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Properties of the extremal solution for a fourth-order

elliptic problem ∗†‡§¶‖

Baishun Lai · Zhuoran Du

Abstract Let λ∗ > 0 denote the largest possible value of λ such that







∆2u = λ
(1−u)p in B,

0 < u ≤ 1 in B,

u = ∂u
∂n

= 0 on ∂B.

has a solution, where B is the unit ball in Rn centered at the origin, p > 1
and n is the exterior unit normal vector. We show that for λ = λ∗ this
problem possesses a unique weak solution u∗. We prove that u∗ is smooth
if n ≤ 12 and singular when n ≥ 13 for p large enough, in which case 1 −
C0r

4
p+1 ≤ uλ∗(x) ≤ 1 − r

4
p+1 on the unit ball, where C0 := (λ∗/λ̄)

1
p+1 and

λ̄ := 8(p−1)
(p+1)2

[n− 2(p−1)
p+1 ][n − 4p

p+1 ].

Mathematics Subject Classification (2000) 35B45 · 35J40.

1. Introduction and main result

The main purpose of this paper is to investigate regularity of the extremal solution
for a class of fourth-order problem







∆2u = λ
(1−u)p

in B,

0 < u ≤ 1 in B,
u = ∂u

∂n
= 0 on ∂B.

(1.1)λ

Here B denotes the unit ball in Rn (n ≥ 2) centered at the origin, λ > 0, p > 1 and ∂
∂n

the differentiation with the respect to the exterior unit normal, i.e., in radial direction.
We consider only radial solutions, since all positive smooth solutions of (1.1)λ are radial,
see Berchio et al. [3].

The motivation for studying (1.1)λ stems from a model for the steady sates of a simple
micro electromechanical system (MEMS) which has the general form (see for example [19],
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[22])










α∆2u = (β
∫

Ω
|∇u|2dx+ γ)∆u+ λf(x)

(1−u)2(1+χ
∫
Ω

dx

(1−u)2
)

in Ω,

0 < u < 1 in Ω,
u = α ∂u

∂n
= 0 on ∂Ω,

(1.2)

where α, β, γ, χ ≥ 0, are fixed, f ≥ 0 represents the permittivity profile, Ω is a bounded
domain in Rn and λ > 0 is a constant which is increasing with respect to the applied
voltage.

Recently, Equation (1.2) posed in Ω = B with β = γ = χ = 0, α = 1 and f(x) ≡ 1,
which is reduced to







∆2u = λ
(1−u)2

in B,

0 < u < 1 in B,
u = ∂u

∂n
= 0 on ∂B,

(1.3)

has been studied extensively in [8]. For convenience, we now give the following notion of
solution.

Definition 1.1. If uλ is a solution of (1.1)λ such that for any other solution vλ of
(1.1)λ one has

uλ ≤ vλ, a.e. x ∈ B,

we say that uλ is a minimal solution of (1.1)λ.

It is shown that there exists a critical value λ∗ > 0 (pull-in voltage) such that if
λ ∈ (0, λ∗) the problem (1.3) has a smooth minimal solution , while for λ > λ∗ (1.3)
has no solution even in a weak sense. Moreover, the branch λ → uλ(x) is increasing
for each x ∈ B, and therefore the function u∗(x) := limλ→λ∗ uλ(x) can be considered as
a generalized solution that corresponds to the pull-in voltage λ∗. Now the issue of the
regularity of this extremal solution-which, by elliptic regularity theory, is equivalent to
whether supΩ u∗ < 1- is an important question for many reasons. For example, one of
the reason is that it decides whether the set of solutions stops there, or whether a new
branch of solutions emanates from a bifurcation state (u∗, λ∗) (see Figures 1,2). This issue
turned out to depend closely on the dimension. Indeed by the key uniform estimate of
‖(1−u)−3‖L1, Guo and Wei [16] obtained the regularity of the extremal solution for small
dimensions and they proved that for dimension n = 2 or n = 3, u∗ is smooth. But from
their result, the regularity of extremal solution of (1.3) is unknown for n ≥ 4. Recently,
using certain improved Hardy-Rellich inequalities, Cow-Esp-Gho-Mor [8] improved the
above result and they obtained that u∗ is regular in dimensions 1 ≤ n ≤ 8, while it
is singular for n ≥ 9, i.e., the critical dimension is 9. So the issue of the regularity of
the extremal solution of (1.1)λ for power p = −2 is completely solved, but the critical
dimension for generally negative power is unknown.



In this paper, we investigated the relation between p and critical dimension of of
the extremal solution of the equation (1.1)λ, we find that the critical dimension n(p)
increase for p increase, and if p is large enough, the the critical dimension is 13, which is
independent of p, i.e., the extremal solution of (1.1)λ is singular (supΩ u∗ = 1) for n ≥ 13.
Our result is stated as follows:

Theorem 1.1 (i) There exists p0 > 1 large enough such that for p ≥ p0, the unique
extremal solution of (1.1)λ∗ is regular for n < 13; while it is singular for n ≥ 13;

(ii) For any p > 1, the unique extremal solution of (1.1)λ∗ is regular for n ≤ 4.

From the technical point of view, one of the basic tools in the analysis of nonlinear
second order elliptic problems in bounded and unbounded domains of Rn(n ≥ 2) is the
maximum principle. However, for high order problems, such principle dose not normally
hold for general domains (at least for the clamped boundary conditions u = ∂u

∂n
= 0 on

∂Ω), which causes several technical difficulties. One of reasons to the study (1.1)λ in a ball
is that a maximum principle holds in this situation, see [1], [5]. The second obstacle is the
well-known difficulty of extracting energy estimates for solutions of fourth order problems
from their stability properties. Besides, for the corresponding second order problem,
the starting point was an explicit singular solution for a suitable eigenvalue parameter λ
which turned out to play a fundamental role for the shape of the corresponding bifurcation
diagram, see [4]. When turning to the biharmonic problem (1.1)λ the second boundary
condition ∂u

∂n
= 0 prevents to find an explicit singular solution. This means that the

method used to analyze the regularity of the extremal solution for second order problem
could not carry to the corresponding problem for (1.1)λ. In this paper, we, in order to
overcome the third obstacle, use improved and non standard Hardy-Rellich inequalities
recently established by Ghoussoub-Moradifam in [13] to construct a semi-stable singular
H2(B)− weak sub-solution of (1.1)λ.

This paper is organized as follows. In the next section, some preliminaries are reviewed.
In Section 3, we give the uniform estimate of ‖(1− u)p+1‖L1 according to the stability of
the minimal solutions. We study the regularity of the extremal solution of (1.1)λ and the
Theorem 1 (ii) is established in Section 4. Finally, we will show that the extremal solution
u∗ in dimensions n ≥ 13 is singular by constructing a semi-stable singular H2(B)− weak
sub-solution of (1.1)λ.

2. Preliminaries

First we give some comparison principles which will be used throughout the paper

Lemma 2.1. (Boggio’s principle, [5]) If u ∈ C4(B̄R) satisfies
{

∆2u ≥ 0 in BR,
u = ∂u

∂n
= 0 on ∂BR,

then u ≥ 0 in BR.

Lemma 2.2. Let u ∈ L1(BR) and suppose that
∫

BR

u∆2ϕ ≥ 0

for all ϕ ∈ C4(B̄ ) such that ϕ ≥ 0 in B , ϕ| = ∂ϕ = 0. Then u ≥ 0 in B . Moreover



For a proof see Lemma 17 in [1].

Lemma 2.3. If u ∈ H2(BR) is radial, ∆
2u ≥ 0 in BR in the weak sense, that is

∫

BR

∆u∆ϕ ≥ 0 ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0

and u|∂BR
≥ 0, ∂u

∂n
|∂BR

≤ 0 then u ≥ 0 in BR.

Proof. We only deal with the case R = 1 for simplicity. Solve
{

∆2u1 = ∆2u in B
u1 =

∂u1

∂n
= 0 on ∂B

in the sense u1 ∈ H2
0 (B) and

∫

B
∆u1∆ϕ =

∫

B
∆u∆ϕ for all ϕ ∈ C∞

0 (B). Then u1 ≥ 0 in
B by lemma 2.2.

Let u2 = u−u1 so that ∆2u2 = 0 in B. Define f = ∆u2. Then ∆f = 0 in B and since
f is radial we find that f is a constant. It follows that u2 = ar2 + b. Using the boundary
conditions we deduce a + b ≥ 0 and a ≤ 0, which imply u2 ≥ 0.

As in [8], we are now led here to examine problem (1.1)λ with non-homogeneous
boundary conditions such as







∆2u = λ
(1−u)p

in B,

α < u ≤ 1 in B,
u = α, ∂u

∂n
= γ on ∂B,

(2.1)λ,α,γ

where α, γ are given.

Let Φ denote the unique solution of
{

∆2Φ = 0 in B,
Φ = α, ∂Φ

∂n
= γ on ∂B.

(2.2)

We will say that the pair (α, γ) is admissible if γ ≤ 0, and α− γ

2
< 1. We now introduce

a notion of weak solution.

Definition 2.1. We say that u is a weak solution of (2.1)λ,α,γ, if α ≤ u ≤ 1 a.e. in Ω,
1

(1−u)p
∈ L1(Ω) and if

∫

Ω

(u− Φ)∆2ϕ = λ

∫

Ω

ϕ

(1− u)p
∀ϕ ∈ C4(B̄)

⋂

H2
0 (B),

where Φ is given in (2.1). We say u is a weak super-solution (resp. weak sub-solution) of
(2.1)λ,α,γ, if the equality is replaced with ≥ (resp.≤) for ϕ ≥ 0.

Definition 2.2. We say a weak solution of (2.1)λ,α,γ is regular (resp. singular) if
‖u‖∞ < 1 (resp. ‖u‖ = 1) and stable (resp. semi-stable) if

µ1(u) = inf{
∫

B

(∆ϕ)2 − pλ

∫

B

ϕ2

(1− u)p
: φ ∈ H2

0 (B), ‖φ‖L2 = 1}

is positive (resp. non-negative).

We now define



and

λ∗(α, γ) := sup{λ > 0 : (2.1)λ,α,γ has a weak soltion}.
Observe that by Implicit Function Theorem, we can classically solve (2.1)λ,α,γ for small
λ′s. Therefore, λ∗(α, γ) and λ∗(α, γ) are well defined for any admissible pair (α, γ). To
cut down notations we won’t always indicate α and γ.

Let now give the following standard existence result.

Theorem 2.1. For every 0 ≤ f ∈ L1(Ω) there exists a unique 0 ≤ u ∈ L1(Ω) which
satisfies

∫

Ω

u∆2ϕdx =

∫

Ω

fϕdx

for all ϕ ∈ C4(B̄)
⋂

H2
0 (B).

The proof is standard, please see [14], here we omit it. From this Theorem, we imme-
diately have the following result.

Proposition 2.1. Assume the existence of a weak super-solution U of (2.1)λ,α,γ. Then
there exists a weak solution u of (2.1)λ,α,γ so that α ≤ u ≤ U a.e in B.

For the sake of completeness, we include a brief proof here, which be called “weak”
iterative scheme: u0 = U and (inductively) let un, n ≥ 1, be the solution of

∫

Ω

(un − Φ)∆2ϕ = λ

∫

Ω

ϕ

(1− un−1)p
∀ϕ ∈ C4(B̄)

⋂

H2
0 (B),

given by Theorem 2.2. Since α is a sub-solution of (2.1)λ,α,γ, inductively it is easily shown
by Lemma 2.2 that α ≤ un+1 ≤ un ≤ U for every n ≥ 0. Since

(1− un)
−p ≤ (1− U)−p ∈ L1(B),

by Lebesgue Theorem the function u = limn→∞ un is a weak solution of (2.1)λ,α,γ so that
α ≤ u ≤ U .

In particular, for every λ ∈ (0, λ∗), we can find a weak solution of (2.1)λ,α,γ. In the
same range of λ′s, this is still true for regular weak solutions as shown in the following
lemma.

Lemma 2.4. Let (α, γ) be an admissible pair and u be a weak solution of (2.1)λ,α,γ.
Then, there exists a regular solution for every 0 < µ < λ.

Proof. Let ǫ ∈ (0, 1) be given and let ū = (1 − ǫ)u + ǫΦ, where Φ is given in (2.2).
by lemma 2.2 supB Φ < supB u ≤ 1. Hence

sup
B

ū ≤ (1− ǫ) + ǫ sup
B

Φ < 1, inf ū ≥ (1− ǫ)α + ǫ inf
B

Φ = α

∫

B

(ū− Φ)(β∆2ϕ− τ∆ϕ) = (1− ǫ)

∫

B

(u− Φ)(β∆2ϕ− τ∆ϕ) = (1− ǫ)λ

∫

B

ϕ

(1− u)p

= (1− ǫ)p+1λ

∫

B

ϕ

(1− ū+ ǫ(Φ− 1))p
≥ (1− ǫ)p+1λ

∫

B

ϕ

(1− ū)p
.

Note that 0 ≤ (1 − ǫ)(1 − u) = 1 − ū + ǫ(Φ − 1) < 1 − ū. So ū is a weak super-solution



solution B of (2.1)(1−ǫ)p+1λ,α,γ so that α ≤ ω ≤ ū. In particular, supB ū < 1 and ω is a
regular weak solution. Since ǫ ∈ (0, 1) is arbitrarily chosen, the proof is done.

Now we recall some basic facts about the minimal branch

Theorem 2.2. λ∗ ∈ (0,+∞) and the following holds:

1. For each 0 < λ < λ∗ there exists a regular and minimal solution uλ of (2.1)λ,α,γ;
2. For each x ∈ B the map λ → uλ(x) is strictly increasing on (0, λ∗);
3. For λ > λ∗ there are no weak solutions of (2.1)λ,α,γ.

The proof is standard, see [8], here we omit it.

3. Stability of the minimal solutions

In this section we shall show that the extremal solution is regular in small dimensions.
Let us begin with the following priori estimates along the minimal branch uλ. In order
to achieve this, we shall need yet another notion of H2(B)- weak solutions, which is an
intermediate class between classical and weak solutions.

Definition 3.1. We say that u is a H2(B)- weak solution of (2.1)λ,α,β if u − Φ ∈
H2

0 (B), α ≤ u ≤ 1 ∈ B, 1
(1−u)p

∈ L1(B) and if

∫

B

∆u∆φ = λ

∫

B

φ

(1− u)p
, ∀φ ∈ C4(B̄)

⋂

H2
0 (B),

where Φ is given in (2.2). We say that u is a H2(B)- weak super-solution (resp. H2(B)-
weak sub-solution) of (2.1)λ,α,β if for φ ≥ 0 the equality is replaced with ≥ (resp.≤) and
u ≥ α (resp. ≤), ∂vu ≤ β (resp. ≥) on ∂B.

Theorem 3.1. Suppose that (α, γ) is an admissible pair.
1. The minimal solution uλ is stable, and is the unique semi-stable H− weak solution

of (2.1)λ,α,γ;
2. The function u∗ := limλ→λ∗ uλ is a well-defined semi-stable H− weak solution of

(2.1)λ∗,α,γ;
3. u∗ is the unique H− weak solution of (2.1)λ∗,α,γ, and when u∗ is classical solution,

then µ1(u
∗) = 0;

4. If v is a singular, semi-stable H− weak solution of (2.1)λ,α,γ, then v = u∗ and
λ = λ∗.

The main tool which we use to prove the theorem 3.1 is the following comparison
lemma which is valid exactly in the class H.

Lemma 3.2. Let (α, γ) is an admissible pair and u be a semi-stable H− weak solution
of (Pλ,α,γ). Assume U is a H− weak super-solution of (2.1)λ,α,γ. Then

1. u ≤ U a.e. in Ω;
2. If u is a classical solution and µ1(u) = 0 then U = u.

A more general version of Lemma 3.2 is available in the following.

Lemma 3.3. Let (α, γ) is an admissible pair and γ′ ≤ 0. Let u be a semi-stable H−
weak sub- solution of (2.1)λ,α,γ with u = α′ ≤ α,∆u = β ′ ≥ β on ∂Ω. Assume that U is a
H− weak super-solution of (2.1)λ,α,γ with U = α,∆U = β on ∂Ω. Then U ≥ u a.e. in Ω.



We need also some a priori estimates along the minimal branch uλ.

Lemma 3.4. Let (α, γ) be an admissible pair. Then for every λ ∈ (0, λ∗), we have

p

∫

B

(uλ − Φ)2

(1− uλ)p+1
≤

∫

B

uλ − Φ

(1− uλ)p
,

where Φ is given by (2.1). In particular, there is a constant C independent of λ so that

∫

B

|∆uλ|2dx+

∫

B

1

(1− uλ)p+1
≤ C. (3.1)

Proof. Testing (2.1)λ,α,γ on uλ − Φ ∈ W 4,2(B) ∩H2
0 (B). We see that

λ

∫

B

uλ − Φ

(1− uλ)p
=

∫

B

(∆(uλ − Φ))2dx ≥ pλ

∫

B

(uλ − Φ)2

(1− uλ)p+1
dx

in the view of β∆2Φ− τ∆Φ = 0. In particular, for δ > 0 small we have that

∫

|uλ−Φ|≥δ

1

(1− uλ)p+1
≤ 1

δ2

∫

|uλ−Φ|≥δ

(uλ − Φ)2

(1− uλ)p+1
≤ 1

δ2

∫

B

1

(1− uλ)p

≤ δp−1

∫

B

1

(1− uλ)p+1
+ Cδ

by means of Young’s inequality. Since for δ small

∫

|uλ−Φ|≤δ

1

(1− uλ)p+1
≤ C

for some C > 0, we get that
∫

B

1

(1− uλ)p+1
≤ C

for some C > 0 and for every λ ∈ (0, λ∗). By Young’ s and Hölder’s inequalities, we have

∫

B

|∆uλ|2dx =

∫

B

∆uλ∆Φdx+ λ

∫

B

uλ − Φ

(1− uλ)p
dx

≤ δ

∫

B

|∆uλ|2dx+ Cδ + C(

∫

B

1

(1− uλ)p+1
)

p

p+1 .

So we have
∫

B

|∆uλ|2dx+

∫

B

1

(1− uλ)p+1
≤ C

where C is absolute constant.

Proof of the Theorem 3.1. (1) Since ‖uλ‖∞ < 1, the infimum defining µ1(uλ)
is achieved at a first eigenfunction for every λ ∈ (0, λ∗). since λ 7→ uλ(x) is increasing for
every x ∈ B, it is easily seen that λ → µ1(uλ) is a decreasing and continuous function on
(0, λ∗). Define

λ∗∗ := sup{0 < λ < λ∗ : µ1(uλ) > 0}.
We have that λ∗∗ = λ∗. Indeed, otherwise we would have µ1(uλ∗∗

) = 0, and for every



since Lemma 3.2 implies uµ = uλ∗∗
. Finally, Lemma 3.2 guarantees the uniqueness in the

class of semi-stable H− weak solutions.

(2) It follows from (3.1) that uλ → u∗ in a pointwise sense and weakly in H2(B), and
1

1−u∗
∈ Lp+1. In particular, u∗ is a H− weak solution of (Pλ∗,α,γ) which is also semi-stable

as the limiting function of the semi-stable solutions {uλ}.
(3) Whenever ‖u∗‖∞ < 1, the function u∗ is a classical solution, and by the Implicit

Function Theorem we have that µ1(u
∗) = 0 to prevent the continuation of the minimal

branch beyond λ∗. By Lemma 3.2, u∗ is then the unique H− weak solution of (Pλ∗,α,γ).

(4) If λ < λ∗, we get by uniqueness that v = uλ. So v is not singular and a
contradiction arises. Now by theorem 2.5 (3) we have that λ = λ∗. Since v is a semi-
stable H− weak solution of (Pλ∗,α,γ) and u∗ is a H− weak super-solution of (Pλ∗,α,γ), we
can apply Lemma 3.2 to get v ≤ u∗ a.e. in Ω. Since u∗ is also a semi-stable solution, we
can reverse the roles of v and u∗ in Lemma 3.2 to see that v ≥ u∗ a.e. in Ω. So equality
v = u∗ holds and the proof is done

4. Regularity of the extremal solutions and the Proof of the Theorem 1.1
(ii)

In this section we first show that the extremal solution is regular in small dimensions
by the uniformly bounded of uλ in H2

0 (B). Second, using the refined version of Hardy-
Rellich inequality, we prove the extremal solution is singular for n ≥ 13 and p large
enough. Now we give the proof of Theorem 1.1 (ii).

Proof of Theorem 1.1 (ii). As already observed, estimate (3.1) implies that f(u∗) =

(1 − u∗)−p ∈ L
p+1
p (B). Since u∗ is radial and radially decreasing. We need to show that

u∗(0) < 1 to get the regularity of u∗. In fact, on the contrary suppose that u∗(0) = 1. By

the standard elliptic regularity theory shows that u∗ ∈ W 4, p+1
p . By the Soblev imbedding

theorem, i.e. W 4, p+1
p →֒ Cm(0 < m ≤ 4 − pn

p+1
, 1 ≤ n ≤ 4). We have u∗ is a Lipschitz

function in B for 1 ≤ n ≤ 3.
Now suppose u∗(0) = 1 and 1 ≤ n ≤ 2. Since

1

1− u∗
≥ C

|x| in B

for some C > 0. One see that

+∞ = Cp+1

∫

B

1

|x|p+1
≤

∫

B

1

(1− u∗)p+1
< +∞.

A contradiction arises and hence u∗ is regular for 1 ≤ n ≤ 2.

For n = 3, by the Sobolev imbedding theorem, we have u∗ ∈ C
p+4
p+1 (B̄), if p+4

p+1
≥ 2,

then u∗(0) = 1, Du∗(0) = 0 and

|Du∗(ε)−Du∗(0)| ≤ M |ε| ≤ M |x|
where 0 < |ε| < |x|. Thus

|u(x)− u(0)| ≤ |Du(ε)||x| ≤ M |x|2.
This inequality shows that

∫

1
∫

1



A contradiction arises and hence u∗ is regular for n = 3; if p+4
p+1

< 2, then

|Du(ε)−Du(0)| ≤ M |ε| 4
p−1

−1 ≤ M |x| 3
p+1

where 0 < |ε| < |x|. Thus

|u(x)− u(0)| ≤ |Du(ε)||x| ≤ M |x|
4+p
p+1 ,

and a contradiction is obtained as above.
For n = 4, by the Sobolev imbedding theorem, we have u∗ ∈ C

4
p+1 (B̄). If 1 < 4

p+1
< 2,

then u∗(0) = 1, Du∗(0) = 0 and

|Du(ε)−Du(0)| ≤ M |ε| 4
p+1

−1 ≤ M |x| 4
p+1

−1

where 0 < |ε| < |x|. Thus

|u(x)− u(0)| ≤ |Du(ε)||x| ≤ M |x| 4
p+1 .

If 4
p+1

≤ 1, then u∗ is a Hölder’s continues and

1− u∗(x) ≤ M |x| 4
p+1 ,

and we obtain a contradiction as above.

We now tackle the regularity of u∗ for 5 ≤ n ≤ 12. We start with the following crucial
result.

Lemma 4.1. Let n ≥ 5 and (u∗, λ∗) be the extremal pair of (1.1)λ, when u∗ is
singular, then

1− u∗ ≤ C0|x|
4

p+1 ,

where C0 := (λ∗/λ̄)
1

p+1 and λ̄ := 8(p−1)
(p+1)2

[n− 2(p−1)
p+1

][n− 4p
p+1

].

In order to prove the Lemma 4.1, we need the lower bounds of λ∗ and state as follows
Lemma 4.2. λ∗ satisfies the following lower bounds for n ≥ 4

λ∗ ≥ λ̄

where λ̄ = 8(p−1)
(p+1)2

[n− 2(p−1)
p+1

][n− 4p
p+1

] .

Proof. the proof is standard, here we include the proof for the sake of completeness.

Notice that for n ≥ 4 the function ū = 1− |x| 4
p+1 satisfies

1

(1− ū)p
∈ L1(B)

and ū is a weak solution of

∆2ū =
λ̄

(1− ū)p
,

and ū(1) = 0 = uλ(1);
∂uλ

∂n
(1) ≥ ∂ūλ

∂n
(1). Therefore, ū turns out to be a weak super-solution

of (1.1)λ provided λ < λ̄. Thus necessarily, we have



The proof is done.

Proof of Lemma 4.1. First note that Lemma 4.2 gives the lower bound:

λ∗ ≥ λ̄.

For δ > 0, we define uδ(x) := 1 − Cδ|x|
4

p+1 with Cδ := (λ
∗

λ̄
+ δ)

1
p+ > 1. Since n ≥ 5. we

have that uδ ∈ H2
loc(R

n), 1
1−uδ

∈ L3
loc(R

n) and uδ is a H2-weak solution of

∆2uδ =
λ∗ + δλ̄

(1− uδ)p
in Rn

We claim that uδ ≤ u∗ in B, which will finish the proof by just letting δ → 0.
Assume by contradiction that the set

Γ := {r ∈ (0, 1) : uδ(r) > u∗(r)}

is non-empty, and let r1 = supΓ. Since

uδ(1) = 1− Cδ < 0 = u∗(1),

we have that 0 < r1 < 1 and one infers that

α := u∗(r1) = uδ(r1), β = (u∗)′(r1) ≥ u′
δ(r1).

Setting uδ,r1(r) = r
− 4

p+1

1 (uδ(r1r)−1)+1, we easily see that the function uδ,r1(r) is a H
2(B)-

weak super-solution of (2.1)λ∗+δλ̄,α′,β′, where

α′ := r
− 4

p+1

1 (u∗(r1r)− 1) + 1, β ′ := r
p−3
p+1

1 β.

Similarly, define u∗
r1
= r

− 4
p+1

1 (u∗(r1r)− 1) + 1, we have u∗
r1

is singular semi-stable H2(B)-
weak solution of (2.1)λ∗,α′,β′.

Now we claim that (α′, β ′) is an admissible pair. Since u∗ is radially decreasing, we
have that β ′ ≤ 0. Define the function

ω(r) := (α′ − β ′

2
) +

β ′

2
|x|2 + γ(x),

where γ(x) is a solution of ∆2γ = λ∗ in B with γ = ∂vγ = 0 on ∂B. Then ω is a classical
solution of

{

∆2ω = λ∗ in B
ω = α′, ∂vω = β ′ on ∂B.

Since λ∗

(1−u∗

r1
)p

≥ λ∗, by Lemma 2.1 we have

u∗
r1
≥ ω a.e. inB

Since ω(0) = α′ − β′

2
+ γ(0) and γ(0) > 0, we have

α′ − β ′

2
< 1

So (α′, β ′) is an admissible pair and by Theorem 3.1 (4) we get that (u∗ , λ∗) coincides



Since (α′, β ′) is an admissible pair and uδ,r1 is aH
2(B)-weak super-solution of (2.1)λ∗+δλ̄,α′,β′ .

We get from Proposition 2.1, the existence of a weak solution of (2.1)λ∗+δλ̄,α′,β′. Since

λ∗ + δλ̄ > λ∗,

we contradict the fact that λ∗ is the extremal parameter of (2.1)λ,α′,β′.

Thanks to the lower estimate on u∗, we get the following regular result.

Theorem 4.1. If p is large enough, the extremal solution u∗ is regular in dimensions
for 5 ≤ n ≤ 12.

Proof. Assume u∗ is singular. For ε > 0, define ϕ(x) := |x| 4−n
2

+ε and note that:

(∆ϕ)2 = (Hn +O(ε))|x|−n+2ε,

where Hn = n2(n−4)2

16
. Given η ∈ C∞

0 (B) and since n ≥ 5, using a standard approximation
argument, we can use the test function ηϕ ∈ H2

0 into the stability inequality to obtain

∫

B

(∆ϕ)2 +O(1) ≥ pλ∗

∫

B

ϕ2

(1− u∗)p+1
,

since the contribution of the integrals outside a fixed ball around the origin remains
bounds as ε → 0 ( Here O(1) denotes a bounded function as ε → 0). By Lemma 4.2 and
Rellich’s inequality, we find

pλ̄Bn

1

2ε
= pλ̄

∫

B

ϕ2

|x|4dx ≤
∫

B

(∆ϕ)2dx+O(1)

≤ (Hn +O(ε))

∫

B

|x|−n+2εdx = Bn

Hn

2ε
+O(1),

where Bn is the surface area of the unit n-1 dimensional sphere Sn−1. Obviously we have

pλ̄ ≤ Hn +O(ε).

Letting ε → 0, we get pλ̄ ≤ Hn, i.e.,

n2(n− 4)2

16
≥ 8p(p− 1)

(p+ 1)2
(n− 2(p− 1)

p+ 1
)(n− 4p

p+ 1
). (4.1)

As p → +∞, we have

n2(n− 4)2

16
≥ 8(n− 2)(n− 4) + o(

1

p
).

Graphing this relation one see (4.1) holds only for n ≥ 13. So the extremal solution u∗ is
regular in dimensions for 5 ≤ n ≤ 12 and the proof is done.

We can now slightly improve the lower bound of λ∗

Corollary 4.1. In any dimension n ≥ 1, we have

λ∗ > λ̄ =
8(p− 1)

(p+ 1)2
[n− 2(p− 1)

p+ 1
][n− 4p

p+ 1
].



Proof. The function ū := 1 − |x| 4
p+1 is a H2(B)-weak solution of (2.1)λ̄,0,− 4

p+1
. If by

contradiction λ∗ = λ̄, then ū is aH2(B)-weak super-solution of (1.1)λ for every λ ∈ (0, λ∗).
By Lemma 3.2 we get that uλ ≤ ū for all λ < λ∗, and then u∗ ≤ ū a.e. in B.

If 1 ≤ n ≤ 4, u∗ is then regular by Theorem (i). By Theorem 3.1 (3) there holds
µ1(u

∗) = 0. By Lemma 3.2 then yields that u∗ = ū, which is a contradiction since then
u∗ will not satisfy the boundary conditions.

If now n ≥ 5 and λ∗ = λ̄, then C0 = 1 in Lemma 4.1, and we then have u∗ ≥ ū. It
means again that u∗ = ū, a contradiction that completes the proof.

In what follows, we will show that the extremal solution u∗ of (1.1)λ in dimensions
n ≥ 13 is singular. To do this, first we give the following lemmas which are the key for
the proof of the singularity of u∗ in higher dimensions.

5. The extremal solution is singular for n ≥ 13

We prove in this section that the extremal solution is singular for n ≥ 13 and p large
enough. For that we will need a a suitable Hardy-Rellich type inequality which was
established by Ghoussoub-Moradifam in [13]. As in the previous section (u∗, λ∗) denotes
the extremal pair of (2.1)λ

Lemma 5.1. Let n ≥ 5 and B be the unit ball in Rn. Then there exists C > 0, such
that the following improved Hardy-Rellich inequality holds for all ϕ ∈ H2

0 (B):

∫

B

(∆ϕ)2dx ≥ n2(n− 4)2

16

∫

B

ϕ2

|x|4dx+ C

∫

B

ϕ2dx

Lemma 5.2. Let n ≥ 5 and B be the unit ball in Rn. Then the following improved
Hardy-Rellich inequality holds for all ϕ ∈ H2

0 (B):

∫

B

(∆ϕ)2dx ≥ (n− 2)2(n− 4)2

16

∫

B

ϕ2dx

(|x|2 − 0.9|x|n2+1)(|x|2 − |x|n2 )

+
(n− 1)(n− 4)2

4

∫

B

ϕ2dx

|x|2(|x|2 − |x|n2 ) . (5.0)

As a consequence, the following improvement of the classical Hardy-Rellich inequality
holds:

∫

B

(∆ϕ)2dx ≥ n2(n− 4)2

16

∫

B

ϕ2

|x|2(|x|2 − |x|n2 ) .

Lemma 5.3. If n ≥ 13, then u∗ ≤ 1− |x| 4
p+1 .

Proof. Recall from Corollary 4.1 that λ̄ < λ∗. Let ū = 1− |x| 4
p+1 , we now claim that

uλ ≤ ū for all λ ∈ (λ̄, λ∗). Indeed, fix such a λ and assume by contradiction that

R1 := inf{0 ≤ R ≤ 1 : uλ < ū in the interval (R, 1)} > 0.

From the boundary condition, one has that uλ < ū(r) as r → 1−. Hence, 0 < R1 <
1, α := uλ(R1) = ū(R1) and β := u′

λ(R1) ≤ ū′(R1). The same as the proof of Lemma 4.1,
we have uλ ≥ ū in BR1 and a contradiction arises in view of the fact that limx→0 ū(x) = 1
and ‖uλ‖∞ < 1. It follows that uλ ≤ ū in B for every λ ∈ (λ̄, λ∗) and in particular u∗ ≤ ū
in B.



Lemma 5.4. Let n ≥ n(p). Suppose there exists λ′ > 0 and a singular radial function
ω(r) ∈ H2(B) with 1

1−ω
∈ L∞

loc(B̄ \ {0}) such that

{

∆2ω ≤ λ′

(1−ω)p
for 0 < r < 1,

ω(1) = 0, ω′(1) = 0,
(5.1)

and

pβ

∫

B

ϕ2

(1− ω)p+1
≤

∫

B

(∆ϕ)2 for all ϕ ∈ H2
0 (B) (5.2)

1. If β ≥ λ′, then λ∗ ≤ λ′.
2. If either β > λ′ or β = λ′ = Hn

p
, then the extremal solution u∗ is necessarily

singular.

Proof. (1). First, note that (5.2) and 1
1−ω

∈ L∞
loc(B̄ \ {0}) yield to

1

1− ω
∈ L1(B).

At the same time, (5.1) implies that ω(r) is a H2(B)- weak stable sub-solution of (1.1)λ′.
If now λ′ < λ∗, then by Lemma 3.3, we have

ω(r) < uλ′,

which ia a contradiction since ω is singular while uλ′ is regular.

(2) Suppose first that β = λ′ = Hn

p
and that n ≥ 13. Since by part (1) we have

λ∗ ≤ Hn

p
, we get from Lemma 5.3 and improved Hardy-Rellich inequality that there exists

C > 0 so that for all φ ∈ H2
0 (B)

∫

B

(∆φ)2 − pλ∗

∫

B

φ2

(1− u∗)p+1
≥

∫

B

(∆φ)2 −Hn

∫

B

φ2

|x|4 ≥ C

∫

B

φ2.

It follows that µ1(u
∗) > 0 and u∗ must therefore be singular since otherwise, one could

use the Implicit Function Theorem to continue the minimal branch beyond λ∗.
Suppose now that β > λ′, and let λ′

β
< γ < 1 in such a way that

α := (
γλ∗

λ′
)

1
p+1 < 1.

Setting ω̄ := 1− α(1− ω), we claim that

u∗ ≤ ω̄ in B. (5.3)

Note that by the choice of α we have αp+1λ′ < λ∗, and therefore to prove (3.4) it suffices
to show that for αp+1λ′ ≤ λ < λ∗, we have uλ ≤ ω̄ in B. Indeed, fix such λ and note that

∆2ω̄ = α∆2ω ≤ αλ′

(1− ω)p
=

αp+1λ′

(1− ω̄)p
≤ λ

(1− ω̄)p
.

Assume that uλ ≤ ω̄ dose not hold in B, and consider

R := sup{0 ≥ R ≤ 1|u (R) > ω̄(R)} > 0



Since ω̄(1) = 1− α > 0 = uλ(1), we then have

R1 < 1, uλ(R1) = ω̄(R1) and u′
λ(R1) ≤ ω̄′(R1).

Introduce, as in the proof of the Lemma 4.1, the functions uλ,R1 and ω̄R1. We have that
uλ,R1 is a classical solution of (2.1)λ,α′,β′, where

α′ := R
− 4

p+1

1 (uλ(R1)− 1) + 1, β ′ := R
p−3
p+1

1 (uλ)
′(R1).

Since λ < λ∗ and then

pλ

(1− ω̄)p
≤ pλ∗

αp+1(1− ω)p+1
<

pβ

(1− ω)p+1
,

by (3.3) ω̄R1 is a stable H2(B)-weak sub-solution of (2.1)λ,α′,β′. By Lemma 3.3, we deduce
that uλ ≥ ω̄ in BR1 which is impossible, since ω̄ is singular while uλ is regular. This
establishes claim (3.4) which, combined with the above inequality, yields

pλ∗

(1− u∗)p+1
≤ pλ∗

αp+1(1− ω)p+1
<

pβ

(1− ω)p
,

and Thus

inf
ϕ∈C∞

0 (B)

∫

B
(∆ϕ)2 − pλ∗ϕ2

(1−u∗)p+1

∫

B
ϕ2

> 0.

This is not possible if u∗ is a smooth function, since otherwise, one could use the Implicit
function Theorem to continue the minimal branch beyond λ∗.

Proof Theorem 1.1 (i).
We have proven that the u∗ is regular for n ≤ 12. Now we only prove that u∗ is a

singular solution of (1.1)λ∗ for n ≥ 13, in order to achieve this, we shall find a singular
H−weak sub-solution of (1.1)λ′, denote by ωm(r), which is stable, according to the Lemma
5.4.

Choosing

ωm(r) = 1− a1r
4

p+1 + a2r
m, λ̄ =

8(p− 1)

(p+ 1)2
[n− 2(p− 1)

p+ 1
][n− 4p

p+ 1
],

since ω(1) = ω′(1) = 0, we have

a1 =
m

m− 4
p+1

; a2 =

4
p+1

m− 4
p+1

.

For any m fixed, when p → ∞, we have

a1 = 1 +
4

(p+ 1)m
+ o(p−1) and a2 = a1 − 1 =

4

(p+ 1)m
+ o(p−1)

and

λ̄ =
8(n− 2)(n− 4)

p
+ o(p−1).



Note that

λ′
nλ̄

(1− ωm(r))p
− ∆2ωm(r) =

λ′
nλ̄

(1− ωm(r))p

− a1λ̄r
− 4p

p+1 − a2
m(m− 2)(m+ n− 2)(m+ n− 4)

r4−m

=
λ′
nλ̄

(a1r
4

p+1 − a2rm)p
− a1λ̄r

− 4p
p+1

− a2
m(m− 2)(m+ n− 2)(m+ n− 4)

r4−m

= λ̄r−
4p
p+1

[ λ′
n

(a1 − a2r
m− 4

p+1 )p
− a1

− a2m(m− 2)(m+ n− 2)(m+ n− 4)

λ̄
r

4p
p+1

+m−4
]

= λ̄r−
4p
p+1

[ λ′
n

(a1 − a2r
m− 4

p+1 )p
− a1

− a2m(m− 2)(m+ n− 2)(m+ n− 4)

λ̄
rm− 4

p+1

]

=
λ̄r−

4p
p+1

(a1 − a2r
m− 4

p+1 )p

[

λ′
n −H(rm− 4

p+1 )
]

(5.4)

with

H(x) = (a1 − a2x)
p

[

a1 +
a2m(m− 2)(m+ n− 2)(m+ n− 4)

λ̄
x

]

. (5.5)

(1) Let m = 2, then we can prove that

sup
[0,1]

H(x) = H(0) = ap+1
1 −→ e2 as p −→ +∞.

So (5.4) ≥ 0 is valid as long as
λ′
n = e2.

At the same time, we have (since a1 − a2r
2− 4

p+1 ≥ a1 − a2 ≥ 1 in [0, 1])

n2(n− 4)2

16

1

r4
− pβn

r4(a1 − a2r
2− 4

p+1 )p+1
≥ r−4

[

n2(n− 4)2

16
− pβn

]

. (5.6)

Let βn = (λ′
n + ε)λ̄, where ε is arbitrary sufficient small, we need finally here

n2(n− 4)2

16
− pβn =

n2(n− 4)2

16
− pλ′

nλ̄ > 0.

For that, it is sufficient to have for p −→ +∞

n2(n− 4)2

16
− 8(e2 + ε)(n− 2)(n− 4) + o(

1

p
) > 0.

So (5.6) ≥ 0 holds only for n ≥ 32 when p −→ +∞. Moreover, for p large enough

∫

ϕ2 ∫

ϕ2 ∫



Thus it follows from Lemma 5.4 that u∗ is singular and λ∗ ≤ e2λ̄.
(2) Assume 13 ≤ n ≤ 31. We shall show that u = ω3.5 satisfies the assumptions of

Lemma 5.4 for each dimension 13 ≤ n ≤ 31. Using Maple, for each dimension 13 ≤ n ≤ 31
one can verify that inequality (5.4) ≥ 0 holds for the λ′

n given by Table 1. Then, by using
Maple again, we show that there exists βn > λ′

n such that

(n− 2)2(n− 4)2

16

1

(|x|2 − 0.9|x|n2 +1)(|x|2 − |x|n2 )

+
(n− 1)(n− 4)2

4

1

|x|2(|x|2 − |x|n2 )
≥ pβn

(1− w3.5)p
.

The above inequality and and improved Hardy-Rellich inequality (5.0) guarantee that the
stability condition (5.2) holds for βn > λ′

n. Hence by Lemma 5.4 the extremal solution is
singular for 13 ≤ n ≤ 31 the value of λ′

n and βn are shown in Table 1.

Remark 1 The values of λ′
n and βn in Table 1 are not optimal.

Table1

n λ′
n βn

31 3.15λ̄ 4λ̄
30-19 4λ̄ 10λ̄
18 3.19λ̄ 3.22λ̄
17 3.15λ̄ 3.18λ̄
16 3.13λ̄ 3.14λ̄
15 2.76λ̄ 3.12λ̄
14 2.34λ̄ 2.96λ̄
13 2.03λ̄ 2.15λ̄

Remark 2 The improved Hardy-Rellich inequality (5.0) is crucial to prove that u∗ is
singular in dimensions n ≥ 13. Indeed by the classical Hardy-Rellich inequality and
u := w2, Lemma 5.4 only implies that u∗ is singular n dimensions n ≥ 32.
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Properties of the extremal solution for a fourth-order

elliptic problem ∗†‡§¶‖

Baishun Lai · Zhuoran Du

Abstract Let λ∗ > 0 denote the largest possible value of λ such that







∆2u = λ
(1−u)p in B,

0 < u ≤ 1 in B,

u = ∂u
∂n

= 0 on ∂B.

has a solution, where B is the unit ball in Rn centered at the origin, p > 1 and
n is the exterior unit normal vector. We show that for λ = λ∗ this problem
possesses a unique weak solution u∗, called the extremal solution. We prove

that u∗ is singular when n ≥ 13 for p large enough and 1−C0r
4

p+1 ≤ u∗(x) ≤
1−r

4
p+1 on the unit ball, where C0 := (λ∗/λ̄)

1
p+1 and λ̄ := 8(p−1)

(p+1)2
[n− 2(p−1)

p+1 ][n−
4p
p+1 ]. Our results actually complete part of the open problem which [11] left

Mathematics Subject Classification (2000) 35B45 · 35J40.

1. Introduction and main result







∆2u = λ
(1−u)p

in B,

0 < u ≤ 1 in B,
u = ∂u

∂n
= 0 on ∂B.

(1.1)λ

Here B denotes the unit ball in Rn (n ≥ 2) centered at the origin, λ > 0, p > 1 and ∂
∂n

the differentiation with the respect to the exterior unit normal, i.e., in radial direction.
We consider only radial solutions, since all positive smooth solutions of (1.1)λ are radial,
see Berchio et al. [3].

The motivation for studying (1.1)λ stems from a model for the steady sates of a simple
micro electromechanical system (MEMS) which has the general form (see for example [20],
[23])











α∆2u = (β
∫

Ω
|∇u|2dx+ γ)∆u+ λf(x)

(1−u)2(1+χ
∫
Ω

dx

(1−u)2
)

in Ω,

0 < u < 1 in Ω,
u = α ∂u

∂n
= 0 on ∂Ω,

(1.2)
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Figure 1 (The bifurcation diagram in the
case the extremal solution is singular)
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Figure 2 (
)

The local bifercation diangram in
the case the extremal solution is regular

1

where α, β, γ, χ ≥ 0, are fixed, f ≥ 0 represents the permittivity profile, Ω is a bounded
domain in Rn and λ > 0 is a constant which is increasing with respect to the applied
voltage.

Recently, Equation (1.2) posed in Ω = B with β = γ = χ = 0, α = 1 and f(x) ≡ 1,
which is reduced to







∆2u = λ
(1−u)2

in B,

0 < u < 1 in B,
u = ∂u

∂n
= 0 on ∂B,

(1.3)

has been studied extensively in [8]. For convenience, we now give the following notion of
solution.

Definition 1.1. If uλ is a solution of (1.1)λ such that for any other solution vλ of
(1.1)λ one has

uλ ≤ vλ, a.e. x ∈ B,

we say that uλ is a minimal solution of (1.1)λ.

It is shown that there exists a critical value λ∗ > 0 (pull-in voltage) such that if
λ ∈ (0, λ∗) the problem (1.3) has a smooth minimal solution , while for λ > λ∗ (1.3)
has no solution even in a weak sense. Moreover, the branch λ → uλ(x) is increasing
for each x ∈ B, and therefore the function u∗(x) := limλ→λ∗ uλ(x) can be considered as
a generalized solution that corresponds to the pull-in voltage λ∗. Now the issue of the
regularity of this extremal solution-which, by elliptic regularity theory, is equivalent to
whether supΩ u∗ < 1- is an important question for many reasons. For example, one of
the reason is that it decides whether the set of solutions stops there, or whether a new
branch of solutions emanates from a bifurcation state (u∗, λ∗) (see Figures 1,2). This issue
turned out to depend closely on the dimension. Indeed by the key uniform estimate of
‖(1−u)−3‖L1, Guo and Wei [17] obtained the regularity of the extremal solution for small
dimensions and they proved that for dimension n = 2 or n = 3, u∗ is smooth. But from
their result, the regularity of extremal solution of (1.3) is unknown for n ≥ 4. Recently,
using certain improved Hardy-Rellich inequalities, Cow-Esp-Gho-Mor [8] improved the
above result and they obtained that u∗ is regular in dimensions 1 ≤ n ≤ 8, while it
is singular for n ≥ 9, i.e., the critical dimension is 9. So the issue of the regularity of
the extremal solution of (1.1)λ for power p = −2 is completely solved, but the critical
dimension for generally negative power is unknown.

Recently, Juan Dàvila etal [11] gave the deep research about the multiplicity phe-
nomenon of (1.1)λ radial solutions of and the regularity of the extremal solution of (1.1)λ
for a large range of negative powers.



For convenience, we now define:

pc =
n + 2−

√

4 + n2 − 4
√
N2 +Hn

N − 6−
√

4 +N2 − 4
√
N2 +Hn

for n ≥ 3;

p+c =
n+ 2 +

√

4 + n2 − 4
√
n2 +Hn

N − 6 +
√

4 + n2 − 4
√
n2 +Hn

for n ≥ 3, n 6= 4

with Hn = (n(n−4)/4)2 and the numbers pc and p+c are such that when p = pc or p = p+c
then

(
4

p− 1
+ 4)(

4

p− 1
+ 2)(n− 2− 4

p− 1
)(n− 4− 4

p− 1
) = Hn

Now we give the main result of [11]

Theorem A Assume

n = 3 and p+c < p < pc, or 4 ≤ n ≤ 12 and −∞ < p < pc. (1.5)

Then there exist a unique λs such that (1.1)λ with λ = λs has infinitely many radial
smooth solutions. For λ 6= λs there are finitely many radial smooth solutions and their
number goes to infinity as λ → λs. Moreover, λs < λ∗ and u∗ is regular.

From this Theorem, we known that the extremal solution of (1.1)λ is regular for a
certain range of p and n. At the same time, they left a open natural problem: if







N = 3 and p ∈ (−3, p+c ]
⋃

[pc,−1) or
5 ≤ N ≤ 12 and pc ≤ p < −1, or
N ≥ 13 and p < −1,

is u∗ singular?
In this paper, by constructing a semi-stable singular H2(B)− weak sub-solution of

(1.1)λ, we prove that, if p is large enough, the extremal solution is singular for dimensions
n ≥ 13 and complete part of the above open problem. Our result is stated as follows:

Theorem 1.1 ; (i) For any p > 1, the unique extremal solution of (1.1)λ∗ is regular
for dimensions n ≤ 4;

(ii) There exists p0 > 1 large enough such that for p ≥ p0, the unique extremal solution
of (1.1)λ∗ is singular for dimensions n ≥ 13.

From the technical point of view, one of the basic tools in the analysis of nonlinear
second order elliptic problems in bounded and unbounded domains of Rn(n ≥ 2) is the
maximum principle. However, for high order problems, such principle dose not normally
hold for general domains (at least for the clamped boundary conditions u = ∂u

∂n
= 0 on

∂Ω), which causes several technical difficulties. One of reasons to the study (1.1)λ in a ball
is that a maximum principle holds in this situation, see [1], [5]. The second obstacle is the
well-known difficulty of extracting energy estimates for solutions of fourth order problems
from their stability properties. Besides, for the corresponding second order problem,
the starting point was an explicit singular solution for a suitable eigenvalue parameter λ
which turned out to play a fundamental role for the shape of the corresponding bifurcation
diagram, see [4]. When turning to the biharmonic problem (1.1) the second boundary



method used to analyze the regularity of the extremal solution for second order problem
could not carry to the corresponding problem for (1.1)λ. In this paper, we, in order to
overcome the third obstacle, use improved and non standard Hardy-Rellich inequalities
recently established by Ghoussoub-Moradifam in [14] to construct a semi-stable singular
H2(B)− weak sub-solution of (1.1)λ.

This paper is organized as follows. In the next section, some preliminaries are reviewed.
In Section 3, we give the uniform estimate of ‖(1− u)p+1‖L1 according to the stability of
the minimal solutions. We study the regularity of the extremal solution of (1.1)λ and the
Theorem 1 (ii) is established in Section 4. Finally, we will show that the extremal solution
u∗ in dimensions n ≥ 13 is singular by constructing a semi-stable singular H2(B)− weak
sub-solution of (1.1)λ.

2. Preliminaries

First we give some comparison principles which will be used throughout the paper

Lemma 2.1. (Boggio’s principle, [5]) If u ∈ C4(B̄R) satisfies

{

∆2u ≥ 0 in BR,
u = ∂u

∂n
= 0 on ∂BR,

then u ≥ 0 in BR.

Lemma 2.2. Let u ∈ L1(BR) and suppose that

∫

BR

u∆2ϕ ≥ 0

for all ϕ ∈ C4(B̄R) such that ϕ ≥ 0 in BR, ϕ|∂BR
= ∂ϕ

∂n
= 0. Then u ≥ 0 in BR. Moreover

u ≡ 0 or u > 0 a.e., in BR.

For a proof see Lemma 17 in [1].

Lemma 2.3. If u ∈ H2(BR) is radial, ∆
2u ≥ 0 in BR in the weak sense, that is

∫

BR

∆u∆ϕ ≥ 0 ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0

and u|∂BR
≥ 0, ∂u

∂n
|∂BR

≤ 0 then u ≥ 0 in BR.

Proof. We only deal with the case R = 1 for simplicity. Solve

{

∆2u1 = ∆2u in B
u1 =

∂u1

∂n
= 0 on ∂B

in the sense u1 ∈ H2
0 (B) and

∫

B
∆u1∆ϕ =

∫

B
∆u∆ϕ for all ϕ ∈ C∞

0 (B). Then u1 ≥ 0 in
B by lemma 2.2.

Let u2 = u−u1 so that ∆2u2 = 0 in B. Define f = ∆u2. Then ∆f = 0 in B and since
f is radial we find that f is a constant. It follows that u2 = ar2 + b. Using the boundary
conditions we deduce a + b ≥ 0 and a ≤ 0, which imply u2 ≥ 0.

As in [8], we are now led here to examine problem (1.1)λ with non-homogeneous









∆2u = λ
(1−u)p

in B,

α < u ≤ 1 in B,
u = α, ∂u

∂n
= γ on ∂B,

(2.1)λ,α,γ

where α, γ are given.

Let Φ denote the unique solution of
{

∆2Φ = 0 in B,
Φ = α, ∂Φ

∂n
= γ on ∂B.

(2.2)

We will say that the pair (α, γ) is admissible if γ ≤ 0, and α− γ

2
< 1. We now introduce

a notion of weak solution.

Definition 2.1. We say that u is a weak solution of (2.1)λ,α,γ, if α ≤ u ≤ 1 a.e. in Ω,
1

(1−u)p
∈ L1(Ω) and if

∫

Ω

(u− Φ)∆2ϕ = λ

∫

Ω

ϕ

(1− u)p
∀ϕ ∈ C4(B̄)

⋂

H2
0 (B),

where Φ is given in (2.1). We say u is a weak super-solution (resp. weak sub-solution) of
(2.1)λ,α,γ, if the equality is replaced with ≥ (resp.≤) for ϕ ≥ 0.

Definition 2.2. We say a weak solution of (2.1)λ,α,γ is regular (resp. singular) if
‖u‖∞ < 1 (resp. ‖u‖ = 1) and stable (resp. semi-stable) if

µ1(u) = inf{
∫

B

(∆ϕ)2 − pλ

∫

B

ϕ2

(1− u)p
: φ ∈ H2

0 (B), ‖φ‖L2 = 1}

is positive (resp. non-negative).

We now define

λ∗(α, γ) := sup{λ > 0 : (2.1)λ,α,γ has a classical soltion}

and

λ∗(α, γ) := sup{λ > 0 : (2.1)λ,α,γ has a weak soltion}.
Observe that by Implicit Function Theorem, we can classically solve (2.1)λ,α,γ for small
λ′s. Therefore, λ∗(α, γ) and λ∗(α, γ) are well defined for any admissible pair (α, γ). To
cut down notations we won’t always indicate α and γ.

Let now give the following standard existence result.

Theorem 2.1. For every 0 ≤ f ∈ L1(Ω) there exists a unique 0 ≤ u ∈ L1(Ω) which
satisfies

∫

Ω

u∆2ϕdx =

∫

Ω

fϕdx

for all ϕ ∈ C4(B̄)
⋂

H2
0 (B).

The proof is standard, please see [15], here we omit it. From this Theorem, we imme-
diately have the following result.

Proposition 2.1. Assume the existence of a weak super-solution U of (2.1) . Then



For the sake of completeness, we include a brief proof here, which be called “weak”
iterative scheme: u0 = U and (inductively) let un, n ≥ 1, be the solution of

∫

Ω

(un − Φ)∆2ϕ = λ

∫

Ω

ϕ

(1− un−1)p
∀ϕ ∈ C4(B̄)

⋂

H2
0 (B),

given by Theorem 2.2. Since α is a sub-solution of (2.1)λ,α,γ, inductively it is easily shown
by Lemma 2.2 that α ≤ un+1 ≤ un ≤ U for every n ≥ 0. Since

(1− un)
−p ≤ (1− U)−p ∈ L1(B),

by Lebesgue Theorem the function u = limn→∞ un is a weak solution of (2.1)λ,α,γ so that
α ≤ u ≤ U .

In particular, for every λ ∈ (0, λ∗), we can find a weak solution of (2.1)λ,α,γ. In the
same range of λ′s, this is still true for regular weak solutions as shown in the following
lemma.

Lemma 2.4. Let (α, γ) be an admissible pair and u be a weak solution of (2.1)λ,α,γ.
Then, there exists a regular solution for every 0 < µ < λ.

Proof. Let ǫ ∈ (0, 1) be given and let ū = (1 − ǫ)u + ǫΦ, where Φ is given in (2.2).
by lemma 2.2 supB Φ < supB u ≤ 1. Hence

sup
B

ū ≤ (1− ǫ) + ǫ sup
B

Φ < 1, inf ū ≥ (1− ǫ)α + ǫ inf
B

Φ = α

∫

B

(ū− Φ)(β∆2ϕ− τ∆ϕ) = (1− ǫ)

∫

B

(u− Φ)(β∆2ϕ− τ∆ϕ) = (1− ǫ)λ

∫

B

ϕ

(1− u)p

= (1− ǫ)p+1λ

∫

B

ϕ

(1− ū+ ǫ(Φ− 1))p
≥ (1− ǫ)p+1λ

∫

B

ϕ

(1− ū)p
.

Note that 0 ≤ (1 − ǫ)(1 − u) = 1 − ū + ǫ(Φ − 1) < 1 − ū. So ū is a weak super-solution
of (2.1)(1−ǫ)p+1λ,α,γ such that supB < 1. By Lemma 2.2 we get the existence of a weak
solution B of (2.1)(1−ǫ)p+1λ,α,γ so that α ≤ ω ≤ ū. In particular, supB ū < 1 and ω is a
regular weak solution. Since ǫ ∈ (0, 1) is arbitrarily chosen, the proof is done.

Now we recall some basic facts about the minimal branch

Theorem 2.2. λ∗ ∈ (0,+∞) and the following holds:

1. For each 0 < λ < λ∗ there exists a regular and minimal solution uλ of (2.1)λ,α,γ;
2. For each x ∈ B the map λ → uλ(x) is strictly increasing on (0, λ∗);
3. For λ > λ∗ there are no weak solutions of (2.1)λ,α,γ.

The proof is standard, see [8], here we omit it.

3. Stability of the minimal solutions

In this section we shall show that the extremal solution is regular in small dimensions.
Let us begin with the following priori estimates along the minimal branch uλ. In order
to achieve this, we shall need yet another notion of H2(B)- weak solutions, which is an
intermediate class between classical and weak solutions.



Definition 3.1. We say that u is a H2(B)- weak solution of (2.1)λ,α,β if u − Φ ∈
H2

0 (B), α ≤ u ≤ 1 ∈ B, 1
(1−u)p

∈ L1(B) and if

∫

B

∆u∆φ = λ

∫

B

φ

(1− u)p
, ∀φ ∈ C4(B̄)

⋂

H2
0 (B),

where Φ is given in (2.2). We say that u is a H2(B)- weak super-solution (resp. H2(B)-
weak sub-solution) of (2.1)λ,α,β if for φ ≥ 0 the equality is replaced with ≥ (resp.≤) and
u ≥ α (resp. ≤), ∂vu ≤ β (resp. ≥) on ∂B.

Theorem 3.1. Suppose that (α, γ) is an admissible pair.
1. The minimal solution uλ is stable, and is the unique semi-stable H− weak solution

of (2.1)λ,α,γ;
2. The function u∗ := limλ→λ∗ uλ is a well-defined semi-stable H− weak solution of

(2.1)λ∗,α,γ;
3. u∗ is the unique H− weak solution of (2.1)λ∗,α,γ, and when u∗ is classical solution,

then µ1(u
∗) = 0;

4. If v is a singular, semi-stable H− weak solution of (2.1)λ,α,γ, then v = u∗ and
λ = λ∗.

The main tool which we use to prove the theorem 3.1 is the following comparison
lemma which is valid exactly in the class H.

Lemma 3.2. Let (α, γ) is an admissible pair and u be a semi-stable H− weak solution
of (Pλ,α,γ). Assume U is a H− weak super-solution of (2.1)λ,α,γ. Then

1. u ≤ U a.e. in Ω;
2. If u is a classical solution and µ1(u) = 0 then U = u.

A more general version of Lemma 3.2 is available in the following.

Lemma 3.3. Let (α, γ) is an admissible pair and γ′ ≤ 0. Let u be a semi-stable H−
weak sub- solution of (2.1)λ,α,γ with u = α′ ≤ α,∆u = β ′ ≥ β on ∂Ω. Assume that U is a
H− weak super-solution of (2.1)λ,α,γ with U = α,∆U = β on ∂Ω. Then U ≥ u a.e. in Ω.

The proof of Lemma 3.2 and Lemma 3.1 are same as [8, 22], we omit it here.

We need also some a priori estimates along the minimal branch uλ.

Lemma 3.4. Let (α, γ) be an admissible pair. Then for every λ ∈ (0, λ∗), we have

p

∫

B

(uλ − Φ)2

(1− uλ)p+1
≤

∫

B

uλ − Φ

(1− uλ)p
,

where Φ is given by (2.1). In particular, there is a constant C independent of λ so that

∫

B

|∆uλ|2dx+

∫

B

1

(1− uλ)p+1
≤ C. (3.1)

Proof. Testing (2.1)λ,α,γ on uλ − Φ ∈ W 4,2(B) ∩H2
0 (B). We see that

λ

∫

B

uλ − Φ

(1− uλ)p
=

∫

B

(∆(uλ − Φ))2dx ≥ pλ

∫

B

(uλ − Φ)2

(1− uλ)p+1
dx



in the view of β∆2Φ− τ∆Φ = 0. In particular, for δ > 0 small we have that

∫

|uλ−Φ|≥δ

1

(1− uλ)p+1
≤ 1

δ2

∫

|uλ−Φ|≥δ

(uλ − Φ)2

(1− uλ)p+1
≤ 1

δ2

∫

B

1

(1− uλ)p

≤ δp−1

∫

B

1

(1− uλ)p+1
+ Cδ

by means of Young’s inequality. Since for δ small

∫

|uλ−Φ|≤δ

1

(1− uλ)p+1
≤ C

for some C > 0, we get that
∫

B

1

(1− uλ)p+1
≤ C

for some C > 0 and for every λ ∈ (0, λ∗). By Young’ s and Hölder’s inequalities, we have

∫

B

|∆uλ|2dx =

∫

B

∆uλ∆Φdx+ λ

∫

B

uλ − Φ

(1− uλ)p
dx

≤ δ

∫

B

|∆uλ|2dx+ Cδ + C(

∫

B

1

(1− uλ)p+1
)

p

p+1 .

So we have
∫

B

|∆uλ|2dx+

∫

B

1

(1− uλ)p+1
≤ C

where C is absolute constant.

Proof of the Theorem 3.1. (1) Since ‖uλ‖∞ < 1, the infimum defining µ1(uλ)
is achieved at a first eigenfunction for every λ ∈ (0, λ∗). since λ 7→ uλ(x) is increasing for
every x ∈ B, it is easily seen that λ → µ1(uλ) is a decreasing and continuous function on
(0, λ∗). Define

λ∗∗ := sup{0 < λ < λ∗ : µ1(uλ) > 0}.
We have that λ∗∗ = λ∗. Indeed, otherwise we would have µ1(uλ∗∗

) = 0, and for every
µ ∈ (λ∗∗, λ

∗), uµ would be a classical super-solution of (Pλ∗∗,α,γ). A contradiction arises
since Lemma 3.2 implies uµ = uλ∗∗

. Finally, Lemma 3.2 guarantees the uniqueness in the
class of semi-stable H− weak solutions.

(2) It follows from (3.1) that uλ → u∗ in a pointwise sense and weakly in H2(B), and
1

1−u∗
∈ Lp+1. In particular, u∗ is a H− weak solution of (Pλ∗,α,γ) which is also semi-stable

as the limiting function of the semi-stable solutions {uλ}.
(3) Whenever ‖u∗‖∞ < 1, the function u∗ is a classical solution, and by the Implicit

Function Theorem we have that µ1(u
∗) = 0 to prevent the continuation of the minimal

branch beyond λ∗. By Lemma 3.2, u∗ is then the unique H− weak solution of (Pλ∗,α,γ).

(4) If λ < λ∗, we get by uniqueness that v = uλ. So v is not singular and a
contradiction arises. Now by theorem 2.5 (3) we have that λ = λ∗. Since v is a semi-
stable H− weak solution of (Pλ∗,α,γ) and u∗ is a H− weak super-solution of (Pλ∗,α,γ), we
can apply Lemma 3.2 to get v ≤ u∗ a.e. in Ω. Since u∗ is also a semi-stable solution, we
can reverse the roles of v and u∗ in Lemma 3.2 to see that v ≥ u∗ a.e. in Ω. So equality



4. Regularity of the extremal solutions and the Proof of the Theorem 1.1
(i)

In this section we first show that the extremal solution is regular in small dimensions
by the uniformly bounded of uλ in H2

0 (B). Second, using the refined version of Hardy-
Rellich inequality, we prove the extremal solution is singular for n ≥ 13 and p large
enough. Now we give the proof of Theorem 1.1 (ii).

Proof of Theorem 1.1 (i). As already observed, estimate (3.1) implies that f(u∗) =

(1 − u∗)−p ∈ L
p+1
p (B). Since u∗ is radial and radially decreasing. We need to show that

u∗(0) < 1 to get the regularity of u∗. In fact, on the contrary suppose that u∗(0) = 1. By

the standard elliptic regularity theory shows that u∗ ∈ W 4, p+1
p . By the Soblev imbedding

theorem, i.e. W 4, p+1
p →֒ Cm(0 < m ≤ 4 − pn

p+1
, 1 ≤ n ≤ 4). We have u∗ is a Lipschitz

function in B for 1 ≤ n ≤ 3.
Now suppose u∗(0) = 1 and 1 ≤ n ≤ 2. Since

1

1− u∗
≥ C

|x| in B

for some C > 0. One see that

+∞ = Cp+1

∫

B

1

|x|p+1
≤

∫

B

1

(1− u∗)p+1
< +∞.

A contradiction arises and hence u∗ is regular for 1 ≤ n ≤ 2.

For n = 3, by the Sobolev imbedding theorem, we have u∗ ∈ C
p+4
p+1 (B̄), if p+4

p+1
≥ 2,

then u∗(0) = 1, Du∗(0) = 0 and

|Du∗(ε)−Du∗(0)| ≤ M |ε| ≤ M |x|

where 0 < |ε| < |x|. Thus

|u(x)− u(0)| ≤ |Du(ε)||x| ≤ M |x|2.

This inequality shows that

+∞ = Cp+1

∫

B

1

|x|2(p+1)
≤

∫

B

1

(1− u∗)p+1
< +∞.

A contradiction arises and hence u∗ is regular for n = 3; if p+4
p+1

< 2, then

|Du(ε)−Du(0)| ≤ M |ε| 4
p−1

−1 ≤ M |x| 3
p+1

where 0 < |ε| < |x|. Thus

|u(x)− u(0)| ≤ |Du(ε)||x| ≤ M |x|
4+p

p+1 ,

and a contradiction is obtained as above.
For n = 4, by the Sobolev imbedding theorem, we have u∗ ∈ C

4
p+1 (B̄). If 1 < 4

p+1
< 2,

then u∗(0) = 1, Du∗(0) = 0 and



where 0 < |ε| < |x|. Thus

|u(x)− u(0)| ≤ |Du(ε)||x| ≤ M |x| 4
p+1 .

If 4
p+1

≤ 1, then u∗ is a Hölder’s continues and

1− u∗(x) ≤ M |x| 4
p+1 ,

and we obtain a contradiction as above.

Now we give the point estimate of singular extremal solution for dimensions n ≥ 5.

Theorem 4.1. Let n ≥ 5 and (u∗, λ∗) be the extremal pair of (1.1)λ, when u∗ is
singular, then

1− u∗ ≤ C0|x|
4

p+1 ,

where C0 := (λ∗/λ̄)
1

p+1 and λ̄ := 8(p−1)
(p+1)2

[n− 2(p−1)
p+1

][n− 4p
p+1

].

In order to prove the Theorem 4.1, we need the lower bounds of λ∗ and state as follows
Lemma 4.1. λ∗ satisfies the following lower bounds for n ≥ 4

λ∗ ≥ λ̄

where λ̄ = 8(p−1)
(p+1)2

[n− 2(p−1)
p+1

][n− 4p
p+1

] .

Proof. the proof is standard, here we include the proof for the sake of completeness.

Notice that for n ≥ 4 the function ū = 1− |x| 4
p+1 satisfies

1

(1− ū)p
∈ L1(B)

and ū is a weak solution of

∆2ū =
λ̄

(1− ū)p
,

and ū(1) = 0 = uλ(1);
∂uλ

∂n
(1) ≥ ∂ūλ

∂n
(1). Therefore, ū turns out to be a weak super-solution

of (1.1)λ provided λ < λ̄. Thus necessarily, we have

λ∗ = λ∗ ≥ λ̄.

The proof is done.

Proof of Theorem 4.1. First note that Lemma 4.1 gives the lower bound:

λ∗ ≥ λ̄.

For δ > 0, we define uδ(x) := 1 − Cδ|x|
4

p+1 with Cδ := (λ
∗

λ̄
+ δ)

1
p+ > 1. Since n ≥ 5. we

have that uδ ∈ H2
loc(R

n), 1
1−uδ

∈ L3
loc(R

n) and uδ is a H2-weak solution of

∆2uδ =
λ∗ + δλ̄

(1− uδ)p
in Rn

We claim that uδ ≤ u∗ in B, which will finish the proof by just letting δ → 0.
Assume by contradiction that the set



is non-empty, and let r1 = supΓ. Since

uδ(1) = 1− Cδ < 0 = u∗(1),

we have that 0 < r1 < 1 and one infers that

α := u∗(r1) = uδ(r1), β = (u∗)′(r1) ≥ u′
δ(r1).

Setting uδ,r1(r) = r
− 4

p+1

1 (uδ(r1r)−1)+1, we easily see that the function uδ,r1(r) is a H
2(B)-

weak super-solution of (2.1)λ∗+δλ̄,α′,β′, where

α′ := r
− 4

p+1

1 (u∗(r1r)− 1) + 1, β ′ := r
p−3
p+1

1 β.

Similarly, define u∗
r1
= r

− 4
p+1

1 (u∗(r1r)− 1) + 1, we have u∗
r1

is singular semi-stable H2(B)-
weak solution of (2.1)λ∗,α′,β′.

Now we claim that (α′, β ′) is an admissible pair. Since u∗ is radially decreasing, we
have that β ′ ≤ 0. Define the function

ω(r) := (α′ − β ′

2
) +

β ′

2
|x|2 + γ(x),

where γ(x) is a solution of ∆2γ = λ∗ in B with γ = ∂vγ = 0 on ∂B. Then ω is a classical
solution of

{

∆2ω = λ∗ in B
ω = α′, ∂vω = β ′ on ∂B.

Since λ∗

(1−u∗

r1
)p

≥ λ∗, by Lemma 2.1 we have

u∗
r1
≥ ω a.e. inB

Since ω(0) = α′ − β′

2
+ γ(0) and γ(0) > 0, we have

α′ − β ′

2
< 1

So (α′, β ′) is an admissible pair and by Theorem 3.1 (4) we get that (u∗
r1
, λ∗) coincides

with the extremal pair of (2.1)λ,α′,β′ in B.
Since (α′, β ′) is an admissible pair and uδ,r1 is aH

2(B)-weak super-solution of (2.1)λ∗+δλ̄,α′,β′ .
We get from Proposition 2.1, the existence of a weak solution of (2.1)λ∗+δλ̄,α′,β′. Since

λ∗ + δλ̄ > λ∗,

we contradict the fact that λ∗ is the extremal parameter of (2.1)λ,α′,β′.

Thanks to the lower estimate on u∗, we get the following result.

Corollary 4.1. In any dimension n ≥ 1, we have

λ∗ > λ̄ =
8(p− 1)

(p+ 1)2
[n− 2(p− 1)

p+ 1
][n− 4p

p+ 1
].

Proof. The function ū := 1 − |x| 4
p+1 is a H2(B)-weak solution of (2.1)λ̄,0,− 4

p+1
. If by

contradiction λ∗ = λ̄, then ū is aH2(B)-weak super-solution of (1.1) for every λ ∈ (0, λ∗).



If 1 ≤ n ≤ 4, u∗ is then regular by Theorem (i). By Theorem 3.1 (3) there holds
µ1(u

∗) = 0. By Lemma 3.2 then yields that u∗ = ū, which is a contradiction since then
u∗ will not satisfy the boundary conditions.

If now n ≥ 5 and λ∗ = λ̄, then C0 = 1 in Theorem 4.1, and we then have u∗ ≥ ū. It
means again that u∗ = ū, a contradiction that completes the proof.

In what follows, we will show that the extremal solution u∗ of (1.1)λ in dimensions
n ≥ 13 is singular.

5. The extremal solution is singular for n ≥ 13

We prove in this section that the extremal solution is singular for n ≥ 13 and p large
enough. For that we will need a a suitable Hardy-Rellich type inequality which was
established by Ghoussoub-Moradifam in [14]. As in the previous section (u∗, λ∗) denotes
the extremal pair of (2.1)λ

Lemma 5.1. Let n ≥ 5 and B be the unit ball in Rn. Then there exists C > 0, such
that the following improved Hardy-Rellich inequality holds for all ϕ ∈ H2

0 (B):

∫

B

(∆ϕ)2dx ≥ n2(n− 4)2

16

∫

B

ϕ2

|x|4dx+ C

∫

B

ϕ2dx

Lemma 5.2. Let n ≥ 5 and B be the unit ball in Rn. Then the following improved
Hardy-Rellich inequality holds for all ϕ ∈ H2

0 (B):

∫

B

(∆ϕ)2dx ≥ (n− 2)2(n− 4)2

16

∫

B

ϕ2dx

(|x|2 − 0.9|x|n2+1)(|x|2 − |x|n2 )

+
(n− 1)(n− 4)2

4

∫

B

ϕ2dx

|x|2(|x|2 − |x|n2 ) . (5.0)

As a consequence, the following improvement of the classical Hardy-Rellich inequality
holds:

∫

B

(∆ϕ)2dx ≥ n2(n− 4)2

16

∫

B

ϕ2

|x|2(|x|2 − |x|n2 )
.

Lemma 5.3. If n ≥ 13, then u∗ ≤ 1− |x| 4
p+1 .

Proof. Recall from Corollary 4.1 that λ̄ < λ∗. Let ū = 1− |x| 4
p+1 , we now claim that

uλ ≤ ū for all λ ∈ (λ̄, λ∗). Indeed, fix such a λ and assume by contradiction that

R1 := inf{0 ≤ R ≤ 1 : uλ < ū in the interval (R, 1)} > 0.

From the boundary condition, one has that uλ < ū(r) as r → 1−. Hence, 0 < R1 <
1, α := uλ(R1) = ū(R1) and β := u′

λ(R1) ≤ ū′(R1). The same as the proof of Lemma 4.1,
we have uλ ≥ ū in BR1 and a contradiction arises in view of the fact that limx→0 ū(x) = 1
and ‖uλ‖∞ < 1. It follows that uλ ≤ ū in B for every λ ∈ (λ̄, λ∗) and in particular u∗ ≤ ū
in B.

Lemma 5.4. Let n ≥ n(p). Suppose there exists λ′ > 0 and a singular radial function
ω(r) ∈ H2(B) with 1

1−ω
∈ L∞

loc(B̄ \ {0}) such that

{

∆2ω ≤ λ′

for 0 < r < 1,



and

pβ

∫

B

ϕ2

(1− ω)p+1
≤

∫

B

(∆ϕ)2 for all ϕ ∈ H2
0 (B) (5.2)

1. If β ≥ λ′, then λ∗ ≤ λ′.
2. If either β > λ′ or β = λ′ = Hn

p
, then the extremal solution u∗ is necessarily

singular.

Proof. (1). First, note that (5.2) and 1
1−ω

∈ L∞
loc(B̄ \ {0}) yield to

1

1− ω
∈ L1(B).

At the same time, (5.1) implies that ω(r) is a H2(B)- weak stable sub-solution of (1.1)λ′.
If now λ′ < λ∗, then by Lemma 3.3, we have

ω(r) < uλ′,

which ia a contradiction since ω is singular while uλ′ is regular.

(2) Suppose first that β = λ′ = Hn

p
and that n ≥ 13. Since by part (1) we have

λ∗ ≤ Hn

p
, we get from Lemma 5.3 and improved Hardy-Rellich inequality that there exists

C > 0 so that for all φ ∈ H2
0 (B)

∫

B

(∆φ)2 − pλ∗

∫

B

φ2

(1− u∗)p+1
≥

∫

B

(∆φ)2 −Hn

∫

B

φ2

|x|4 ≥ C

∫

B

φ2.

It follows that µ1(u
∗) > 0 and u∗ must therefore be singular since otherwise, one could

use the Implicit Function Theorem to continue the minimal branch beyond λ∗.
Suppose now that β > λ′, and let λ′

β
< γ < 1 in such a way that

α := (
γλ∗

λ′
)

1
p+1 < 1.

Setting ω̄ := 1− α(1− ω), we claim that

u∗ ≤ ω̄ in B. (5.3)

Note that by the choice of α we have αp+1λ′ < λ∗, and therefore to prove (3.4) it suffices
to show that for αp+1λ′ ≤ λ < λ∗, we have uλ ≤ ω̄ in B. Indeed, fix such λ and note that

∆2ω̄ = α∆2ω ≤ αλ′

(1− ω)p
=

αp+1λ′

(1− ω̄)p
≤ λ

(1− ω̄)p
.

Assume that uλ ≤ ω̄ dose not hold in B, and consider

R1 := sup{0 ≥ R ≤ 1|uλ(R) > ω̄(R)} > 0

Since ω̄(1) = 1− α > 0 = uλ(1), we then have

R1 < 1, uλ(R1) = ω̄(R1) and u′
λ(R1) ≤ ω̄′(R1).

Introduce, as in the proof of the Lemma 4.1, the functions uλ,R1 and ω̄R1. We have that
uλ,R1 is a classical solution of (2.1)λ,α′,β′, where



Since λ < λ∗ and then

pλ

(1− ω̄)p
≤ pλ∗

αp+1(1− ω)p+1
<

pβ

(1− ω)p+1
,

by (3.3) ω̄R1 is a stable H2(B)-weak sub-solution of (2.1)λ,α′,β′. By Lemma 3.3, we deduce
that uλ ≥ ω̄ in BR1 which is impossible, since ω̄ is singular while uλ is regular. This
establishes claim (3.4) which, combined with the above inequality, yields

pλ∗

(1− u∗)p+1
≤ pλ∗

αp+1(1− ω)p+1
<

pβ

(1− ω)p
,

and Thus

inf
ϕ∈C∞

0 (B)

∫

B
(∆ϕ)2 − pλ∗ϕ2

(1−u∗)p+1

∫

B
ϕ2

> 0.

This is not possible if u∗ is a smooth function, since otherwise, one could use the Implicit
function Theorem to continue the minimal branch beyond λ∗.

Proof Theorem 1.1 (ii).
We have proven that the u∗ is regular for n ≤ 12. Now we only prove that u∗ is a

singular solution of (1.1)λ∗ for n ≥ 13, in order to achieve this, we shall find a singular
H−weak sub-solution of (1.1)λ′, denote by ωm(r), which is stable, according to the Lemma
5.4.

Choosing

ωm(r) = 1− a1r
4

p+1 + a2r
m, λ̄ =

8(p− 1)

(p+ 1)2
[n− 2(p− 1)

p+ 1
][n− 4p

p+ 1
],

since ω(1) = ω′(1) = 0, we have

a1 =
m

m− 4
p+1

; a2 =

4
p+1

m− 4
p+1

.

For any m fixed, when p → ∞, we have

a1 = 1 +
4

(p+ 1)m
+ o(p−1) and a2 = a1 − 1 =

4

(p+ 1)m
+ o(p−1)

and

λ̄ =
8(n− 2)(n− 4)

p
+ o(p−1).



Note that

λ′
nλ̄

(1− ωm(r))p
− ∆2ωm(r) =

λ′
nλ̄

(1− ωm(r))p

− a1λ̄r
− 4p

p+1 − a2
m(m− 2)(m+ n− 2)(m+ n− 4)

r4−m

=
λ′
nλ̄

(a1r
4

p+1 − a2rm)p
− a1λ̄r

− 4p
p+1

− a2
m(m− 2)(m+ n− 2)(m+ n− 4)

r4−m

= λ̄r−
4p
p+1

[ λ′
n

(a1 − a2r
m− 4

p+1 )p
− a1

− a2m(m− 2)(m+ n− 2)(m+ n− 4)

λ̄
r

4p
p+1

+m−4
]

= λ̄r−
4p
p+1

[ λ′
n

(a1 − a2r
m− 4

p+1 )p
− a1

− a2m(m− 2)(m+ n− 2)(m+ n− 4)

λ̄
rm− 4

p+1

]

=
λ̄r−

4p
p+1

(a1 − a2r
m− 4

p+1 )p

[

λ′
n −H(rm− 4

p+1 )
]

(5.4)

with

H(x) = (a1 − a2x)
p

[

a1 +
a2m(m− 2)(m+ n− 2)(m+ n− 4)

λ̄
x

]

. (5.5)

(1) Let m = 2, then we can prove that

sup
[0,1]

H(x) = H(0) = ap+1
1 −→ e2 as p −→ +∞.

So (5.4) ≥ 0 is valid as long as
λ′
n = e2.

At the same time, we have (since a1 − a2r
2− 4

p+1 ≥ a1 − a2 ≥ 1 in [0, 1])

n2(n− 4)2

16

1

r4
− pβn

r4(a1 − a2r
2− 4

p+1 )p+1
≥ r−4

[

n2(n− 4)2

16
− pβn

]

. (5.6)

Let βn = (λ′
n + ε)λ̄, where ε is arbitrary sufficient small, we need finally here

n2(n− 4)2

16
− pβn =

n2(n− 4)2

16
− pλ′

nλ̄ > 0.

For that, it is sufficient to have for p −→ +∞

n2(n− 4)2

16
− 8(e2 + ε)(n− 2)(n− 4) + o(

1

p
) > 0.

So (5.6) ≥ 0 holds only for n ≥ 32 when p −→ +∞. Moreover, for p large enough

∫

ϕ2 ∫

ϕ2 ∫



Thus it follows from Lemma 5.4 that u∗ is singular and λ∗ ≤ e2λ̄.
(2) Assume 13 ≤ n ≤ 31. We shall show that u = ω3.5 satisfies the assumptions of

Lemma 5.4 for each dimension 13 ≤ n ≤ 31. Using Maple, for each dimension 13 ≤ n ≤ 31
one can verify that inequality (5.4) ≥ 0 holds for the λ′

n given by Table 1. Then, by using
Maple again, we show that there exists βn > λ′

n such that

(n− 2)2(n− 4)2

16

1

(|x|2 − 0.9|x|n2 +1)(|x|2 − |x|n2 )

+
(n− 1)(n− 4)2

4

1

|x|2(|x|2 − |x|n2 )
≥ pβn

(1− w3.5)p
.

The above inequality and and improved Hardy-Rellich inequality (5.0) guarantee that the
stability condition (5.2) holds for βn > λ′

n. Hence by Lemma 5.4 the extremal solution is
singular for 13 ≤ n ≤ 31 the value of λ′

n and βn are shown in Table 1.

Remark 1 The values of λ′
n and βn in Table 1 are not optimal.

Table1

n λ′
n βn

31 3.15λ̄ 4λ̄
30-19 4λ̄ 10λ̄
18 3.19λ̄ 3.22λ̄
17 3.15λ̄ 3.18λ̄
16 3.13λ̄ 3.14λ̄
15 2.76λ̄ 3.12λ̄
14 2.34λ̄ 2.96λ̄
13 2.03λ̄ 2.15λ̄

Remark 2 The improved Hardy-Rellich inequality (5.0) is crucial to prove that u∗ is
singular in dimensions n ≥ 13. Indeed by the classical Hardy-Rellich inequality and
u := w2, Lemma 5.4 only implies that u∗ is singular n dimensions n ≥ 32.
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24, (2007), 875-895.

[3] E. Berchio, F. Gazzola, T. Weth, Radial symmetry of positive solutions to nonlinear poly-

harmonic Dirichlet problems. J. Reine Angew. Math. 620, (2008), 165-183

[4] Brezis, H., Vazquez, J.L.: Blow up solutions of some nonlinear elliptic problems. Rev. Mat.



[5] T. Boggio, Sulle funzioni di Freen dordine m. Rend. Circ. Mat. Palermo 20 (1905), 97-135.

[6] C. Cowan, N. Ghoussoub: Regularity of the extremal solution in a MeMs model with

advenction, preprint.

[7] D. Cassani, J. do O , N. Ghoussoub, On a fourth order elliptic problem with a singular

nonlinearity, Advances Nonlinear Studies, 9, (2007), 177-197.

[8] C. Cown, P. Esposito, N. Ghoussoub, and A. Moradifam, The critical dimension for a

forth order elliptic problem with singular nonlineartiy, Arch. Ration. Mech. Anal. (2009,

to appear).

[9] M. G. Crandall, P. H. Rabinawitz, Some continuation and variational methods for positive

solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal., 58 (1975),

207-218.
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