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Abstract. We extend the Local-to-Global-Principle used in the proof of convexity

theorems for momentum maps to not necessarily closed maps whose target space carries

a convexity structure which need not be based on a metric. Using a new factorization of

the momentum map, convexity of its image is proved without local fiber connectedness,

and for almost arbitrary spaces of definition.

Introduction

Convexity for momentum maps was discovered independently by Atiyah [1] and
Guillemin-Sternberg [12] in the case of a Hamiltonian torus action on a compact
symplectic manifold X . It was proved that the image of the momentum map µ is
a convex polytope, namely, the convex hull of µ(XT ), where XT denotes the set of
fixed points under the action of the torus T . In this case, µ is open onto its image,
and the fibers of µ are compact and connected. Two years later, in 1984, Kirwan [18]
(see also [13]) extended this result to the action of a compact connected Lie group G.
Here the image of µ : X → Lie(G)∗ has to be restricted to a closed Weyl chamber
in a Cartan subalgebra of Lie(G), i. e. a fundamental domain of G with respect
to its coadjoint action on Lie(G)∗. Equivalently, this amounts to a composition of
the momentum map µ with the projection onto the quotient space Y := Lie(G)∗/G
modulo the coadjoint action of G. Up to this time, convexity of µ was proved by
means of Morse theory, applied to the components of µ. This works well as long as
µ is defined on a compact manifold X .
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In 1988, Condevaux, Dazord, and Molino [9] reproved these results in an entirely
new fashion. They factor out the connected components of the fibers of µ to get
a monotone-light factorization µ : X → X̃ → Y (see [21]). If µ is proper, i. e.

closed and with quasi-compact fibers, the metric of Y can be lifted to X̃ . Then a
shortest path between two points of X̃ maps to a straight line in Y , which proves the
convexity of µ(X). Based on this method, Hilgert, Neeb, and Plank [15] extended
Kirwan’s result to non-compact connected manifolds X under the assumption that
µ is proper.

After this invention, the proof of convexity now splits into two parts: A geometric
part where certain local convexity data have to be verified, and a topological part,
a kind of “Lokal-global-Prinzip” [15] which proves global convexity à la Condevaux,
Dazord, and Molino.

A further step was taken by Birtea, Ortega, and Ratiu [4, 5] who consider a

closed, not necessarily proper map µ : X → X̃ → Y , defined on a normal, first
countable, arcwise connected Hausdorff space X . The map µ has to be locally
open onto its image, locally fiber connected, having local convexity data. Using
Vǎınštěın’s lemma, they prove that the light part X̃ → Y of µ is proper. This yields
global convexity of µ(X) for two almost disjoint kinds of target spaces Y , either the
dual of a Banach space [5] (which implies that the unit ball of Y is weakly compact),
or a complete locally compact length metric space Y [4]. The second case applies
to the cylinder-valued momentum map [25, 26], another invention of Condevaux,
Dazord, and Molino [9]: For a symplectic manifold (X,ω), the 2-form ω gives rise
to a flat connection on the trivial principal fiber bundle X×Lie(G)∗ with holonomy
group H . The cylinder-valued momentum map µ is obtained from µ by factoring
out H from the target space Y . The new target space µ(X) = Y/H is a cylinder,
hence geodesics on it may differ from shortest paths. The convexity theorem then
states that µ(X) is weakly convex, i. e. any two points of µ(X) are connected by a
geodesic arc.

In the present paper, we analyse the topological part of convexity, that is, the
passage from local to global convexity. We show that the Lokal-global-Prinzip, as
developed thus far, admits a substantial improvement in at least three respects.

Firstly, we replace the monotone-light factorization f : X → X̃ → Y that was
used for a momentum map f = µ by a new factorization

f : X
qf

−→→ Xf f#

−→ Y

of any continuous map f : X → Y which is locally open onto its image. In a
sense, Xf is closer to Y than the leaf space X̃ since qf : X → Xf factors through
the monotone part X → X̃ of f . We show that qf is an open surjection, while
Xf admits a basis of open sets U such that f# maps U homeomorphically onto a
subspace of Y (Proposition 5). Therefore, f# can take the rôle of the light part of
f , which means that we can drop the assumption that f (the momentum map) is
locally fiber connected.
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Secondly, we concentrate on the target space Y instead ofX to derive the desired
properties of Xf . In this way, the various assumptions on X boil down to a single
one, namely, its connectedness as a topological space. Nevertheless, we need no
extra assumptions on the target space Y .

Thirdly, we merely assume that the map f# is closed, a much weaker condition
than the closedness of f . Even the light part of f need not be closed. For example,
f# is trivial for a local homeomorphism f - a light map which need not be closed,
and with fibers of arbitrary size. Using the properties of Y , we prove that the fibers
of f# are finite (Proposition 10), so that the convexity structure of Y can be lifted
along f# (Theorem 2).

To make the interaction between convexity and topology more visible, we untie
the Lokal-global-Prinzip from its metric context by means of a general concept of
convexity, which might be of interest in itself. This also unifies the two above
mentioned types of target space considered in [4] and [5]. In the linear case [5], the
target space Y may be an arbitrary (not necessarily complete) metrizable locally
convex space instead of a dual Banach space. (Metrizability is not needed unless
the topology is very strong, like in the case of a big locally convex direct sum.) In
general, geodesics in our target space Y are one-dimensional continua which need
not be metrizable.

In previous versions of the Lokal-global-Prinzip, geodesic arcs or connecting lines
between two points of the target space Y are obtained by a metric on Y . Without a
concept of length, of course, geodesics are no longer available by shortening of arcs
in the spirit of the Hopf-Rinow theorem. Instead, we obtain geodesics by continued
straightening, using a local convexity structure. In other words, we deal with a
“manifold”, that is, a Hausdorff space Y covered by open subspaces U with an
additional structure of convexity. The axioms of such a convexity space U are very
simple: For any pair of points x, y ∈ U , there is a minimal connected subset C(x, y)
containing x and y, varying continuously with the end points. In a topological vector
space, C(x, y) is just the line segment between x and y, while in a uniquely geodesic
space, C(x, y) is the unique shortest path between x and y. With respect to the
C(x, y), there is a natural concept of convexity, and for a convexity space U , we just
require that the C(x, y) are convex and that U has a basis of convex open sets (see
Definition 1).

If convexity is given by a metric, straightening and shortening of arcs leads to
the same result, namely, a geodesic of minimal length. For a non-metrizable arc A
between two points x and y, there is a substitute for the length of A, namely, the
closed convex hull C(A) which is diminished by straightening. As a first step, an
inscribed line path L satisfies C(L) ⊂ C(A), and C(L) is the closed convex hull
of the finitely many extreme points of L. For a given line path L between x and
y, assume that the closed convex hull C(L) is compact. Using Zorn’s lemma, we
minimize the connected set C(L) to a compact convex set C with x, y ∈ C. In
contrast to the Hopf-Rinow situation, where the shortening of L is achieved via the
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Arzelà-Ascoli theorem, the straightening method needs the compactness of C(L) to
show that connectedness carries over to C. By the local convexity structure, it then
follows that C contains a line path L0 between x and y. Thus if C = L0, the line
path L0 must be a geodesic.

So we require two properties to get the straightening process work: First, the
closed convex hull of a finite set must be compact; second, a minimal compact
connected convex set C containing x and y has to be a geodesic.

To establish a Lokal-global-Prinzip for continuous maps X → Y , possible self-
intersections of the arcs to be straightened have to be taken into account. Precisely,
this means that closed convex subsets of Y have to be replaced by étale maps, i. e.
closed locally convex maps e : C → Y , such that the connected space C admits a
covering by open sets mapped homeomorphically onto convex subsets of Y . We call
Y a geodesic manifold if the above two properties hold with an adaption to étale maps
e : C → Y , that is, the second property now states that if C is compact and minimal
with respect to x, y ∈ C, then e can be regarded as a geodesic with possible self-
intersections. (Such a geodesic is transversal if and only if e = e#.) If the charts U of
Y are regular Hausdorff spaces which satisfy a finiteness condition (see Definition 2)
which holds, for example, if U is either locally compact or first countable, we call
Y a geodesic q-manifold. Obvious examples of geodesic q-manifolds are complete
locally compact length metric spaces, or metrizable locally convex topological linear
spaces (Examples 3 and 4). Our main result consists in the following

Lokal-global-Prinzip. Let f : X → Y be a locally convex continuous map from a

connected topological space X to a geodesic q-manifold Y . Assume that f# is closed.

Then any two points of f(X) are connected by a geodesic arc.

For an inclusion map f : C →֒ Y , the conditions on f turn into the assumptions
of the Tietze-Nakajima theorem (see [24]), i. e. the subset C is closed, connected,
and locally convex. Thus in case of a locally convex topological vector space Y ,
the result for C →֒ Y yields Klee’s convexity theorem [19], while for a complete
Riemannian manifold Y , we get a theorem of Bangert [2].

1 Convexity spaces

Let X be a Hausdorff space. We endow the power set P(X) with a topology as
follows. For any open set U of X , define

Ũ := {C ∈ P(X) | C ⊂ U}. (1)

The collection B of sets (1) is closed under finite intersection. We take B as a basis
of P(X).
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Definition 1. Let X be a Hausdorff space together with a continuous map

C : X ×X → P(X). (2)

We call a subset A ⊂ X convex if C(x, y) ⊂ A holds for all x, y ∈ A. We say that
X is a convexity space with respect to a map (2) if the following are satisfied.

(C1) The C(x, y) are convex for all x, y ∈ X .

(C2) The C(x, y) are minimal among the connected sets C ⊂ X with x, y ∈ C.

(C3) X has a basis of convex open sets.

Note that (C1) implies that C(y, x) ⊂ C(x, y). Hence C is symmetric:

C(x, y) = C(y, x). (3)

From (C2) we infer that
C(x, x) = {x}. (4)

Moreover, (C2) implies that every convexity space X is connected. The restriction
of the map (2) to a convex subset A ⊂ X makes A into a convexity space. Hence
(C3) implies that X is locally connected.

Lemma 1. Let X be a convexity space. For x, y ∈ X, the set C(x, y) r {y} is

connected.

Proof. Let A be the connected component of x in C(x, y) r {y}. Since {y} is
closed, every z ∈ C(x, y) r {y} admits a convex neighbourhood U with y /∈ U .
Hence C(x, y) r {y} is locally connected, and thus A is open in C(x, y). Since
C(x, y) is connected, it follows that A cannot be closed in C(x, y). Thus y ∈ A,
which shows that A ∪ {y} is connected. By (C2), this gives A ∪ {y} = C(x, y),
whence A = C(x, y)r {y}. �

As a consequence, the C(x, y) can be equipped with a natural ordering.

Proposition 1. Let X be a convexity space. For x, y ∈ X, the set C(x, y) is linearly
ordered by

z 6 t :⇐⇒ z ∈ C(x, t) ⇐⇒ t ∈ C(z, y) (5)

for z, t ∈ C(x, y).

Proof. For any z ∈ C(x, y), the set C(x, z) ∪ C(z, y) is connected. Therefore,
(C1) and (C2) give

C(x, y) = C(x, z) ∪ C(z, y). (6)

To verify the second equivalence in (5), it suffices to show that

z ∈ C(x, t) ⇒ t ∈ C(z, y)
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holds for z, t ∈ C(x, y). By Eq. (6), it is enough to prove the implication

z ∈ C(x, t)r {t} ⇒ t /∈ C(x, z). (7)

Assume that z ∈ C(x, t)r{t}. Then Eq. (4) gives x ∈ C(x, t)r{t}. Hence Lemma 1
and (C2) yield C(x, z) ⊂ C(x, t) r {t}, which proves (7). Clearly, the relation (5)
is reflexive and transitive. By (7), it is a partial order. Furthermore, (5) and (6)
imply that it is a linear order. �

Note that the ordering of C(x, y) depends on the pair (x, y) which determines
the initial choice x 6 y. Thus as an ordered set, C(y, x) is dual to C(x, y).

Example 1. Let Ω be a linearly ordered set. A subset I of Ω is said to be an
interval if a 6 c 6 b with a, b ∈ I implies that c ∈ I. The intervals {c ∈ Ω | c < b}
and {c ∈ Ω | c > a} with a, b ∈ Ω form a sub-basis for the order topology of Ω.
Note that an open set of Ω is a disjoint union of open intervals. Therefore, Ω is
connected if and only if it is a linear continuum, i. e. if every partition Ω = I ⊔ J
into non-empty intervals I, J determines a unique element between I and J . With
the order topology, a linear continuum Ω is a locally compact convexity space with

C(x, y) = {z ∈ Ω | x 6 z 6 y} (8)

in case that x 6 y. Here the convex sets of Ω are just the connected sets of Ω.

Example 2. More generally, we define a tree continuum to be a Hausdorff space X
for which every two points x, y ∈ X are contained in a smallest connected set C(x, y)
such that each C(x, y) is a linear continuum, and X carries the finest topology for
which the inclusions C(x, y) →֒ X are continuous. Thus U ⊂ X is open if and only
if every x ∈ U is an “algebraically inner” point (see [20], §16.2), i. e. if for each
y ∈ X r {x}, there exists some z ∈ C(x, y) r {x} with C(x, z) r {z} ⊂ U . Then
X is a convexity space. For example, every one-dimensional CW-complex without
cycles is of this type.

In the Euclidean plane R2, consider the solution curves c : R → R2 of the dif-
ferential equation y′ = 3y

3
2 (including the singular solution c : x 7→

(
x

0

)
). With

the finest topology such that all solution curves are continuous, R2 becomes a tree
continuum. Here every point of the singular line is a branching point of order 4.

Note that a topological vector space X is a convexity space with respect to
straight line segments if and only if X is locally convex. The following lemma is
well-known (see [29], Theorem 26.15).

Lemma 2. Let X be a connected topological space with an open covering U. For

any pair of points x, y ∈ X, there is a finite sequence U1, . . . , Un ∈ U with x ∈ U1,

y ∈ Un, and Ui ∩ Ui+1 6= ∅ for i < n.

Proposition 2. Let X be a convexity space. For x, y ∈ X, the subspace C(x, y) is
compact and carries the order topology.
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Proof. Let C(x, y) =
⋃

U be a covering by convex open sets. By Lemma 2, there
is a finite sequence U1, . . . , Un ∈ U with x ∈ U1, y ∈ Un, and Ui∩Ui+1 6= ∅ for i < n.
Hence C(x, y) = U1 ∪ · · · ∪ Un, which shows that C(x, y) is compact.

For u < v in C(x, y), the sets C(x, u) and C(v, y) are compact, hence closed
in C(x, y). So the open intervals of C(x, y) are open sets in C(x, y). Conversely,
a convex open set in C(x, y) is an interval which must be an open interval since
C(x, y) is connected. �

Up to here, we have not used the continuity of the map (2) in Definition 1.

Proposition 3. Let X be a convexity space. The closure of any convex set A ⊂ X
is convex.

Proof. Let A ⊂ X be a convex set, and let x, y ∈ A be given. For any z ∈ C(x, y),
we have to show that z ∈ A. Suppose that there is a convex neighbourhood W of
z with W ∩ A = ∅. Then z 6= x, y. By Proposition 2, there exist u, v ∈ W with
u < z < v. Since C(x, u) and C(v, y) are compact, there are disjoint open sets U, V
in X with C(x, u) ⊂ U and C(v, y) ⊂ V (see, e. g., [17], chap. V, Theorem 8). Hence
C(x, y) ⊂ U ∪ V ∪W . So there are neighbourhoods U ′ ⊂ U of x and V ′ ⊂ V of y
with C(x′, y′) ⊂ U ∪ V ∪W for all x′ ∈ U ′ and y′ ∈ V ′. Choose x′, y′ ∈ A. Then
C(x′, y′) ⊂ A, which yields C(x′, y′) ⊂ U ∪ V , where x′ ∈ U ′ ⊂ U and y′ ∈ V ′ ⊂ V ,
contrary to the connectedness of C(x′, y′). �

Definition 2. Let X be a convexity space. Define a star in X with center x ∈ X
and end set E ⊂ X r {x} to be a subspace S(x, E) :=

⋃
{C(x, z) | z ∈ E} with

C(x, z) ∩ C(x, z′) = {x} for different z, z′ ∈ E such that S(x, E) carries the finest
topology which makes the embeddings C(x, z) →֒ S(x, E) continuous for all z ∈ E.
We call X star-finite if every closed star in X has a finite end set.

Thus every star is a tree continuum (Example 2). Recall that a topological spaceX is
said to be a q-space [22] if every point ofX has a sequence (Un)n∈N of neighbourhoods
such that every sequence (xn)n∈N with xn ∈ Un has an accumulation point. For
example, every locally compact space, and every first countable space X is a q-
space.

Proposition 4. Let X be a convexity space which is a q-space. Then X is star-

finite.

Proof. Let S(x, E) be a closed star in X , and let (Un)n∈N be a sequence of neigh-
bourhoods of x such that every sequence (xn)n∈N with xn ∈ Un has an accumulation
point. Suppose that E is infinite. Since Un∩C(x, z) 6= {x} for all n ∈ N and z ∈ E,
we find a subset {zn|n ∈ N} of E and a sequence (xn)n∈N with x 6= xn ∈ C(x, zn)∩Un.
Thus (xn)n∈N has an accumulation point z. Because of the star-topology, z cannot
belong to S(x, E), contrary to the assumption that S(x, E) is closed. �
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2 Local openness onto the image

For a topological space X , the infinitesimal structure at a point x is given by the
set Dx of filters on X which converge to x. Let F(X) denote the set of all filters on
X . We make F(X) into a topological space with a basis of open sets

Ũ := {α ∈ F(X) | U ∈ α}, (9)

where U runs through the class of open sets in X . Every continuous map f : X → Y
induces a map F(f) : F(X)→ F(Y ). For an open set V in Y , we have

F(f)−1(Ṽ ) = f̃−1(V ), (10)

which shows that F(f) is continuous. Consider the subspace

D(X) := {(x, α) ∈ X × F(X) | α ∈ Dx} (11)

of X × F(X). Note that for every x ∈ X , the neighbourhood filter U (x) of x is
the coarsest filter in Dx. Thus, regarding Dx as a subset of D(X), we get a pair of
continuous maps

X
U

→D(X)
lim
։X (12)

with lim(x, α) := x and lim ◦U = 1X . In particular, Dx = lim−1(x).

For a continuous map f : X → Y , the local behaviour at x ∈ X is given by the
induced map Dxf : Dx → Df(x). Thus we get an endofunctor D : Top → Top of
the category Top of topological spaces with continuous maps as morphisms. The
functor D is augmented by the natural transformation lim: D→ 1.

Definition 3. A continuous map f : X → Y between topological spaces is said to
be locally open onto its image [3] if every x ∈ X admits an open neighbourhood U
such that the induced map U ։ f(U) is open onto the subspace f(U) of Y . We call
f filtered if f is locally open onto its image and D(f) ◦U is injective.

We have the following structure theorem for continuous maps which are locally
open onto its image.

Proposition 5. Let f : X → Y be a continuous map which is locally open onto

its image. Up to isomorphism, there is a unique factorization f = pq into an open

surjection q and a filtered map p. If f is filtered, then every point x ∈ X has an

open neighbourhood which is mapped homeomorphically onto a subspace of Y .
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Proof. Consider the following commutative diagram

1: X
U
→D(X)

lim
→X

f# : Xf

↓↓
qf

⊂
e
→ D(Y )

↓

D(f)

lim
→ Y ,
↓

f

where Xf is the image of D(f) ◦U , regarded as a quotient space of X , and f# :=
lim ◦ e. We will prove that f = f# ◦ qf gives the desired factorization. Let us
show first that qf is open. Thus let U be an open set of X . We have to verify that
(qf)−1qf (U) is open in X . Since f is locally open onto its image, we can assume
that the induced map U ։ f(U) is open. Let x ∈ (qf)−1qf(U) be given. Then
qf(x) ∈ qf(U). So there exists some y ∈ U with qf(x) = qf(y), i. e. f(x) = f(y)
and f(U (x)) = f(U (y)). Hence there is an open neighbourhood V ∈ U (x) with
f(V ) ⊂ f(U). Again, we can assume that the induced map V ։ f(V ) is open.
Furthermore, there is an open neighbourhood U ′ ⊂ U of y with f(U ′) ⊂ f(V ), and
f(U ′) is open in f(U), hence in f(V ). Therefore, V ′ := V ∩ f−1(f(U ′)) is an open
neighbourhood of x with f(V ′) = f(U ′).

For any x′ ∈ V ′, there is a point y′ ∈ U ′ with f(x′) = f(y′). So the continuity
of f implies that f(U (x′)) = f(U (y′)), which gives qf(x′) = qf(y′), and thus
V ′ ⊂ (qf)−1qf(U ′) ⊂ (qf)−1qf (U). This proves that qf is open. Consequently, f# is
locally open onto its image.

Since qf is open, we have a commutative diagram

X
qf

։Xf

D(X)

↓
U

D(qf)
→D(Xf).

↓
U

Hence D(f#) ◦ U ◦ qf = D(f#) ◦ D(qf) ◦ U = D(f) ◦ U = e ◦ qf . Therefore,
D(f#) ◦U = e, which implies that f# is filtered.

Now let f = pq = p′q′ be two factorizations with p, p′ filtered and q, q′ open.
Then D(p′) ◦U ◦ q′ = D(p′) ◦D(q′) ◦U = D(p) ◦D(q) ◦U = D(p) ◦U ◦ q. Since
D(p′) ◦U is injective, there exists a continuous map e : E → E ′ such that q′ = eq.
So we get a commutative diagram

X
q
։ E

p
→ Y

X

wwwwww
q′
։ E ′

↓
e

p′
→ Y

wwwwww

By symmetry, we find a continuous map e′ : E ′ → E with q = e′q′ and p′ = pe′. Since
q and q′ are surjective, e must be a homeomorphism. This proves the uniqueness of
the factorization.
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Finally, let f : X → Y be filtered. For a given x ∈ X , let U be an open
neighbourhood such that the induced map r : U ։ f(U) is open. Since i : U →֒ X
is open, we have a commutative diagram

X
U
→D(X)

f D(f)

Y
←

U
∪

↑
i

U
→D(U)

↑
D(i)

D(Y )
→

j D(j)

f(U)

↓↓
r

U
→

←

⊃

D(f(U))

↓
D(r)

→

which shows that D(j) ◦U ◦ r = D(f) ◦U ◦ i is injective. Hence r is injective. �

In the sequel, we keep the notation of Proposition 5 and write

f : X
qf

−→→ Xf f#

−→ Y (13)

for the factorization of a map f which is locally open onto its image.

Remarks. 1. Although the factorization (13) is unique up to isomorphism, it does
not give rise to a factorization system [10, 8], i. e. a pair (E ,M ) of subcategories
such that every commutative square

E1

f1
→M1

d

E0

e
↓

f0
→

≻

M0

↓
m (14)

with e ∈ E and m ∈M admits a unique diagonal d with f1 = de and f0 = md (see
[14], Proposition 1.4). Apart from the fact that local openness onto the image is

not closed under composition (consider the maps R
i
→֒ R2

p

։ R with i(x) =
(

x

x3−3x

)

and p :
(
x

y

)
7→ y), there cannot be a factorization system since open surjections are

not stable under pushout (take, e. g., the pushout of the open surjection R ։ {0}
and the inclusion R →֒ R2).

2. If f : X → Y is locally open onto its image and locally fiber connected [3, 15],
the lemma of Benoist ([3], Lemma 3.7) states that the monotone part π of the

monotone-light factorization f = f̃ ◦ π is open. Here the local fiber-connectedness
of f implies that π is locally open onto its image. Hence π = qπ is open by Propo-
sition 5. In general, qf always factors through π, but the two factorizations need
not be isomorphic. For example, a local homeomorphism f : X ։ Y is open, but
its fibers are discrete.
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3 Convexity of maps

In this brief section, we introduce local convexity and extend this concept from
subsets to continuous maps (cf. [16] for a notion of convex maps in terms of paths).

Definition 4. Let X be a topological space. We define a local convexity structure

on X to be an open covering X =
⋃

U by convexity spaces U ∈ U (with the induced
topology) such that for any U ∈ U, every convex open subspace of U belongs to U

(as a convexity space). We call a subset C ⊂ X convex if C ∩ U is convex for all
U ∈ U. We say that C is locally convex if every z ∈ C admits a neighbourhood
U ∈ U such that C ∩ U is convex.

The covering U will be referred to as the atlas of the local convexity structure. In the
special case X ∈ U, the atlas U just consists of the convex open sets of a convexity
space X .

In contrast to local convexity, our concept of convexity refers to all sets in U. So
the intersection of convex sets is convex, and every subset A ⊂ X admits a convex

hull C(A), that is, a smallest convex set C ⊃ A. The next proposition generalizes
Proposition 3.

Proposition 6. Let X be a topological space with a local convexity structure U. The

closure of any convex set A ⊂ X is convex.

Proof. For every U ∈ U, we have A ∩ U = A ∩ U ∩ U . This set is convex by
Proposition 3. Hence A is convex. �

Definition 4 admits a natural extension to continuous maps.

Definition 5. Let f : X → Y be a continuous map between topological spaces,
where Y has a local convexity structure V. We call f locally convex if every x ∈ X
admits an open neighbourhood U such that the induced map U ։ f(U) is open,
and f(U) is a convex subspace of some V ∈ V.

Remarks. 1. A subset A ⊂ Y is locally convex if and only if the inclusion map
A →֒ Y is locally convex.

2. The open neighbourhood U of x in Definition 5 can be chosen arbitrarily small.
In fact, let U ′ ⊂ U be any smaller open neighbourhood of x. Then f(U ′) is an open
subset of f(U). Hence there exists some V ′ ∈ V with f(x) ∈ V ′ ∩ f(U) ⊂ f(U ′).
Thus U ′′ := U ′ ∩ f−1(V ′) is an open neighbourhood of x with f(U ′′) = V ′∩ f(U ′) =
V ′ ∩ f(U), which is a convex subspace of V ′.
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3. If X is a connected Hausdorff space and Y a length metric space [7, 11], a
continuous map f : X → Y is locally convex if and only if f is locally open onto its
image and has local convexity data in the sense of [4].

Proposition 7. Let f : X → Y be a continuous map between topological spaces,

where Y has a local convexity structure V. If f is locally convex, then f# is locally

convex.

Proof. Assume that f is locally convex, and let U be an open neighbourhood of
x ∈ X such that the induced map U ։ f(U) is open onto a convex subspace of
some V ∈ V. Since qf is open by Proposition 5, this property of U carries over to
the neighbourhood qf(U) of qf(x). Hence f# is locally convex. �

4 Geodesic manifolds

In this section, we introduce a general concept of geodesic which does not refer to
any kind of metric.

Definition 6. Let Y be a topological space with a local convexity structure V, and
let e : C → Y be a continuous map with a connected topological space C. By Ve we
denote the set of all open sets U in C which are mapped homeomorphically onto a
convex subspace of some V ∈ V. We call e étale if e is closed and Ve covers C. We
say that e : C → Y is generated by a subset F ⊂ C if there is no closed connected
subspace A ( C with F ⊂ A such that e(U ∩A) is convex for all U ∈ Ve.

In particular, étale maps are locally convex. Furthermore, every étale map e : C → Y
induces a local convexity structure Ve on C. If F ⊂ C is connected, then C(F ) is
connected, and an étale map e : C → Y is generated by F if and only if C(F ) = C.
Note that the composition of étale maps is étale.

Definition 7. Let Y be a Hausdorff space with a local convexity structure V. We
call Y a geodesic manifold if the following are satisfied.

(G1) For a finite set F ⊂ Y , the closure of C(F ) is compact.

(G2) If an étale map e : C → Y with C compact is generated by {x, y} ⊂ C, then
every connected set A ⊂ C with x, y ∈ A coincides with C.

If, in addition, the V ∈ V are star-finite and regular (as topological spaces), we call
Y a geodesic q-manifold.
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The letter “q” is reminiscent of Proposition 4. Since a geodesic manifold Y is locally
connected, [6], chap. I, 11.6, Proposition 11, implies that Y is the topological sum
of its connected components.

Definition 8. Let Y be a geodesic manifold. We define a geodesic in Y to be an
étale map e : C → Y , generated by {x, y} ⊂ C, where C is compact. The points
e(x) and e(y) will be called the end points of the geodesic.

More generally, we define a line path in Y to be a continuous map e : L→ Y ,
where L is a linear continuum (Example 1) with end points x0 and xn and a sequence
of intermediate points x0 < x1 < · · · < xn such that for i < n, the restriction of e to
the interval [xi, xi+1] is an inclusion which identifies [xi, xi+1] with C(e(xi), e(xi+1)) ⊂
Ui for some Ui in the atlas of Y . If e is an inclusion, we speak of a simple line path
and identify it with the subset L ⊂ Y . A subset A ⊂ Y will be called line-connected

if every pair of points x, y ∈ A is connected by a simple line path L ⊂ A.

Proposition 8. Let Y be a geodesic manifold with atlas V, and let e : C → Y be

an étale map. Then C is line-connected.

Proof. Let x, y ∈ C be given. By Lemma 2, there is a sequence U1, . . . , Un ∈ Ve

with x ∈ U1, y ∈ Un, and Ui ∩ Ui+1 6= ∅ for i < n. Choose xi ∈ Ui ∩ Ui+1 for
i < n. With x0 := x and xn := y, the C(xi, xi+1) constitute a line path e : L → Y
in C which connects x and y. Assume that the interval [x, xi] ⊂ L maps onto a
simple line path L′. If C(xi, xi+1) intersects L′ in a point 6= xi, there is a largest
z ∈ C(xi, xi+1) with property. Thus, if z′ denotes the corresponding point on L′,
we can replace the interval [z′, z] by {z} and attach the segment C(z, xi+1). After
finitely many steps, we obtain a simple line path between x and y. �

By (G2), we have the following

Corollary. Let Y be a geodesic manifold. Every geodesic with end points x, y ∈ Y
is a line path.

In particular, a simple geodesic with end points x, y ∈ Y is just a minimal
connected set C ⊂ Y with x, y ∈ C which is locally convex.

Let Y be a geodesic manifold. For x, y ∈ Y , we define a simple arc between x
and y to be a subspace A ⊂ Y which is a linear continuum with end points x and
y. We fix a linear order on A such that x becomes the smallest element and denote
the set of all such A by ΩY (x, y). In particular, every simple line path between x
and y belongs to ΩY (x, y). Clearly, every A ∈ ΩY (x, y) admits an inscribed line
path L between x and y. Although there is no concept of length at our disposal, the
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intuition that L is “shorter” than A can be expressed by the inclusion C(L) ⊂ C(A).
Thus it is natural to define a preordering on ΩY (x, y) by

A ≺ B :⇐⇒ C(A) ⊂ C(B). (15)

If A ≺ B holds for a pair A,B ∈ ΩY (x, y), we say that A is a straightening of B.
Define B ∈ ΩY (x, y) to be minimal if A ≺ B implies B ≺ A for all A ∈ ΩY (x, y).
We have the following straightening theorem which justifies the term “geodesic”
manifold in Definition 7.

Theorem 1. Let Y be a geodesic manifold. Every simple arc A ∈ ΩY (x, y) in Y can

be straightened to a minimal C ∈ ΩY (x, y). A simple arc A ∈ ΩY (x, y) is minimal

if and only if A is a convex simple geodesic.

Proof. Let A ∈ ΩY (x, y) be given. Since C(A) is connected, C(A) is connected.
Proposition 6 implies that C(A) is convex. So the inclusion C(A) →֒ Y is étale. By
Proposition 8, there exists a simple line path L ⊂ C(A) between x and y. Hence
L ≺ A. As L belongs to the convex hull of a finite set, (G1) implies that C(L)
is compact. We have to verify that C(L) contains a minimal C ∈ ΩY (x, y). Let
C be a chain of compact convex connected sets C ⊂ C(L) with x, y ∈ C. Then
D :=

⋂
C is compact and convex, and x, y ∈ D. We show first that every open set

V of Y with D ⊂ V contains some C ∈ C . In fact, the set C(L) is compact, and⋂
C∈C

(C r V ) = ∅. Hence C r V = ∅ for some C ∈ C .

Next we show that D is connected. Suppose that there is a disjoint union D =
D1 ⊔ D2 with non-empty compact sets D1 and D2. Then we can find open sets
U1 and U2 in Y with Di ⊂ Ui such that U1 ∩ U2 = ∅ (see, e. g., [17], chap. V,
Theorem 8). Hence D ⊂ U1 ⊔ U2, which yields C ⊂ U1 ⊔ U2 for some C ∈ C . Since
C is connected, we can assume that C ⊂ U1. This gives D2 ⊂ U1 ∩ U2 = ∅, a
contradiction. Thus D is a connected. By Zorn’s lemma, it follows that there exists
a minimal compact convex connected set C with x, y ∈ C. Hence C →֒ Y is an
étale map generated by {x, y}. Therefore, (G2) implies that C admits no connected
proper subset C ′ ⊂ C with x, y ∈ C ′. By Proposition 8, it follows that C is a simple
line path, whence C ∈ ΩY (x, y), and C is minimal.

In particular, we have shown that if A ∈ ΩY (x, y) is minimal, then A is a convex
simple geodesic between x and y. Conversely, if A ∈ ΩY (x, y) is a convex simple
geodesic, then A = C(A), and thus A is minimal. �

We conclude this section with some typical examples.

Example 3. Let Y be a geodesic manifold with atlas V, and let Z be a closed
locally convex subspace. Then Z →֒ Y is étale. Every finite set F in Z is contained
in a compact convex set C in Y . Hence C ∩ Z is compact and convex in Z. Thus
Z satisfies (G1). As (G2) trivially carries over to Z, it follows that Z is a geodesic
manifold. If Y is a geodesic q-manifold, then so is Z.
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Example 4. Let Y be a complete locally compact length metric space [7, 11]. By
the Hopf-Rinow theorem ([7], Proposition I.3.7), the closed metric balls in Y are
compact, and any two points in Y are connected by a shortest path. It is natural to
assume that Y admits a basis of convex open sets where shortest paths are unique.
This provides Y with a local convexity structure V which satisfies (G1). Note that
by [7], I.3.12, the map (2) is continuous where it is defined.

Now let e : C → Y be an étale map generated by {x, y} ⊂ C, where C is compact.
Similar to the case of a covering of length metric spaces ([7], Proposition I.3.25), the
length metric dY of Y can be lifted to a length metric dC of C such that dC(u, v) >
dY (e(u), e(v)) for all u, v ∈ C. (If dC(u, v) = 0 with u 6= v, a neighbourhood U ∈ Ve

of u cannot contain v. As U contains a closed neighbourhood of u in C, we get
dC(u, v) > 0.) Since C is compact, the Hopf-Rinow theorem, applied to C, yields
a shortest path L ⊂ C between x and y. Hence C = L, which proves (G2). By
Proposition 4, Y is a geodesic q-manifold.

Example 5. Let Y be a locally convex topological vector space. For x, y ∈ Y , we
set C(x, y) := {λx+(1−λ)y |λ > 0} to make Y into a convexity space. For a finite
set F ⊂ Y , the closed convex hull C(F ) of F is contained in a finite dimensional
subspace of Y . Hence C(F ) is compact. Thus Y satisfies (G1). Let e : C → Y
be an étale map generated by {x, y} ⊂ C, where C is compact. By Proposition 8,
e is generated by a simple line path in C. Hence e(C) is contained in a finite
dimensional subspace of Y . So Example 4 applies, which proves (G2). Thus Y is
a geodesic manifold. If Y is metrizable, i. e. first countable ([27], I, Theorem 6.1),
then Y is a geodesic q-manifold by Proposition 4.

5 The Lokal-global-Prinzip

With respect to convex neighbourhoods, étale maps have the following disjointness
property.

Proposition 9. Let Y be a geodesic manifold with atlas V, and let e : C → Y be

an étale map. Assume that U, U ′ ∈ Ve. If e|U∪U ′ is not injective, then U ∩ U ′ = ∅.

Proof. If e|U∪V is not injective, there exist x ∈ U and x′ ∈ U ′ with e(x) = e(x′).
Suppose that there is some z ∈ U ∩ U ′. Then x 6= z, and U ∩ U ′ ∩ C(x, z) is
a convex open subset of C(x, z) r {x}. Hence there is a point t ∈ C(x, z) with
(U r U ′) ∩ C(x, z) = C(x, t). So the homeomorphisms C(x, z) ∼= C(e(x), e(z)) ∼=
C(x′, z) give rise to a point t′ ∈ U ′ with e(t) = e(t′) and (U ′rU)∩C(x′, z) = C(x′, t′).
Moreover, D := C(t, z) ∪ C(t′, z) = C(t, z) ∪ {t′}. Therefore, D is not a minimally
connected superset of {t, z}. On the other hand, D is compact with open subsets
C(t, z) and C(t′, z). Hence e|D : D → Y is an étale map generated by {t, z}, contrary
to (G2). �
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As an immediate consequence, the fibers of an étale map can be separated by
pairwise disjoint neighbourhoods.

Corollary 1. Let Y be a geodesic manifold, and let e : C → Y be an étale map. For

a given y ∈ Y , choose a neighbourhood Ux ∈ Ve of each x ∈ f−1(y). Then the Ux

are pairwise disjoint.

Corollary 2. Let Y be a geodesic manifold, and let e : C → Y be an étale map.

Then C is a Hausdorff space.

Proof. Let x, x′ ∈ C be given. If e(x) 6= e(x′), there are disjoint neighbourhoods
of e(x) and e(x′), and their inverse images give disjoint neighbourhoods of x and x′.
So we can assume that e(x) = e(x′). Choose U, U ′ ∈ Ve with x ∈ U and x′ ∈ U ′.
By Proposition 9, U ∩ U ′ = ∅. Thus C is Hausdorff. �

If the geodesic manifold is regular, the fibers are even discrete, which leads to
the following finiteness result.

Proposition 10. Let e : C → Y be an étale map into a geodesic q-manifold Y .

Then the fibers of e are finite.

Proof. Let V denote the atlas of Y , and let y ∈ Y be given. For each x ∈ e−1(y),
we choose a neighbourhood Ux ∈ Ve such that the images e(Ux) are contained in
a fixed V ′ ∈ V. By the Corollary 1, these neighbourhoods are pairwise disjoint.
Without loss of generality, we can assume that |C| > 1. Since C is a connected
Hausdorff space by Corollary 2, this implies that C has no isolated points. As e
is closed, the complement of

⋃
{Ux | x ∈ e−1(y)} is mapped to a closed set A ⊂ Y

with y /∈ A. So there exists an open neighbourhood W ⊂ V ′ of y with e−1(W ) ⊂⋃
{Ux | x ∈ e−1(y)}. By the regularity of Y , we find a convex open neighbourhood

V of y with V ⊂W .

For any x ∈ e−1(y), the set Ux ∩ e−1(V ) is an open neighbourhood of x, hence
not a singleton. Therefore, the Vx := e(Ux ∩ e−1(V )) are convex subsets of V with
|Vx| > 1 and y ∈ Vx. Choose arbitrary zx ∈ Ux ∩ e

−1(V ) with yx := e(zx) 6= y for all
x ∈ e−1(y). Now let Z ⊂

⋃
{C(x, zx) |x ∈ e−1(y)} be such that Z∩C(x, zx) is closed

in Ux ∩ e−1(V ) for every x ∈ e−1(y). We claim that Z is closed. Thus let z ∈ Z
be given. Then e(z) ∈ e(Z) ⊂ V ⊂ W . Hence z ∈ e−1(W ) ⊂

⋃
{Ux | x ∈ e−1(y)},

which yields z ∈ Z. Thus Z is closed. Since e is closed, this implies that S(y) :=⋃
{C(y, yx) |x ∈ e−1(y)} is closed and carries the finest topology such that the maps

C(y, yx) →֒ S(y) are continuous for all x ∈ e−1(y).

Suppose that e−1(y) is infinite. Since S(y) cannot be a closed star, there must be
an infinite countable subset E of e−1(y) with C(y, yu) ∩C(y, yv) 6= {y} for different
u, v ∈ E. Hence there is a point y′ ∈ V r{y} and a set Z ⊂

⋃
{C(x, zx) |x ∈ e−1(y)}
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with |Z ∩C(x, zx)| = 1 for all x ∈ E such that e(Z) is an infinite non-closed subset
of C(y, y′). Since Z is closed, this gives a contradiction. �

As a consequence, the geodesic structure of a geodesic q-manifold can be lifted
along étale maps.

Theorem 2. Let e : C → Y be an étale map into a geodesic q-manifold Y with atlas

V. Then C is a geodesic q-manifold with atlas Ve.

Proof. By Corollary 2 of Proposition 9, C is a Hausdorff space. We show first that
C is regular. Let Ux ∈ Ve be a neighbourhood of x ∈ C. We choose neighbourhoods
Uz ∈ Ve for all z in the fiber of y := e(x). By Corollary 1 of Proposition 9, the Uz are
pairwise disjoint. Since Y is regular and e closed, there is a closed neighbourhood
V of y with e−1(V ) ⊂

⋃
{Uz | z ∈ e−1(y)}. Hence

Ux ∩ e−1(V ) = e−1(V )r
⋃{

Uz | z ∈ e−1(y)r {x}
}

is a closed neighbourhood of x. Thus C is regular.

Let F ⊂ C be finite. Then C(e(F )) is compact. By Proposition 10, the fibers
of e are compact. Hence e−1(C(e(F ))) is compact by [6], chap. I.10, Proposition 6.
Furthermore, e−1(C(e(F ))) is convex with respect to Ve. Therefore, the closed
subset C(F ) of e−1(C(e(F ))) is compact. This proves (G1) for C.

Next let e′ : C ′ → C be an étale map with C ′ compact which is generated by
{x, y} ⊂ C ′. Then ee′ is étale and generated by {x, y}. Hence C ′ is minimal among
the connected sets B ⊂ C ′ with x, y ∈ B. Thus C satisfies (G2).

Finally, let S(x, E) :=
⋃
{C(x, z) | z ∈ E} be a closed star in some U ∈ Ve.

Since C is regular, we find a closed convex neighbourhood U ′ ⊂ U of x. By Proposi-
tion 3, this implies that S(x, E) ∩ U ′ is a star in U which is closed in C. Therefore,
e(S(x, E) ∩ U ′) is a closed star in some V ∈ V. So E is finite, which proves that C
is a geodesic q-manifold. �

Now we are ready to prove our main result which essentially states that the image
of an étale map is weakly convex in the following sense (cf. [4], Definition 2.16).

Definition 9. Let Y be a geodesic manifold. We call a subset A ⊂ Y weakly convex

if every pair of points x, y ∈ A can be connected by a geodesic.

The following theorem extends previous versions of the Lokal-global-Prinzip for
convexity of maps (see [9, 15, 4, 5]).

Theorem 3. Let f : X → Y be a locally convex continuous map from a connected

topological space X to a geodesic q-manifold Y . Assume that f# is closed. Then

f(X) is weakly convex.
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Proof. Let V be the atlas of Y . By Proposition 7, the map f# again locally
convex, and Proposition 5 implies that f# is étale. By Theorem 2, it follows that
Xf is a geodesic manifold. For z, z′ ∈ Xf , Proposition 8 shows that there is a
connecting simple line path L between z and z′. Theorem 1 shows that L can
be straightened to a convex simple geodesic C. Thus f#|C : C → Y is a geodesic
between f#(z) and f#(z′). Hence f(X) is weakly convex. �

In the special case where f is an inclusion X →֒ Y , the preceding proof yields

Corollary. Let C be a closed connected locally convex subset of a geodesic manifold

Y . Then C is weakly convex.

Proof. By Example 3, C is a geodesic manifold, and C →֒ Y is étale. As in the
proof of Theorem 3, this implies that C is weakly convex. �

Remarks. 1. If f is closed, then f# is closed. However, the latter condition is
much weaker. For example, if f is a local homeomorphism, then f# is identical, but
f need not be closed.

2. The preceding corollary extends Klee’s generalization of a classical result due
to Tietze [28] and Nakajima (Matsumura) [23]. Klee’s theorem [19] states that the
above corollary holds in a locally convex topological vector space Y . Note that the
usual proof of Klee’s theorem rests on the linear structure of Y , while the corollary of
Theorem 3 merely depends on a local convexity structure in the sense of Definition 4.
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Grundlehren der Mathematischen Wissenschaften, Band 107, Springer-Verlag,
Berlin-New York 1966

[21] E. Michael: Cuts, Acta Math. 111 (1964), 1-36

[22] E. Michael: A note on closed maps and compact sets, Israel J. Math. 2 (1964)
173-176
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