j \neq i$. If this happens then by concatenating the geodesic from x_j to z with the geodesic from z to y we get a path from x_j to $L_i + nv_i$ with passage time equal to $\tau(x_i, y_{i,n})$, so $\tau(x_j, L_i + nv_i) \leq \tau(x_i, y_{i,n})$ and hence $B_{L_i+nv_i}(x_j, x_i) \leq 0$, contrary to assumption.

When sides $(B_{\mu}) = \infty$, one proves coexistence of infinitely many types similarly. Choose a sequence $\{v_i\}_{i=1}^{\infty} \subseteq \partial B_{\mu}$ of points of differentiability of the boundary, ordered clockwise, say. Given $\varepsilon > 0$, define the points x_i inductively by $x_{i+1} = x_i + R_i(v_{i+1} - v_i)$ for a sufficiently large $R_i > 0$ so as to ensure that for $i \neq j$, $\pi_{v_i}(x_i - x_j) > M(v_i, \varepsilon_{i,j})$, where $\sum_{i,j} \varepsilon_{i,j} < \varepsilon$. The rest of the argument is the same as above.

5. Proof of Theorem 1.4.

Recall that K denotes the graph of infection. When there are unique geodesics, Hoffman's results imply that the number of ends of K is at least sides $(B_{\mu})/2$ (Theorem 1.4 of [6]), establishing Theorem 1.4 for non-atomic μ . In this section we deal with the presence of atoms, proving the following result:

Theorem 5.1. If μ is not purely atomic and has at least $s \in \mathbb{N}$ sides, then the number of ends in K is \mathbb{P} -a.s. at least

(5.1)
$$k = 4 \left\lfloor \frac{s-4}{12} \right\rfloor.$$

See below Theorem 5.3 for an explanation of this bound.

For simplicity, in the following discussion we fix a measure $\mu \in \mathcal{M}_p$ with p < 1, and make two further assumptions: (a) the only atom of μ is the atom at 1, and (b) μ is supported on a bounded interval [1, R]. The argument can be modified to deal with the general case of the theorem.

Proposition 5.2. Suppose that \mathbb{P} -a.s. there exist k infinite geodesics $\gamma_1, \ldots, \gamma_k$ starting at 0, edges e_1, \ldots, e_k , and a finite set $V \subseteq \mathbb{Z}^2$, such that (a) e_i lies on γ_i but not on γ_j for $i \neq j$, (b) the endpoints of e_i are in V, (c) $\tau_{e_i} > 1$, and (d) each pair of geodesics is disjoint outside of V. Then \mathbb{P} -a.s., K has k ends.

Proof. Under our assumptions on μ , with probability 1 every pair of edges with passage times > 1 has distinct passage times. Consequently, geodesics between $x, y \in \mathbb{Z}^2$ can

differ only in edges e with $\tau_e = 1$, and must share edges with $\tau_e > 1$. We assume we are in this probability-1 event.

We claim that no two of the given geodesics are connected in $K \setminus V$. Suppose for instance that γ_1, γ_2 were connected in $K \setminus V$ by a path σ which we may assume is simple (non self-intersecting) and with endpoints $y_1 \in \gamma_1$ and $y_2 \in \gamma_2$. Denote the sequence of vertices in σ by $y_1 = v_1, v_2, \ldots, v_k = y_2$. Write $e = e_1$ and let $J \subseteq \{1, \ldots, k\}$ denote the set of j such that there exists a geodesic σ_j from 0 to v_j which contains e. We claim that $k \in J$. This leads to a contradiction because then σ_k and γ_2 are both geodesics connecting 0 and y_2 , but only one of them, σ_k , contains e.

Clearly $1 \in J$. Suppose now that $j \in J$ with corresponding geodesic σ_j . Write f for the edge between v_j and v_{j+1} , and note that $f \neq e$ because the endpoints of e are in V while those of f are not. Also, $\tau(0, v_j) \neq \tau(0, v_{j+1})$, since $f \in K$. If $\tau(0, v_{j+1}) > \tau(0, v_j)$ then we adjoin f to σ_j and obtain a geodesic σ_{j+1} with the desired properties. If $\tau(0, v_{j+1}) < \tau(0, v_j)$ and v_{j+1} lies on σ_j we remove f from σ_j to obtain σ_{j+1} . On the other hand, if v_{j+1} does not lie on σ_j but $\tau(0, v_{j+1}) < \tau(0, v_j)$, then there is a geodesic σ'_{j+1} from 0 to v_j whose last edge is f. Because σ'_{j+1} must reach v_j in the same time as σ_j does, it must pass through each of those edges of σ_j which have passage times > 1, and in particular through e. We remove f from σ'_{j+1} to obtain σ_{j+1} .

Our goal is to establish the hypotheses of the proposition for k as in (5.1). It is enough to show that there exist random variables m < M such that with probability one,

- (1) There exist k geodesics $\gamma_1, \ldots, \gamma_k$ which are disjoint outside of mB_{μ} .
- (2) There are edges e_i in γ_i , with endpoints in $MB_{\mu} \setminus mB_{\mu}$, such that $\tau_{e_i} > 1$.

This suffices because we can then set $V = MB_{\mu}$ in the proposition. To show that such m, M exist, it is enough to show that for every $\varepsilon > 0$ there exists deterministic m < M such that each of the conditions above holds on an event of probability $> 1 - \varepsilon$.

Given $u, v, w \in \partial B_{\mu}$ which are points of differentiability of ∂B_{μ} , let C(u, v, w) denote the open arc in ∂B_{μ} from u to w containing v. We rely on the following result, whose proof does not require unique geodesics:

Theorem 5.3 (Hoffman [6]). Let $u, v, w \in \partial B_{\mu}$ be points of differentiability of ∂B_{μ} , let L be the tangent line at v, and write C = C(u, v, w). Then for every $\varepsilon > 0$ there is an $M_0 = M_0(\varepsilon)$ such that for every $M > M_0$, with probability $> 1 - \varepsilon$ the set

$$I = \left\{ n \in \mathbb{N} : \gamma \cap M \partial B_{\mu} \subseteq MC \text{ for all geodesics } \gamma \text{ from } 0 \text{ to } L + nv \right\}$$

satisfies $\underline{d}(I) > 1 - \varepsilon$.

Henceforth fix k as in (5.1) and $\varepsilon > 0$ and for i = 1, ..., k choose points $u_i, v_i, w_i \in \partial B_{\mu}$ and lines L_i as in the theorem, and such that the closed sets $C_i = \overline{C(u_i, v_i, w_i)}$ are pairwise disjoint and do not intersect the boundary of the ℓ^1 unit ball; write $C = \bigcup_{i=1}^k C_i$. Note that k was picked so that such a choice is possible: note that $\frac{1}{4}(\operatorname{sides}(B_{\mu}) - 4)$ is the number of distinct sides on each of the four curves in ∂B_{μ} which constitute the complement of the ℓ^1 unit ball; dividing this number by 3 gives an upper bound on the number of triples we can choose in each of these curves. Taking integer part and multiplying by 4 gives k.

Claim 5.4. There exists M_0 and $\rho > 0$ such that with probability at least $1 - \varepsilon$, for all $M > M_0$, every $x \in MC$ and every geodesic γ from 0 to x, at least a ρ -fraction of the edges of γ have passage times > 1.

Proof. Pick $\delta > 0$ and define edge weights $\{\tau'_e : e \in \mathbb{E}\}$ by the rule that if $\tau_e > 1$ then $\tau'_e = \tau_e + \delta$ and $\tau'_e = \tau_e$ otherwise. Let μ' denote the marginal distribution of τ'_e .

Choose $\eta > 0$ so that $(1 - \eta)C \cap B_{\mu'} = \emptyset$ (we can do so by a theorem of Marchand [7, Theorem 1.5] and the fact that C is disjoint from the ℓ^1 unit ball). For a path σ let $f(\sigma)$ denote the fraction of edges of σ with passage time > 1. By Theorem 1.1, there is an event A with $\mathbb{P}(A) > 1 - \varepsilon$ and an M_0 such that for all $M > M_0$ and $y \in \partial B_{\mu}$, the τ -geodesic γ from 0 to y satisfies $(1 - \eta^2)M < \tau(\gamma) < (1 + \eta^2)M$, and similarly for $y' \in M\partial B'_{\mu}$ and the τ' -length of τ' -geodesics from 0 to y'. We claim that A is the desired event. Indeed, let $M > M_0$ and let γ be a τ -geodesic from 0 to some $x \in MC$. Since $\tau_e \geq 1$ for all $e \in \mathbb{E}$, the number of edges in γ is at most $\tau(\gamma)$. Hence

$$\tau'(\gamma) = \tau(\gamma) + \delta f(\gamma) \# \{ \text{edges of } \gamma \}$$

$$\leq (1 + \delta f(\gamma)) \tau(\gamma)$$

$$\leq (1 + \delta f(\gamma))(1 + \eta^2) M.$$

On the other hand $x = \frac{M}{s}y$ for some $y \in \partial B_{\mu'}$ and $s < 1 - \eta$, so

$$\tau'(\gamma) \ge (1 - \eta^2) \frac{M}{1 - \eta}$$

Combining these we find that $f(\gamma) \geq \frac{\eta}{\delta} \cdot \frac{1-\eta}{1+\eta^2}$. This lower bound on f can serve as ρ . \Box

Let $\alpha > 0$ be the quantity

(5.2)
$$\alpha = \frac{1}{2} \min\{\pi_{v_i}(x_i - x_j) : x_i \in C_i, x_j \in C_j, i \neq j\}.$$

and fix finite, $\frac{\alpha}{100R}$ -dense sets $D_i \subseteq C_i$. Let ρ be as in the claim and $L \gg m/\rho$. By Theorems 5.3 and 1.1, we can choose an integer m and M = Lm such that, with probability $> 1 - \varepsilon$, there is a set $I \subseteq \mathbb{N}$ of density $> 1 - \varepsilon$ such that, for $n \in I$,

- (A) Every geodesic $\gamma_{i,n}$ from 0 to $L_i + nv_i$ intersects $m\partial B_{\mu}$ in mC_i and intersects $M\partial B_{\mu}$ in MC_i .
- (B) If $i \neq j$ then $B_{L_i+nv_i}(x_j, x_i) > m\alpha$ for all $x_i \in mD_i$ and $x_j \in mD_j$.
- (C) $|\tau(0,x) m| < \frac{m\alpha}{10}$ for all $x \in mD_i$.
- (D) At least a $\rho/2$ -fraction of edges on $\gamma_{i,n} \cap (MB_{\mu} \setminus mB_{\mu})$ have passage time > 1.

Fix $\gamma_{i,n}$ as in (A). We may choose an infinite $J \subseteq I$ such that $\lim_{n \in J} \gamma_{i,n} \to \gamma_i$ for some infinite geodesics γ_i originating at 0, i.e., for every r > 0 we have $\gamma_i \cap [-r, r]^2 = \gamma_{i,n} \cap [-r, r]^2$ for all large enough $n \in J$. Henceforth we only consider such n. Let $y_{i,n}$ be the first intersection point of $\gamma_{i,n}$ with mC_i , and choose $x_{i,n} \in D_i$ such that $|x_{i,n} - y_{i,n}| \leq \frac{m\alpha}{R10}$. Since μ is supported on [0, R], we conclude that $\tau(x_{i,n}, y_{i,n}) \leq \frac{m\alpha}{10}$, so

(5.3)
$$|B_{L_i+nv_i}(y_{j,n}, y_{i,n}) - B_{L_i+nv_i}(x_{j,n}, x_{i,n})| < \frac{2m\alpha}{10} \text{ for } i \neq j.$$

Claim 5.5. The γ_i 's are disjoint outside of mB_{μ} .

Proof. Suppose for example that γ_1, γ_2 intersect at some point z outside of mB_{μ} . Then for large enough $n \in J$ the same is true of $\gamma_{1,n}$ and $\gamma_{2,n}$. Then

$$\tau(0, y_{1,n}) + \tau(y_{1,n}, z) = \tau(0, y_{2,n}) + \tau(y_{2,n}, z).$$

By (C) we have $|\tau(0, y_{1,n}) - \tau(0, y_{2,n})| < \frac{2m\alpha}{10}$, so

$$|\tau(y_{1,n},z) - \tau(y_{2,n},z)| < \frac{2m\alpha}{10}.$$

Write σ_1 for the part of $\gamma_{1,n}$ from $y_{1,n}$ to $L_1 + nv_1$. Let σ_2 be path which starts at $y_{2,n}$, follows $\gamma_{2,n}$ until z, and then follows $\gamma_{1,n}$ until $L_1 + nv_1$. We find that $|\tau(\sigma_1) - \tau(\sigma_2)| < \frac{2m\alpha}{10}$. But $\gamma_{1,n}$ is a shortest path from 0 to $L_1 + nv_1$, so σ_1 is a shortest path from $y_{1,n}$ to $L_1 + nv_1$. Hence $B_{L_1+nv_1}(y_{2,n}, y_{1,n}) \leq \frac{2m\alpha}{10}$. By (5.3), this contradicts (B).

Finally, combining the last claim with (D) establishes the two claims stated after Proposition 5.2. This completes the proof of Theorem 1.4.

References

- Cox, J. T. and Durrett, R. (1981). Some limit theorems for percolation with necessary and sufficient conditions. Ann. Probab. 9 583–603.
- [2] Cox, J. T. and Kesten, H. (1981). On the continuity of the time constant of first-passage percolation. J. Appl. Probab. 18 809–819.
- [3] Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999–1040.
- [4] Durrett, R. and Liggett, T. (1981). The shape of the limit set in Richardson's growth model. Ann. Probab. 9 186–193.
- [5] Häggström, O. and Pemantle, R. (1998). First passage percolation and a model for competing spatial growth. J. Appl. Probab. 35 683–692.
- [6] Hoffman, C. (2008). Geodesics in first passage percolation. Ann. Appl. Probab. 18 1944–1969.
- [7] Marchand, R. (2002). Strict inequalities for the time constant in first passage percolation. Ann. Appl. Probab. 12 1001–1038.
- [8] Newman, C. A surface view of first-passage percolation. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 1017–1023, Birkhauser, Basel, 1995.
- [9] Häggström, O. and Meester, R. (1995). Asymptotic shapes for stationary first passage percolation. Ann. Probab. 23 1511–1522.
- [10] Zhang, Yu, (2007). Shape curvatures and transversal fluctuations in the first passage percolation model. Preprint, http://arxiv.org/abs/math.PR/0701689

MATHEMATICS DEPARTMENT, PRINCETON UNIVERSITY, FINE HALL, WASHINGTON RD., PRINCETON, NJ 08544.

E-mail address: Michael Damron: mdamron@math.princeton.edu,

Michael Hochman: hochman@math.princeton.edu